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Abstract  

Histopathology imaging (HI) plays a significant role in enhancing the prognosis of colorectal cancer 

(CRC), which ranks as the second leading cause of cancer-related deaths globally. Classifying colon 

cancer tissues with HI can be challenging due to differences in morphology, the presence of artifacts 

when recording microscopic images, and the lack of histological expertise. The use of WideResNet 

network structure as a novel method for identifying textures in HIs is proposed using deep feature maps 

extracted from direct HIs and correlation matrices inputs. By using HSV (Hue, Saturation and Value) 

space, the first step is to decrease various artifacts during HI recording. After designing the ensemble 

model, the suggested structure has been evaluated and validated using the datasets CRC-5000 and NCT-

CRC-HE-100K. On the CRC data set, the ensemble model had accuracy of 98.71% and 99.13%. Deep 

ensemble learning performed better than current methods in terms of computational and temporal 

performance, according to the results. Our proposed method is generalizable and has been tested on many 

of unseen HIs. Based on their data, pathologists can classify unseen Whole Slide Images (WSIs) images 

using only their lesion classes. The proposed tissue analysis mechanism reliably predicts CRC when 

pathological images are accurate. 

 

Keywords: Colorectal cancer, Histopathology image, Deep transfer learning, Computational pathology, 

Ensemble learning, Correlation matrices.   

 

mailto:mdadpay1@gmail.com
mailto:kh.rezaee@meybod.ac.ir


2 
 

 

 

1- Introduction  

The third most common cancer type in the world is colorectal cancer (CRC), which is responsible for 

about 10% of cancer-related deaths worldwide [1]. The Centers for Disease Control and Prevention 

(CDC) reported 1.1 million newly reported cases and 551,000 deaths in 2018 [2]. The World Health 

Organization (WHO) predicts that 75 million cases will develop colon cancer by 2030, 17 million of 

whom will die and another 27 million will develop the disease. Clinical outcomes, however, can differ 

significantly between patients with resectable diseases. Tumor symptoms encompass several factors such 

as type 2 diabetes, nutritional deficiencies, diabetes, obesity, and smoking, which have been found to be 

associated with reduced odds of survival [3, 4]. CRC typically recurs in 60 to 80% of cases and 95% 

within four years of resection [4,5]. Colon malignancies are frequently identified by the utilization of 

needle biopsy or fine needle aspiration (FNA) techniques [5,6]. When cells or tissues are mounted on 

whole slide images, they can be observed under a microscope. Over the years, the histopathological 

imaging (HI) approach to the CRC has been well established. HI analysis has been shown to be highly 

effective in colorectal cancer clinical evaluation [7, 8]. In order to confirm colorectal cancer research and 

treatment, it is necessary to identify tumor sites, measure disease progression, and classify cancer 

prototypes from complete patient slide images [9, 10]. Visualizing, staging, and grading rectal cancer is 

possible. 

During lengthy HI analyses, the pathologist's knowledge, skills, and abilities are vital. In addition, 

unfavorable traits including weariness and concentration issues are linked to the HI analytical procedure. 

Colorectal cancer (CRC) diagnosis has been improved through automated techniques. In order to improve 

the outcomes of their decisions, efforts have been made [10]. Computer-aided design (CAD) solutions can 

be developed that reduce pathologists' workload by combining image processing techniques with machine 

learning techniques. Furthermore, it reduces the time needed to read and evaluate health-related data, 

speeds decision-making. If diagnosed early, CRC treatment is more likely succeed. Automated detection 

technologies can make it easier to detect CRC at an early stage. The most difficult obstacle to overcome is 

developing techniques for separating HI medicinal properties extracted from intestinal tissues. Although 

handcrafted extracted features take longer to define tissue status, when combined with other techniques, 

they are unreliable for producing distinctive characteristic vectors for classification. 

As well as providing use cases for CAD models, deep learning (DL) models have also been shown to be 

effective for medical purposes [11,12]. DL networks face various challenges such as the need for large 

amounts of data to perform, the high educational costs associated with complex information patterns, and 

the lack of generally accepted assumptions to select the proper DL architecture [13,14]. Some machine 
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learning technology uses a created pattern to solve problems that need automation, and in this way, 

technological knowledge transfer occurs [15,16]. In the meantime, DL and in a better sense, deep transfer 

learning (DTL) architecture is aimed at transferring learning in DL based systems to another task in 

classification [17]. 

Previous studies used handcrafted features to compensate for low classification rates due to high 

processing costs and low HI quality. In the study [18], the authors demonstrate the different 

characteristics of malignant tumors. Thus, their methods incorporate unsupervised feature embedding and 

clustering [19]. Traditionally, CRC tumors are classified by liver pathology imaging based on DTL 

analysis. In CRC research, DL techniques based on HI analysis are crucial. 

The primary responsibility of a pathologist is to determine the stage of a malignant tumor. Several 

subtypes of cancer can be distinguished from each other. Choosing the type of tissue to be treated is the 

first step in creating a treatment strategy. Overfitting is the key concern here, since it impacts accuracy 

and precision. Since the images have a high degree of textural similarity, it is imperative to employ an 

automated method to maximize the learning process. It is possible reduce absolute errors by utilizing DL 

techniques. In order to provide accurate classification and automate CRCs, deep learning requires many 

images. As a result of this study, the DTL model used to classify CRCs has been improved. To reliably 

classify HI, Residual Networks (ResNet) needs a small number of training pictures and a large number of 

colon tissue classifications.  

The complexity of analyzing HIs is exacerbated by the absence of annotated histopathology pictures and 

the presence of several color spaces. Since histopathology focuses on tissues rather than specific 

structures, capturing histopathological images presents a challenge. Based on the WideResNet 

architecture, ensemble feature generation and learning methods are used to develop our proposed system, 

and the results are estimated. The purpose of this study was to fill the gaps in previous research, in 

particular low classification accuracy and multi-class analysis of histopathological images. This study can 

contribute to a number of areas. 

 Specifically, the ultimate goal of this study is to develop novel and distinctive DL structures. In 

order to improve the classification of features, we started by adding information about color space, 

saturation, and value. Primarily, our objective is to discover an improved method for classifying 

features according to their HSV properties. Using HSV instead of RGB color space, pictures of 

histopathological lesions of color combine with homogeneous light and reduce the influence of 

artificial colors. A second stage utilizes transfer learning (TL) to increase performance by accessing 

a variety of feature maps. 

 It is our understanding that no deep learning method has been proposed to date that uses cumulative 

feature extraction and multi-class classification of HIs to find CRC. As a second input to the 
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proposed structure, each HI image is also associated with the correlation procedure to generate the 

two-dimensional correlation matrix. 

 It is possible to distinguish between several different types of CRC using HI analysis. By adopting 

this new strategy, the possibility of uncertainty and generalizability has been significantly reduced. 

The technique is unaffected by the presence or absence of high-contrast or high-quality information 

in the image. 

 Various methods of algorithm training and testing have been considered in order to achieve the 

desired results. For cross-validation (CV), 100,000 HIs from two separate histopathology pictures 

were employed. 

Accordingly, our research is organized as follows. Section 2 provides a brief overview of the related 

research. Section 3 discusses the novel technique for ensemble feature extraction and learning that is 

based on an optimized DTL structure described in Section 3. The experimental outcomes achieved with 

the suggested HI analysis approach are summarized in Section 4. A summary of the major points 

discussed in Section 5 follows the conclusion of this study. 

 

2- Related work 

As opposed than conventional approaches that extract their characteristics from the texture of high-

resolution images, DL methods produce a uniquely descriptive description directly from the raw image.  

Srinukunwattana et al. [7] developed a technique for identifying and classifying nuclei in a variety of 

settings using in-depth learning (miscellaneous, inflammatory, epithelial, and fibroblastic).  

The contour segmentation technique and convolutional neural network (CNN) architecture were used by 

Haj Hassan et al. [20] to differentiate CRC tissues from multispectral HI. The three types of tissue 

associated with CRC degrees could be consistently identified using segmented HI areas, namely 

carcinoma (CA), intraepithelial neoplasia (IN), and benign hyperplasia (BH). 

Izoka et al. [21] used whole-slide images (WSIs) of gastric and colorectal tumors to diagnose tumors by 

training recurrent neural networks (RNNs) and CNN architectures. Researchers correctly identified three 

types of WSI images in three different types of tissue: adenomas, adenocarcinomas, and non-neoplastic 

tissues. 

A reliable computer-aided design (CAD) strategy was developed by Kwak et al. [22] to identify lymph 

node metastasis in patients with colorectal cancer using a combination of high-resolution imaging (HI) 

and feature interpretation. Based on the CNN framework, they developed a deep learning model for 

detecting CRC texture, which was then applied to a variety of real-world situations. 

Additionally, Korbar et al. [23] devised a CAD method for identifying colonic polyps that could be used 

to visualize them. 
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Using high-resolution colon images, Manivan et al. [24] analyzed the endocrine systems. Their algorithm 

combined the features of a hand-made multiscale image with those calculated by a deep learning 

algorithm designed to convert segmentation predictions into results. A comparison was made between the 

developed system and the GlaS dataset. 

Hu et al. [25] combined the deep learning ResNet-101 model with the recurrent CNN to eliminate 

glandular segmentation from their results. Their blood test was able to distinguish high-risk characteristics 

of cancer and dysplasia with an AUC of 0.91 and a sensitivity of 97.4%. 

Using CNN and multi-channel attention mechanism models, Chen et al. [26] classified colorectal 

histopathology images at the initial stage. The second step training set included incorrect classification 

images again, improving the model's accuracy. In their dataset, they achieved 98.98% classification 

accuracy, and in the HE-NCT-CRC-100K dataset, they achieved 99.77% classification accuracy. 

A proposed method of patch aggregation based on CNN structure has been proposed by Wang et al. [27] 

for the diagnosis of colorectal cancer clinics, according to which fragments of poorly labeled patient slide 

images could be pasted. Prior to their public dissemination, HIs' methodologies were refined and 

evaluated by a substantial sample of participants. Based on the calculated Kappa value, it averaged 0.896. 

According to the results of this study, the area under the curve (AUC) for CRC diagnosis exceeded not 

only the performance of pathologists, as indicated by AUC values of 0.98 and 0.97, but also all other 

procedures examined. 

Riasatian et al. [28] combine histopathological images in various topologies to distinguish between tumor 

types. The KimiaNet [28] network consists of several dense blocks based on DenseNet. In the Atlas of 

Cancer Genome Database, there are 7126 slide images of human pathology samples embedded in 

formalin-fixed paraffin made from 240,000 images collected at 20 magnifications. We evaluated 

KimiaNet's search and classification capabilities using three publicly available datasets: CRC images, 

endometrial cancer images, and the Cancer Genome Atlas. 

Kassani et al. study [29] presented empirical support for the effectiveness of using transfer learning and 

CNN modules inside the encoding component of a segmentation framework. A comprehensive and 

comparative examination was undertaken to address the complex histology segmentation challenge. This 

study illustrated the advantages of including deep modules into the segmentation encoder-decoder 

network and elucidated the distinct functionalities of its different components. 

Raju et al. [30] proposed a CNN architecture based on deep learning models for HI multiclass 

categorization. This discovery was made by employing three distinct deep learning models. The most 

effective model was the recommended adaptive Resnet152 model, producing 98.38% accuracy. 

Additional models included in the study encompassed VGG16, which achieved an accuracy rate of 

96.16%, and a customized iteration of Resnet50, which yielded a higher accuracy rate of 97.08%. A 



6 
 

colorectal imaging multiclass dataset of 5000 images across eight classes. In this study, the researchers 

utilized image augmentation techniques to generate a dataset consisting of 15,000 images. This was 

achieved by applying proportionate enhancements to all classes within the dataset. 

Bokhors et al. [31] employed artificial intelligence (AI) methodology for segmenting distinct tissue 

compartments within whole-slide images stained with H and E. This technique was intended to enhance 

tissue architecture and composition. The present work assessed a range of advanced loss functions 

applicable to segmentation models. It also offered guidance on their use in HI segmentation. This was 

achieved through an analysis of a multicentric cohort including CRC patients from five medical 

institutions located in the Netherlands and Germany. Automated models were employed to develop a 

CAD approach aimed at classifying colon samples into four distinct categories based on their pathogenic 

significance. 

Khazaee et al. [32] proposed the utilization of a dilated ResNet (dResNet) architecture along with an 

attention module to generate deep feature maps for tissue classification in HIs. The utilization of 

Neighborhood Component Analysis (NCA) also mitigates computational complexity. The hybrid 

technique was verified and evaluated using the NCT-CRC-HE-100 K and CRC-5000 datasets. The hybrid 

model's accuracy on CRC datasets was 99.5 percent. 

Compared to other tissues like breasts and prostates, CNN's development for colon histology is behind. 

Through the combination of their hybrid model with a modified DTL structure, we may be able to avoid 

issues such as overfitting, inadequate learning, and uncertainty. Rather than relying on pre-existing 

datasets or binary classes, researchers developed their own segmentation model and trained and evaluated 

it on a wide range of educational pictures (tumor or non-tumor). When applied to a WSI colon biopsy, 

machine learning is able to detect epithelial tumors, even when the background is benign as shown in the 

case study. In the field of colon histology, DL plays a very important role, as demonstrated in this study. 

 

3- Methodology  

An overview of the introduced method illustrated in Fig. 1 how CRC is detected in HI. The sections of 

the introduced method are explained below.  

 

3-1 RGB to HSV color 

Since staining blends hues, HI images are inherently difficult to evaluate. In order for the HI processing 

phase to produce natural light homogeneity, the hue, saturation, value (HSV) color space, which includes 

color, saturation, and brightness, is necessary. HSV color facilitates the understanding of the correlation 

between image surface and perceived light intensity. Given that d=M-m, m=min (R, G, B), and M=max 
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(R, G, B), they provide a precise calculation of the H section. The values of r, g, and b may alternatively 

be determined using b= (M-B)/d, g= (M-G)/d, and r= (M-R)/d. 

 

Since HSV's brightest color is relatively similar to white light, light scattering at high colors intensities 

can be minimized, which results in a homogeneous signal. Due to this effect, objects appear brighter and 

redder in bright light. However, dim light makes these objects appear darker. The method of HI is highly 

sensitive to light leakage, hence requiring the use of a point light source in the RGB color space. The 

HSV converter employs a processed RGB image to ensure uniform brightness levels. The Fig. 2 

illustrates how to transform a RGB image into an HSV image. 

 

3-2 Deep CNN architecture  

CNNs are a sort of neural network that was invented [33]. The primary convolutional equation (1) was 

solved using a sequence of convolutional filters, and non-linearity was incorporated into this architecture. 

Numerous machine learning issues have been solved with remarkable results. A CNN's architecture is 

hierarchical. The following layers xj (Equation 1) are calculated from the input signal x: 

  1 ( )j j jx W x                                                                            (1) 

Despite the fact that Wj is a linear operator, there is a non-linearity involved. In addition, Wj is typically 

used as a convolutional layer in a CNN, and is either a rectifier max(x;0) or a Sig (exp (-x) + 1)-1. Let Wj be 

a stack of convolutional filters. Each layer is a filter map, and its convolutions are defined as the sum of the 

previous layer's convolutions (Equations 2 and 3). 

 


  , 1,   ( (., ) (., ))( )( )
jj j j k jk

x u k W k x k u                                                           (2) 





   ( )( )( ) ( )
u

g f x g u f x u                                                                   (3) 

Convex optimization problems were used because of their numerous benefits, including their 

computational tractability and unique optimal solutions. Moreover, stochastic gradient descent is used to 

train the weights Wj, and the gradients are usually obtained by backpropagation. Data dependence is one of 

the key challenges associated with deep learning. Contrary to more traditional machine learning 

techniques, deep learning is primarily taught on massive amounts of data. In order to train the underlying 

data patterns, vast amounts of data are required. The benefits of HI processing include the development of 

intelligent technology as well as the diagnosis of many diseases. Consequently, it is necessary to monitor 

for diseases on a continuous basis and to properly design the decision-making architecture. We need an 

automated decision-making system capable of a variety of implementation capabilities, such as real-time 

detection of cancer, lesions, or aberrant tissue in HIs, to communicate with an expert monitoring system in 

a medical situation. 
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3-3 Ensemble WideResNet  

The Equation 4 delineates a residual block that incorporates an identity mapping. 


 1 ,( )l l l lx x W x                                                                          (4) 

The function ℕ is commonly regarded as a residual function, whereas Wl is used to denote the block 

parameters. The variables xl+1 and xl are representative of the input and output of the lth unit inside the 

network. A residual network is comprised of residual blocks that are organized in a preset order. Residual 

networks employ two essential construction components. The initial component is a convolutional layer, 

extracting distinctive characteristics from the input. The second unit comprises a fully connected output 

layer that utilizes the characteristics extracted in the preceding step. In other hand, we have two parts. The 

simple component comprises of two consecutive convolutions, each with a size of 3 × 3. Moreover, Batch 

normalization and Rectified Linear Unit (ReLU) activation function are applied between these 

convolutions. The convolutional operation of a 3 × 3 filter followed by another convolutional operation 

with Fig. 3(a). The second component is a bottleneck including a solitary 3 × 3 convolution encircled by 1 

× 1 convolutional layer that concurrently reduce and expand the input dimensionality. The sequence of 

convolutional operations consists of a 1 × 1 convolution, followed by conv1×1, conv3×3, and conv1×1 as 

shown in Fig. 3(b). The final structure is shown in Fig. 3(c), which uses two 3 × 3 convolutional layers 

and a dropout part. 

After analyzing the features, the WideResNet structure will build the set of features used in the next step. 

The two-dimensional correlation matrix is derived from the pixels of each HI image and is used as the 

second input to the structure. WideResNet deep extracted features are employed to predict relationships 

between different variables. This correlation matrix can be used to gain insight into the underlying 

structure of the data and make predictions about features. By using a deep learning model, such as 

WideResNet, it is possible to learn complex relationships between different variables in HIs. This model 

can then be used to predict the value of a given variable based on its correlation with other variables. 

Thus, the Pearson Correlation Coefficient Matrix (PCCM) was also used to calculate correlation 

coefficients between signal features [34,35]. In our analysis, each HI was treated as a node (that is, both 

the original and HSV images). Pearson correlation coefficient was used to determine the correlation 

between the two histopathology images. PCC uses the Equation 5: 

             
 


 

,

,
X Y

X Y

cov X Y
                                                                            (5) 

X and Y are the feature vectors of two different input HIs. Furthermore, σX represents X's standard 

deviation, and Cov(X,Y) denotes the covariance (COV) between X and Y. Besides, σY shows the standard 

deviation (STD) of Y. As a function of the mean and expectation, the Cov(X, Y) is written as Equation 6: 
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     [(  ) ( )],   X YCov X Y E X Y                                                             (6) 

Assuming μX is the mean of X and E is the expectation. Therefore, Therefore, it can be concluded from 

Equation 7 that: 

    
2 2 22 ( ) [ ] [  ] ][ [ ]X E X EE E X XX                                                        (7) 

The classification prediction model for CRC based on HI is derived from a modified WideResNet model. 

The proposed model effectively incorporates ResNet networks, where one network is provided with the 

HI image and the other network receives the corresponding Pearson correlation coefficient matrix. 

Initially, the fully connected layers of the two networks were merged, and the output of the convolutional 

layer was then directed to a unified fully connected layer. The classification process was accomplished by 

integrating feature maps derived from the signal with feature maps made from the correlation coefficient 

matrix of histopathology images. The signal properties for each channel were extracted based on various 

tissue characteristics. In order to enhance the model's accuracy, we calculated a matrix of Pearson 

correlation coefficients for the aforementioned features. Following the fully connected layer, a SoftMax 

layer was included to specify the input labels. To optimize the model's training efficacy, we provided a 

signal and the Pearson correlation coefficient matrix as inputs to two ResNet networks, and then recorded 

the resultant weights. The proposed ResNet architecture can be seen as an improved version of the 

commonly employed WideNet design. Ensemble learning, incorporating three distinct modified 

architectures, where concatenated features are employed in fully connected layers, has the potential to 

yield significant enhancements. The inclusion of these weights in the provided model can be attributed to 

the training process using two distinct ResNets. Accordingly, the proposed structure consists of the inputs 

extracted through the model and a matrix that relates the features together. After passing through the 

convolutional structure, these inputs are finally concatenated together. Each channel's output 

characteristics were extracted from HIs, and a Pearson correlation coefficient matrix was then produced 

and included in the model. After the fully connected layer, a SoftMax layer was used to specify the input 

label. ResNet networks were trained using the same input HIs (HSV), as well as the corresponding 

Pearson correlation coefficient matrix, with weights stored to improve the model's training. Due to the 

fact that the new model was trained using two unique ResNets, these weights are incorporated. Fig. 4 

illustrates the proposed architecture. 

Based on the literature [35], WideResNet provides features to classify images, recognize objects, and 

identify anomalies. These features can be extracted using transfer learning and deep learning. High-level 

features refer to features that are extracted from the input image and can be used to discriminate between 

different classes. Deep WideResNet can provide shape, texture, and color. These features can then be 

utilized to classify HIs, detect objects, and find anomalies in HI images. These features can also be used 

to detect and diagnose diseases, such as cancer, and to automate medical image analysis. In addition, 

these features can also be used to improve the performance of medical imaging systems.  
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4- Experimental results 

4-1 Dataset 

Data were received from the Medical Center of the University of Mannheim (Germany), which was 

previously mentioned [36]. Fig. 5 illustrates that tumors are made up of eight different types of tissues. 

The cancer epithelium is followed by (1) stromal cells, (2) stromal tissue, (4) inflammatory cells, (5) 

mucosa and debris, (6) glandular mucosa, (7) adipose tissue, and (8) background. There are 5000 images 

in the collection with a 150 × 150-pixel resolution and 74 × 74-micrometer resolution.  

Staining is usually visible on the images that a pathologist needs to make an accurate diagnosis. The 

pathologist can distinguish them from one another by using additional histological markers, such as 

formalin. The images in this dataset have been labeled by experts. 

The NCT-CRC-HE-100K histopathology imaging kit is a publicly accessible collection of 100,000 

images divided into nine distinct classes each with an aspect ratio of 224 × 224 pixels and an average 

pixel size of 0.5 millimeters. The nine types of tissues that can be analyzed are as follows: adipose tissue 

(ADI), normal colon mucosa (NORM), colorectal cancer (CRC), debris (DEB), hematoxylin-eosin (HE), 

lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), NCT, and cancer-associated stroma (STR). 

 

4-2 Setting 

The computational system used in our technique was equipped with a Core i-7 CPU and 16 GB of RAM. 

A variety of web-based add-ons and toolkits are included in Matlab's software environment. The 

computer is not equipped with a dedicated electronic graphics processing unit (GPU). In order to 

construct training, testing, and validation sets, the data can be split into three groups with a ratio of 60-20-

20. With a primary learning rate (µ) of 0.002 and 100-1000 iterations, the models have been trained to be 

effective in the real world. 

Moreover, the mini-batch size was limited to 32 and the early-stopping period was limited to 10 epochs in 

the absence of accuracy gain. We applied the Root Mean Square Propagation (RMSprop) method, as well 

as momentum and the Stochastic Gradient Descent (SGD) method, to this optimization problem. To 

prevent the over-fitting challenge within the suggested DL structure, we combined dropout and early-

stopping strategies when defining the optimal training iteration. When we fine-tuned the network, we 

incorporated a Softmax layer as classification layer, which was achieved by replacing the final three 

layers with a Fully Connect (FC) component. The bias learn rate factor (value of 20) and weight learn rate 

factor (value of 10) needed to be set to values that were higher than those used in the traditional structure 

in order to accelerate learning in the new layers. During the tuning phase, a bias learns rate factor of 20 

and a weight learn rate factor of 10 were employed. 
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4-4 Evaluations  

For detecting distinct classes (textures found in HI) and classifying CRCs based on HI, we compared 

family-based ResNet learning algorithms to WideResNet ensemble architecture. The WideResNet 

Ensemble is employed in both datasets, as seen by the data presented in Table 1 and Table 2, in order to 

ensure optimal performance in feature extraction. According to the findings shown in Table 1, it is 

evident that many categories may be assigned to each class within the initial dataset, ranging from 1 to 8 

categories. 

For feature extraction, ResNet DTL algorithms were employed, but the rest of the methodology remained 

unchanged. Ensemble learning determined the best classifier, for example. WideResNet's ensemble 

learning approach has proven considerably effective overall as a result of its contribution to the 

classification process.  

The suggested method has also been compared with similar methods such as BasicResNet, ResNeXt, and 

WideResNet. Despite the fact that the suggested DL feature extraction approach outperformed the others 

in some aspects, other models within the ResNet architecture families occasionally showed a medium 

classification error. The results in Table 1 and Table 2 indicate that learning can be improved by 

increasing the classifier associated with the right deep transfer method and its ensemble processes. With 

the suggested methodology and a small number of replications, it is possible to generate relevant feature 

maps of histopathological images in just a few minutes. Certain transfer techniques that rely on time 

transfer might be computationally intensive, especially during the training phase. Consequently, these 

approaches may not be appropriate for real-time applications. However, it is worth noting that deeper 

structures can potentially provide improved features in certain situations.  

The confusion matrices of the classification process for the first and second HI datasets are depicted in 

Figs 6 and 7. To define the choice technique and maintain the processing time, possible accessible 

features were used to classify by DTL structures and identify the approach to use. Studies have shown 

that between 98 and 99 percent of the variation in CRC accuracy measurements is caused by HIs. Based 

on the extracted features and CRC challenges, a classification method was developed using two datasets. 

According to the test findings, both datasets were assigned suitable classification forms. 

Validation data had an average accuracy of 98.64 percent. Based on the distribution of anticipated classes 

from the confusion matrix, the accuracy of the test data in both portions of Fig. 6 was independently 

determined. The same output is shown in Fig. 7, which reaches a 99.16 percent accuracy rate on both test 

data sets derived from the second HI dataset. A total of 98.98 percent of HIs were accurately classified.  

The inclusion of characteristics obtained by automated processes, together with the process of learning 

the dataset, can lead to a notable improvement in classification accuracy. This is despite the possibility of 
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the findings being less precise than the original dataset. We demonstrate in scenario 2 that the 

classification approach has the same level of reliability by using a second data set with a large number of 

HIs. Using the method described here, CRC tissues of different types can be identified. Additionally, it 

achieved 99 percent accuracy when dealing with a wide variety of texture classifications, indicating that 

the extraction of the suggested feature and the developed learning methods obtain a reasonable level of 

generalization and certainty. The results show that the proposed model is competitive in terms of 

colorectal cancer classification and diagnosis. 

In classification problems with multiple thresholds, the Area Under the Curve of the Receiver Operating 

Characteristics (AUC-ROC) can be used to measure performance. By analyzing the AUC, we can 

determine the level of discrimination. Plotting ROCs demonstrates that the model is able to distinguish 

between various types of CRC in HIs. Fig. 8 shows the results of a series of studies in which the AUC 

values for four different classes of unseen HIs were calculated. Because this is a multi-class mode of 

CRC, the logic for drawing a curve relies on the classification of one class against another. The first two 

diagrams in Fig. 7 depict unseen data from dataset 1, and the second two diagrams show the classification 

and plotting of ROCs in dataset 2. In Fig. 8 in part (a), respectively, the AUC values for classes 1 to 8 are 

equal to 0.984, 0.988, 0.994, 0.987, 0.995, 0.989, 0.997, and 0.993, and for part (b) are corresponding to 

0.989, 0.984, 0.985, 0.988, 0.977, 0.988, 0.995, and 0.992. Moreover, in part (c), respectively, the AUC 

values for classes 1 to 8 are equivalent to 0.984, 0.988, 0.994, 0.987, 0.995, 0.989, 0.997, and 0.993. For 

part (d) are equivalent to 0.989, 0.984, 0.985, 0.988, 0.977, 0.988, 0.995, and 0.992. Moreover, in part (c), 

respectively, the AUC values for classes 1 to 8 are equal to 0.993, 0.993, 0.995, 0.995, 0.994, 0.995, 

0.997, 0.997, and 1.000. For part (d) are equal to 0.993, 0.991, 0.996, 0.995, 0.993, 0.994, 0.996, 0.997, 

and 1.000. 

 

4-4 Discussion   

The proposed approach must be capable of classifying tumors and colon tissue into at least two distinct 

groups in order to identify them and categorize them. As a result, clinicians can more accurately diagnose 

patients. Each approach is used for a different purpose in the classification of CRCs. It is vital that a 

record of similar cases be available to make an accurate diagnosis. A pathologist uses microscopic criteria 

to diagnose sick slides, including the color, size, texture, shape, and blackness of cells. According to early 

research [37], color information can be preserved by retaining the HSV color space. HIs can be employed 

to detect healthy cells from malignant cells based on their hues. If the color of a histopathological image 

is to remain constant, then the original color must be preserved. The HSV color representation is more 

realistic than RGB because it more closely resembles how humans perceive color. However, lighting and 
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contrast may make it difficult to distinguish the correct features. Therefore, an HSV color model was 

proposed, which preserves color while addressing challenges outside the model's scope. 

By incorporating a wideResNet structure into an ensemble, meaningful features can be extracted at a 

suitable level of processing complexity. As a result of WideResNet's structure, it is simple to develop a 

architecture with many layers, thereby reducing the number of training and testing errors. In contrast to 

earlier learning architectures, WideResNets uses identity mapping to avoid disappearing gradients. 

WideResNet's residual blocks eliminate the problem of vanishing gradients. Ensemble learning in 

networks is enabled by convolutional layers, which are the last bottleneck blocks. An ensemble is more 

effective than a single model because it can make more accurate predictions and perform better than any 

single model. 

There is a significant difference between the rate at which deep learning algorithms converge and the 

credibility of their results. The WideResNet technique outperformed the other two in terms of relevant 

attributes and convergence speed (e.g., in comparison with BasicResNet and ResNeXt architectures). In 

order to obtain the most accurate results for feature extraction, it became increasingly critical that CRC 

classification be reliable and robust in order to handle the growing number of His classes. As seen in Fig. 

9 (a), the first set of HIs investigated during the deep learning model's initial phase produced the best 

results in terms of accuracy and loss computations. Using loss and accuracy computations, we can build a 

deep learning model based on the last two components of Fig. 9 (b) to reliably identify the sections. 

This approach also has a manageable level of computational complexity. In addition, the WideReNet 

ensemble is useful because it produces related features that are then optimized through the collection 

mechanism, as shown in Fig. 10. In this figure, the values of accuracy, sensitivity, and specificity for an 

unseen data sample are displayed, which are shown in sections (a) and (b) for datasets 1 and 2, 

respectively. With our concept, unlike Softmax and End-to-End (e2e) designs, computing complexity is 

reduced while maintaining high accuracy and competent processing performance. Additionally, an 

examination was conducted on the computational complexity issue, as well as an evaluation of the 

effectiveness of the suggested method for feature extraction and ultimate classification. 

Table 3 compares the results of similar approaches to the results of the proposed method. In this table, 

quantitative approaches and the proposed algorithm are compared using NCT-CRC-HE-100K and Kather 

texture 2016 pictures, demonstrating that the proposed algorithm has a strong multi-class capability. 

However, the algorithm's results have not yet been tested on unseen data in an analogous fashion. Thus, 

the generalizability of the suggested technique can be demonstrated with respect to a substantial portion 

of the HI visual data. 

Using the NCT-CRC-HE-100K dataset, Ghosh et al. [38] demonstrated 96.16% accuracy with high 

computing complexity using ensemble learning based on CNNs to identify various lesions in HIs. We 
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have improved the accuracy by 2-2.5% compared to this model. In a study by Hamida et al. [39] with 

96.6% accuracy, these results were implemented in Kather texture 2016. The NCT-CRC-HE-100K 

database was also expressed with 99.76% accuracy and low generalization. 

The proposed approaches are 0.02 percent less accurate than MCAM and 0.06 percent more accurate than 

IL-MCAM, according to Chen et al. [26]. Compared to their models, our method has a significant 

reduction in computing complexity. They also overlooked the intricate nature of the tissue depicted in the 

photograph, as well as the asymmetrical dispersion of light caused by the staining process, which results 

in variations in color intensity.  

Kather et al. [40] also used NCT-CRC-HE-100K and VGG-16 with TL structures, which reached 98.70%, 

a little lower than our proposed model. There are a number of challenges in similar approaches, including 

overfitting, a lack of available HIs, and added artifacts from the environment during the recording of 

WSIs. 

Because early identification of colon cancer is so vital, swift and precise classification of HIs is a crucial 

stage in the process. To ease pathologists' labor, accurate categorization techniques must perform well in 

the absence of annotated databases. This research lays out a generalizable technique for overcoming 

learning and time restrictions, as well as making HI pictures more accessible in clinics and ensuring 

accurate classifications. 

 

5- Conclusion 

Using three WideResNet-based DTL algorithms and effective learning, we classified colorectal cancer 

(CRC) from histopathology images. An ensemble model of WideResNet modules is proposed to analyze 

the texture of colorectal cancer histology. When microscopy was used to record various colon tissues, the 

HSV-based color transform method was used to reduce image artifacts. These features and ensembles 

were then used to generate a texture with many classes. In both training and testing, the proposed method 

outperforms conventional deep learning models. Hence, the new model is an effective tool for detecting 

and classifying colon cancer. Since this method is generalizable and is invulnerable to uncertainty, it is 

superior to previous similar methods since it retains accuracy even when HIS contains complex 

components and textures. The generalizability of the Kather texture 2016 and the NCT CRC-HE-100K 

dataset has been extensively tested. In order to compare histology photographs, we used a variety of 

unseen HIs. Deep learning models will integrate and reorganize attention processes in the future. 

Consequently, our research aims to investigate the impact of incorporating attention mechanisms into 

various components of deep learning architectures on the classification accuracy of convolutional layers. 
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Figures and tables captions 

Fig. 1. It is shown in two sections, training and testing, how the approach works. 
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Fig. 2. The presented figure is a simplified diagram illustrating the sequential steps involved (a) in the 

conversion procedure of an RGB picture to HSV color space and (b) represents the RGB component in 

the RGB to HSV color space conversion.  

Fig. 3. Various residual networks yield an appealing WideResNet topology. Additionally, it is worth 

noting that prior to each convolution operation, batch normalization and ReLU activation are applied. 

However, these steps are omitted from the provided illustration for clarity. In this figure, (a) is basic, (b) 

is bottleneck, and (c) is WideResNet architecture.  

 

Fig. 4. The framework of the proposed architecture based on ensemble WideResNet. 

Fig. 5. A row containing examples from just one class illustrates a sample image from a dataset. HIs from 

left to right are: (1) background, (2) adipose tissue, (3) mucosal glands, (4) mucosal remnants, (5) 

immune cells, (6) complex stroma, (7) simple stroma, and (8) tumor epithelium [36].  

Table 1. For the first dataset with eight classes, this table presents the accuracy of CRC categorization 

through HI analysis. 

Table 2. For the second dataset with nine classes, this table presents the accuracy of CRC categorization 

through HI analysis. 

Fig. 6. For two different test data, the confusion matrices of the classification process of the first HI 

dataset are shown in this figure. 

Fig. 7. For two different test data, the confusion matrices of the classification process of the second HI 

dataset are shown in this figure. 

Fig. 8. as demonstrated by this figure, the AUC values for four different classes of unseen HIs were 

calculated. The diagrams a and b show the ROC results for unseen images from dataset 1, and c and d 

show the ROC results for unseen images from dataset 2. 

Fig. 9. For both datasets, we selected several unseen HIs and compared our model with BasicResNet and 

ResNeXt based on accuracy in (a) and (c) and loss in (b) and (d), respectively. 

Fig. 10. As shown in section (a) and (b) for datasets 1 and 2, the accuracy, sensitivity, and specificity 

values are shown for an unseen sample of data. 

Table 3. We evaluate our suggested model against other quantitative approaches using the same data sets. 
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Fig. 1. It is shown in two sections, training and testing, how the approach works 

 

 

Fig. 2. The presented figure is a simplified diagram illustrating the sequential steps involved (a) in the 

conversion procedure of an RGB picture to HSV color space and (b) represents the RGB component in 

the RGB to HSV color space conversion.  
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Fig. 3. Various residual networks yield an appealing WideResNet topology. Additionally, it is worth 

noting that prior to each convolution operation, batch normalization and ReLU activation are applied. 

However, these steps are omitted from the provided illustration for clarity. In this figure, (a) is basic, (b) 

is bottleneck, and (c) is WideResNet architecture.  
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Fig. 4. The framework of the proposed architecture based on ensemble WideResNet.
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Fig. 5. A row containing examples from just one class illustrates a sample image from a dataset. HIs from 

left to right are: (1) background, (2) adipose tissue, (3) mucosal glands, (4) mucosal remnants, (5) 

immune cells, (6) complex stroma, (7) simple stroma, and (8) tumor epithelium [36].  

 

Table 1. For the first dataset with eight classes, this table presents the accuracy of CRC categorization 

through HI analysis. 

DATASET 1 
BASICRESNET RESNEXT WIDERESNET 

ENSEMBLE 

WIDERESNET 

MIN MAX MIN MAX MIN MAX MIN MAX 

BACKGROUND 97.48 98.19 98.78 98.88 98.78 99.22 99.08 99.62 

ADIPOSE 96.54 97.61 97.62 98.17 97.94 98.51 98.19 98.70 

GLANDS 96.59 97.73 97.28 98.11 97.90 98.41 98.39 98.85 

DEBRIS AND MUCUS 96.98 97.77 97.64 98.12 98.33 98.93 98.74 99.29 

IMMUNE CELL CONGLOMERATES 96.56 97.83 97.31 98.42 98.07 98.78 98.41 99.12 

STROMA (COMPLEX) 97.21 97.92 97.49 98.13 98.02 98.65 98.34 98.73 

STROMA (SIMPLE) 96.54 97.65 97.43 98.10 97.82 98.41 98.03 98.63 

TUMOR EPITHELIUM 96.27 96.91 96.88 97.28 97.10 98.03 97.23 98.44 

AVERAGE 96.77 97.70 97.42 98.11 97.99 98.61 98.55 98.93 



 

22 
 

Table 2. For the second dataset with nine classes, this table presents the accuracy of CRC categorization 

through HI analysis. 

DATASET 2 
BASICRESNET RESNEXT WIDERESNET 

ENSEMBLE 

WIDERESNET 

MIN MAX MIN MAX MIN MAX MIN MAX 

ADIPOSE TISSUE (ADI) 95.54 97.95 96.08 98.22 98.12 99.73 98.31 99.73 

BACKGROUND (BACK) 96.48 97.22 96.35 98.31 98.27 99.44 98.48 99.44 

DEBRIS (DEB) 97.72 98.79 96.67 98.33 98.51 99.28 98.73 99.28 

LYMPHOCYTES (LYM) 95.70 96.57 95.42 96.63 97.70 98.38 98.44 99.38 

MUCUS (MUC) 95.76 97.91 96.36 97.24 98.33 99.41 98.65 99.41 

SMOOTH MUSCLE (MUS) 95.49 97.28 96.09 98.17 97.51 98.28 98.51 99.28 

NORMAL COLON MUCOSA (NORM) 96.54 97.42 96.05 97.49 97.47 98.12 98.47 99.12 

CANCER-ASSOCIATED STROMA (STR) 95.85 97.19 95.80 97.42 99.67 99.48 99.67 99.48 

ADENOCARCINOMA EPITHELIUM 

(TUM) 

96.27 97.03 96.43 98.41 98.82 99.39 98.82 99.39 

AVERAGE 96.15 97.54 96.13 97.80 98.26 99.05 98.68 99.40 

 

 

Fig. 6. For two different test data, the confusion matrices of the classification process of the first HI 

dataset are shown in this figure. 
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Fig. 7. For two different test data, the confusion matrices of the classification process of the second HI 

dataset are shown in this figure. 

 

 

 

Fig. 8. as demonstrated by this figure, the AUC values for different classes of unseen HIs were calculated. 
The diagrams a and b show the ROC results for unseen images from dataset 1, and c and d show the ROC 

results for unseen images from dataset 2.  
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Fig. 9. For both datasets, we selected several unseens HIs and compared our model with BasicResNet and 

ResNeXt based on accuracy in (a) and (c) and loss in (b) and (d), respectively. 
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Fig. 10. As shown in section (a) and (b) for datasets 1 and 2, the accuracy, sensitivity, and specificity 

values are shown for an unseen sample of data. 

 

Table 3. We evaluate our suggested model against other quantitative approaches using the same data sets. 

Author(s) Used dataset Proposed structure Accuracy  Computationa

l complexity 

Generalizability 

Chen et al. [26] NCT-CRC-HE-100K MCAM 99.68% High Medium 

IL-MCAM 99.78% High Medium 

Kather et al. [40] NCT-CRC-HE-100K VGG-16 and TL 98.70% Low Medium 

Hamida et al. [39] Kather texture 2016 ResNet and TL 96.60% High Medium 

NCT-CRC-HE-100K ResNet and TL 99.76% High Medium 

Ghosh et al. [38] NCT-CRC-HE-100K Ensemble learning 

based on the CNN 

96.16% High Medium 

Raju et al. [30] Kather texture 2016 Adaptive Resnet152 

model 

98.38% High High 

The proposed 

model 
Kather texture 2016 Ensemble WideResNet 98.74% Low High  

NCT-CRC-HE-100K 99.23% Low High  
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