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Abstract  

Cord blood is the blood that obtains after the birth of a baby. Cord blood is rich in stem cells, 

which are used to treat a variety of diseases, including cancers and immune disorders.  These 

treatments' effectiveness depends on the quantity of total nucleated cells (TNCs) in cord blood 

units (CBUs). Both public and private cord blood banks store these CBUs. Public banks rely on 

government funding for the cost of testing, storing, and maintaining CBUs. In addition, the 

quantity of TNCs in each CBU remains uncertain until the TNC test is conducted. This study 

aims to utilize ensemble learning algorithms to aid public banks in identifying and collecting 

potentially valuable CBUs prior to TNC testing in order to save the cost of TNC testing on CBUs 

that are not valuable. This study has three main contributions: Firstly, it demonstrates that the 

XGBoost and LightGBM algorithms can identify CBUs with TNC of more than 0.7 × 109,1 ×

109, and 1.5 ×. 109; Secondly, the study combines the smote_NC method with Xgboost and 

LightGBM algorithms and evaluates each algorithm in identifying high TNC samples. Lastly, 

this article considers the effect of the phlebotomist experience on identifying high TNC samples, 

a variable overlooked in other studies.  

Keywords: Umbilical Cord Blood, Total Nucleated Count, XGBoost, LightGBM, Machine 

Learning, TNC prediction 

1 Introduction  
For over 30 years, umbilical cord blood has been used in medicine as a rich source of stem cells 

to treat 100 indications [1], with about 80 reported in previous studies [2]. However, cord blood 

has some advantages and also some disadvantages compared to other hematopoietic stem cells 

(HSCs) sources. The most relevant advantages of UCB as a source of HSCs are readily available 

once collected and stored, less-precise matching of the donor's human leukocyte antigen (HLA) 

type to the recipient's HLA type, no risk or pain to the mother or baby, availability, and lower 

risk of GVHD infection than adult sources [3, 4]. The most crucial disadvantage of umbilical 

cord blood is the limited number of stem cells in the cord blood unit (CBU), which is typically 

around ten times lower than bone marrow [5]. Two types of banks have been created to collect 

and store cord blood units: 1) private banks and 2) public banks. Private banks, also known as 

family banks, preserve CBU with a link to the identity of the baby. Thus, the family may retake 

it when they need it. Family banks charge the family to process, test, and cryopreserve the cord 

blood privately. Public banks preserve donated cord blood for potential use by transplant 

patients. The CBU is listed in a registry by its tissue type, and the donor remains anonymous. 

Public banks do not charge parents for donating cord blood. Since the probability of a CBU 

being appropriate for cord blood unit transplantation is depended on the TNC count, the required 

tests before cryopreservation and banking the CBU are required. These tests are cost-intensive, 

and public banks tend to store units that have a high chance of being used [6]. In fact, if public 

cord blood banks increase the cut-off value of TNC up to 1.5 × 109, the discarded rate of the 

samples will increase. Therefore, since approximately 75 percent of the samples have TNC 

below 1.5 × 109 [3], the public cord blood bank incurs a high cost due to the high cost of pre-
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storage tests. On the other hand, if the public cord blood bank decreases the cut-off TNC, many 

stored samples will be inapplicable. Because of these reasons, in 2014, half of the public cord 

blood banks decided to terminate their activity just two years after they began operating [7]. 

Therefore, public UCB banks need methods to predict the amount of TNC in the sample before 

performing the tests to decrease discarded CBUs.  

 

Abbreviations:  

UCB 

CBU 

Umbilical cord blood 

Cord blood unit 

TNC 

GVHD 

Total nucleated cell 

Graft versus host disease 

HLA human leukocyte antigen 

SMOTE_NC 

XGBoost 

Synthetic Minority Over-sampling TEchnique-Nominal Continuous 

Extreme Gradient Boosting 

LightGBM 

GOSS 

EFB 

Light Gradient Boosting Machine 

Gradient-Based One Side Sampling 

Exclusive Feature Bundling 

ADASYN Adaptive Synthetic 

TP 

FP 

TN 

FN 

ROC 

AUC 

True positives 

False positives 

True negatives 

False positives 

Receiver operating characteristic 

Area Under the Curve 

Machine learning (ML) refers to the usage of computer algorithms that can improve their 

performance automatically based on experience gained from data. Today, due to the massive 

amount of data and their complexity, machine learning algorithms have become prevalent, and 

they are used in various applications to extract important and hidden information. Machine 

learning algorithms also have many applications in health care to predict diseases such as cancer, 

heart, lung, and other diseases [8].  

Testing the quality of units such as TNC in public cord blood banks can be quite costly. Additionally, 

the storage of low-quality units can result in further expenses, as most of them are unusable. 

Therefore, this paper assesses the efficacy of two leading ensemble learning algorithms, XGBoost 

and LightGBM, in predicting TNC levels of CBUs. By identifying potential samples prior to 

conducting TNC tests, cord blood banks can avoid unnecessary expenditures and allocate their 

budget more efficiently. For this purpose, this study compares the performance of two ensemble 

learning algorithms (XGBoost and LightGBM) in identifying TNC samples that are larger than 

the cut-off specified cord blood bank. In this article, three cut-offs are examined. The three cut-

offs are 0.7 × 109, 1 × 109, 1.5 × 109, which have been used in the literature and international 

cord blood banks [3, 4, 5, 8, 9]. 

The two main contributions of this research are as follow: (1) using an ensemble learning 

algorithm to identify CBU with high TNC in three different cut-offs; (2) Combining the 
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smote_NC method with Xgboost and LightGBM algorithms and evaluating each algorithm in 

identifying high TNC samples.  

This paper is organized as follows:  In Section 2, the literature review is presented. In Section 3, 

The data and the sets of variables related to UBC are introduced. Then, two algorithms that 

classify CBUs in terms of TNC are described how these two algorithms' parameters will be tuned 

are explained. The results of the models and the discussion are presented in Sections 4 and 5. 

Finally, the conclusion and possible future works are presented in Section 6. 

2 Background  
In this section, the methods and factors used to predict TNC of umbilical cord blood and bone 

marrow stem cell, and also techniques that predict the availability of bone marrow donors, are 

discussed. 

Solves et al. [9] identified the cellular dose as the most critical factor limiting the use of stem 

cells. They used multivariate analysis to identify samples with a cell count of more than 0.8 

billion and showed that the variables of sex of newborn, mode of delivery, and weight of 

placenta would affect cell count. Bouwmeester et al. [10] also introduced the same cell dose as a 

critical factor for bone marrow stem cell transplantation. They also used multivariable multilevel 

analysis to predict donor cell dose and considered factors such as age and smoking to affect cell 

dose prediction. Kristin et al., [11] by using multivariate and univariate analysis methods, 

examined factors such as gestational age, infant race, infant sex, infant birth weight, maternal 

age, delivery type, and processing time, and they represented that Among these factors, infant 

birth weight, race, and sex, as well as processing time, were found to be effective. Manegold-

Brauer et al. [12] predicted samples with a cell dose of more than 1.5 billion using a combination 

of nomogram and multivariate analysis. They first discovered the influencing factors using 

multivariate analysis, then calculated the sample's probability of at least 1.5 billion TNCs using 

the nomogram method. Also, factors influencing cell dose were introduced as birth weight and 

gestational age. Shaoqing Wu et al. [13] introduced factors such as maternal age, birth weight, 

and vaginal delivery effect on umbilical cord blood stem cell TNC through statistical methods. 

Reham Al-Qahtani [2] introduced factors such as cord blood volume, birth weight, and method 

delivery on umbilical cord blood stem cell TNC counts through statistical methods. Lionel Faivre 

et al. [14] reviewed articles about factors affecting the TNC of umbilical cord blood stem cells. 

Based on the data collected, they concluded that the fetal weight factor had the greatest effect on 

cell dose with increasing gestational age. Xinxin Lin et al. [15] showed the effectiveness of 

placental weight and week of gestation using univariate analysis. But using multivariate analysis, 

the effect of weeks of gestation was rejected. Since only fetal weight and sex factors affect TNC 

counts of umbilical cord blood stem cells, they combined a combination of these two factors to 

define a predictor tool called estimated fetal weight percentile. Using this predictor tool, they 

improved the banking rate by 30%. Ying Li et al. [16] used machine learning algorithms such as 

Boosted decision tree, logistic regression, and support vector machine to try to predict access to 

bone marrow stem cell donors and identify the characteristics of these donors. They showed that 

one of the main characteristics of donors is the ‘number of days since the last donor contract’. 

Parmelee Streck et al. [17] used OLS, Lasso, and random forest methods to predict the TNC of 
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bone marrow stem cells. They demonstrated that the Lasso method has the best performance. 

Funk et al. [5] predicted samples with a cell dose of more than 1.5 × 109 using the logistic 

regression method and using maternal and neonatal factors. They indicated that the fetal weight 

factor has the most significant effect o n the TNC of the samples. In addition, they were able to 

raise the banking rate from 19.5% to 34.6%.  

Since the XGBoost and LightGBM algorithms have not been used in the field of cord blood stem 

cells before, and on the other hand these two algorithms in other areas of health [18-21], such as 

prediction of heart disease, have performed effectively; therefore, in this paper, we evaluate these 

two algorithms. 

3 Methodology 
In order to predict the TNC of CBUs, Royan cord blood bank data from 1/1/2015 to 1/1/2020 are 

used as input machine learning data. The feathers of data includes the number of abortions, 

ethnicity, birth order, gestational age, maternal age, paternal age, and type of delivery. However, 

infant data such as sex and weight were not accessible for this study.  

The methodology used is described below and also shown in Figure. 1: 

1. Pre-processing: 

- Convert the response variable from continuous to binary using the specified cut-off 

- Use one hot coding method for categorical variables if using the XGBoost algorithm. 

For example, if the categorical variable were in 4 categories, then four binary columns 

would be formed 

2. Select 80% of the data as training data and select 20% of the data for test data (in subsets 

with proportional data quantities for both classes) 

3. Data set balancing- SMOTE_NC method 

4. Cross-validation of training data-stratified 5-fold  

5. Using two algorithms, XGBoost and LightGBM, and evaluating their performance 

6. Combine cross-validation and Bayesian optimization algorithm to maximize the AUC 

value of XGBoost and LightGbm algorithms and find the optimal value of the hyper-

parameter of these two algorithms. 

7. Evaluation of two algorithms, XGBoost and LightGBM, using test data 

 

INSERT Figure 1 HERE 

3.1 Data set balancing 

Imbalanced data occurs when the number of instances of the majority class is greater than the 

number of the minority class, and this phenomenon is widespread in actual samples. This data 

imbalance is also seen in the TNC data of umbilical cord blood cells in different cut-offs, shown 

in Fig 2. Data balance is essential because machining learning algorithms may be biased towards 

the majority class, or in other words, they may have overfitting or underfitting problems. The 

technique that solves the imbalanced data problem is the Synthetic Minority over-sampling 

Technique (SMOTE) [22], the modified versions of which include Borderline-SMOTE1, 

Borderline-SMOTE2, ADASYN [23, 24]. However, the modified version that supports a 
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combination of continuous and categorical variables is called Synthetic Minority Over-sampling 

Technique-Nominal Continuous (SNOTE_NC) [25]. In this paper, we evaluated the performance 

of algorithms in data equilibrium conditions with the SMOTE_NC method and data imbalance 

conditions. 

INSERT Figure 2 HERE 

3.2 Machine learning algorithm 

In this study, the two algorithms, XGBoost and LightGBM of the boosting algorithms, are 

evaluated to identify samples whose TNC is above the cut-off. The reasons for choosing these  

are discussed  below.   

3.2.1 eXtreme Gradient Boosting (XGBoost) 

XGBoost combines Cause Based Decision Tree (CBDT) and Gradient Boosting Machine (GBM) 

in one effective algorithm [26]. This combination speeds up tree boosting methods and increases 

the algorithm's accuracy for all data types. Another essential feature of the Xgboost algorithm is 

that using regularization parameters prevents overfitting[27]. This algorithm has also been used 

in many Kaggle site competitions [28]. 

3.2.2  Light Gradient Boosting Machine (LightGBM) 

Sergio González et al. [27] evaluated the ensemble learning algorithms and concluded that the 

LightGBM and XGBoost algorithms performes better than other ensemble learning algorithms. 

The two Gradient-based One-algorithms Side Sampling (GOSS)  and Exclusive Feature 

Bundling (EFB) are innovative features of the LightGBM algorithm that reduce the size and the 

number of samples and increase the accuracy and the speed of the LightGBM algorithm. Another 

advantage of the LightGBM algorithm is supporting categorical features without using feature 

encoding, such as one-hot encoding [29]. 

3.3 Hyper-parameter optimization 

As mentioned, Xgboost and LightGBM algorithms are composed of many hyper-parameters, 

which XGBoost algorithm includes learning rate, iteration, max-depth, reg-alpha, reg_lambda, 

gamma, subsample, colsample_bytree, and LightGBM algorithm includes learning rate, iteration, 

max-depth, reg-alpha, reg_lambda, num_leaves, bagging_fraction and feature_fraction. Because 

these two algorithms are composed of several parameters, tuning the parameters is too 

complicated. Grid search and Bayesian optimization methods can be used to tune the parameters 

of these two algorithms. Because the Grid search method is used for algorithms that have fewer 

parameters, the Bayesian optimization method is used to tune the parameters of the two 

algorithms, XGBoost and LightGBM. The reason for choosing the Bayesian optimization 

method is that it is suitable for black-box optimization problems [19]. Also, since there is no 

information available about the derivation of the function of XGBoost and LightGBM 

algorithms, this method is the most appropriate method for estimating parameters of these two 

algorithms. This technique uses an approximate objective function instead of the original 

objective function, called surrogate function. This function uses the Gaussian process. The 

method also applies another function called acquisition function, which directly samples areas 

where the probability of improvement is high [30]. In this paper, The upper bound confidence 
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function is used from three well-known acquisition functions, including Expected improvement, 

upper bound confidence, and maximum probability of improvement. The Bayesian optimization 

algorithm is shown below and  1: 1 1 1 1 1( , ),..., ( , )t t tD x y x y    contains 1t   samples taken from 

the function ( )f x . 

Bayesian optimization algorithm 

1: For each t=1, 2, ….,20 

2: By maximizing the acquisition function over the surrogate function, find the next sampling point: 

      1: 1arg maxt x tx u x D   

3: Evaluate the objective function ( )f x to obtain the next example: ( )t ty f x  

4: Add the new sample (
tx ,

ty ) to the previous samples  1: 1: 1, ( , )t t t tD D x y and update the 

surrogate model. 

 

To obtain the optimal parameters of XGboost and lightGBM algorithms, each time the Bayesian 

optimization algorithm is executed with a set of parameters, the cross-validation technique is 

performed on the training data, and the mean AUC score is calculated. After several iterations, 

the model with the highest mean AUC Score is selected, and this model is used for the test data. 

3.4 Performance metrics 

Metrics such as accuracy, sensitivity, specificity, F1-score, and area under the curve (AUC) of 

ROC charts are used to evaluate the proposed methods. Also, another indicator, called banking 

rate, shows how many cord blood samples remain in the bank after TNC testing. Below are the 

metrics:  

TP TN
Accuracy

TP TN FN FP




  
 (1) 

TP
sensivity

TP FN



 (2) 

TN
specificty

TN FP



 (3) 

TP
precision

TP FP



                                     (4) 

1

2

2

TP
F

TP FP FN


 
                                     (5) 

TP
banking rate

TP TN



                                     (6) 

Where TP and FP represent the number of samples that are correctly and incorrectly classified 

TNC above the specified cut-off, respectively. Similarly, TN and FN represent the number of 
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samples that are correctly and incorrectly classified TNC below the specified cut-off, 

respectively. 

3.5 Software and packages  

This paper uses XGBoost, LightGBM, and rBayesianOptimization packages to run XGBoost, 

LightGBM, and Bayesian optimization algorithms in R software with version 4.1.1 R. In this 

research, imbalanced-Learn library in Python software version 3.7.3 is used the to implement the 

SMOTE_NC technique. 

4 Experimental results 
This study uses XGBoost and LightGBM algorithms to identify CBUs whose TNC exceeds the 

specified cut-off. The implementation summary of our experiments is as follows: 

1- In the first step, the parameters of Xgboost and LightGBM algorithms are calculated by 

maximizing the AUC function by the Bayesian optimization technique in different cut-

offs and in terms of balanced and imbalanced data. The results are shown in Tables 1-4 

INSERT Table 1 HERE 

INSERT Table 2 HERE 

INSERT Table 3 HERE 

INSERT Table 4 HERE 

2- The TP, TN, FP, FN, and Banking rate values are calculated using test data and 

optimized models LightGBM, XGBoost, LightGBM_SMOTE_NC, and 

XGBoost_SMOTE_NC in different cut-offs that are shown in tables 5-7. 

INSERT Table 5 HERE 

INSERT Table 6 HERE 

INSERT Table 7 HERE 

3- In order to compare the performance of classifiers, performance metrics are calculated 

using the values TP, TN, FP, and FN that exist in tables 5-7. The results of these 

calculations are shown in figures 2-6, and tables 8-10. In addition, to compare the 

performance of each method for three cut-offs, the AUC curve of each method for 

different cut-offs is plotted in figures 6-8. 

INSERT Table 8 HERE 

INSERT Table 9 HERE 

INSERT Table 10 HERE 

 

INSERT Figure 3 HERE 
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INSERT Figure 4 HERE 

INSERT Figure 5 HERE 

INSERT Figure 6 HERE 

INSERT Figure 7 HERE 

INSERT Figure 8 HERE 

INSERT Figure 9 HERE 

INSERT Figure 10 HERE 

 

5 Discussion 
In order to discuss the results of the experiment, we first compare the performance of classifiers 

in each cut-off of samples. Then we compare the performance of models introduced in this 

article with previous studies from the literature. 

5.1  Comparison of the performance of different classifiers in different cut-offs 

Based on  Table 5, in the cut-off 0.7 × 109 , the XGBoost algorithm has the highest banking rate 

or precision rate compared to other methods and has improved the banking rate by about 2.6% 

compared to the case where there is no model. The results indicates that fewer samples are 

collected by XGBoost algotithem compared to LightGBM and LightGBM_SMOTE_NC 

methods. Also, the LightGBM method is superior to other methods in terms of AUC, accuracy, 

sensitivity, and F_score indices (Table 8). In addition, the results demonstrate that combining the 

XGBoost algorithm with the smote_nc technique improves the detection of samples with TNC 

less than 0.7 × 109 in exchange for a reduction in the banking rate while combining the 

smote_nc technique with the LightGBM algorithm reduces the performance of the LightGBM 

algorithm. 

The results from Table 6 and Table 9 show that the most improved banking rate in the cut-off 

1 × 109  is related to the XGBoost method. However, the LightGBM method performes better in 

other indicators such as AUC, accuracy, sensitivity, and F_score. Moreover, the LightGBM 

method has detected more samples with TNCs above 1 × 109  in exchange for a lower banking 

rate. Combining the LightGBM algorithm with the SMOTE_NC technique has been able to 

identify more samples with less than 1 × 109  TNCs. In contrast, combining the XGBoost 

algorithm with the SMOTE_NC technique has not affected identifying samples with less than 

1 × 109  TNCs. 

In identifying CBU with a TNC of more than 1.5 × 109according to Tables 7 and 10, the 

XGBoost banking rate index improves the most compared to other methods, which is 28%. This 

method is also superior to other methods in other indicators such as AUC, accuracy, and 

specificity. However, the LightGBM and LightGBM_SMOTE_NC methods are superior in 

indicators such as sensitivity and F_score and have a more remarkable ability to detect samples 
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with a TNC greater than1.5 × 109. It also shows that combining the SMOTE_NC technique with 

the XGBoost and LightGBM algorithms has improved the identification of instances with a TNC 

higher than 1.5 × 109 and has improved the banking rate relative to the conditions under which 

no method is used, but this rate has been reduced by combining XGBoost and LightGBM 

methods with this technique. 

According to the XGBoost gain and LightGBM gain obtained from Figures 9 and 10, factors, 

including maternal age, paternal age, and phlebotomist experience, are the most influential 

factors on TNC in cord blood samples. In most methods, factors such as ethnicity and gestational 

age have a moderate effect, and birth order and the number of abrasion factors have a minor 

effect on TNC. 

5.2 Comparison with previous methods 

Kristin et al. [31] found that maternal and paternal age are influential factors in predicting the 

cell dose of cord blood samples. Some studies showed that the birth weight factor has the most 

significant effect on cell dose prediction. Although the birth weight factor was not analyzed as an 

essential factor in this study, we were able to improve the banking rate by 28% in the cut-off 

1.5 × 109 by analyzing the other factors. Manegold-Brauer et al. [13] and Xinxin Lin et al. [9] 

investigated the birth weight variable in their research; banking improvement rates were 23% 

and 30%, respectively. In this study, the experience of phlebotomists is examined, which is not 

addressed in previous researches. It is found that this factor is influential in the TNC of samples 

stored in public banks. 

6 Conclusion  
This paper identifies CBUs whose TNCs are above the cut-off specified by the public Cord 

Blood Bank before performing TNC quantification tests. We proposed two algorithms, XGBoost 

and LightGBM, to identify CBUs with a TNC greater than 0.7 × 109,1 × 109, and1.5 × 109. 

We also evaluated two algorithms using the SMOTE_NC technique in terms of balanced data 

and imbalanced data. To optimize the hyperparameters of the XGBoost, lightGBM, 

XGBoost_SMOTE_NC, and LightGBM_SMOTE_NC methods, we proposed the Bayesian 

optimization method. We found that the most remarkable improvement in the Banking rate is 

related to the XGBoost method, and the LightGBM method has a better ability to identify 

samples with TNC greater than 0.7 × 109, 1 × 109 and 1.5 × 109. Determining which method is 

best for a public cord blood bank depends on the financial situation and the number of samples 

of the public cord blood bank. When a public cord blood Bank has limited financial resources, it 

is advisable for them to opt the XGBoost algorithm. This is because it results in a lower number 

of discarded CBUs following cell dose testing. With a reduced sample selection, it is 

recommended that public cord blood banks collect samples from individuals of varying races to 

improve the chance of HLA compliance. However, if the funding for the cord blood bank is 

sufficient and the cord bank wants to increase the likelihood of HLA compliance, it should use 

the LightGBM method to collect more samples with the appropriate TNC. At a cut-off  1.5 ×

109, the results indicate that the combination of the XGboost or LightGBM algorithm with the 

SMOTE_NC technique can enable cord blood banks to collect more samples, even though the 

banking rate may decrease. This effect is particularly significant for the XGboost algorithm. For 
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future research, it is suggested to evalute these methods with the birth weight factor to determine 

the effects on improving the banking rate. 
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Figures Captions 

Figure 1. Block diagram of the proposed methods 

Figure 2. The number of instances in each class in different cut-offs. The cut-offs are in the billions 

Figure 3. Performance evaluation of classifiers for cut-off 0.7 × 109 

Figure 4. Performance evaluation of classifiers for cut-off 1 × 109 

Figure 5. Performance evaluation of classifiers for cut-off 1.5 × 109 

Figure 6. ROC charts in different methods in Cut off 0.7 × 109 
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Figure 7. ROC charts in different methods in Cut off  1 × 109 

Figure 8. ROC charts in different methods in Cut off  1.5 × 109 

Figure 9. (A) XGBoost gain at cut-off 0.7 × 109 and in imbalanced data conditions. (B)  XGBoost gain at cut-off 

0.7 × 109  and in balanced data conditions. (C)  XGBoost gain at cut-off 1 × 109and in imbalanced data conditions. 

(D) XGBoost gain at cut-off 1 × 109and in balanced data conditions. (E) XGBoost gain at cut-off 1.5 × 109 and in 

balanced data conditions. (F) XGBoost gain at cut-off 1.5 × 109 and in imbalanced data conditions. 

Figure 10. (A) LightGBM gain at cut-off 0.7 × 109and in imbalanced data conditions. (B) LightGBM gain at cut-off 

0.7 × 109 and in balanced data conditions. (C)  LightGBM gain at cut-off 1 × 109 and in imbalanced data 

conditions. (D) LightGBM gain at cut-off 1 × 109 and in balanced data conditions. (E) LightGBM gain at cut-off 

1.5 × 109and in balanced data conditions. (F) LightGBM gain at cut-off 1.5 × 109 and in imbalanced data 

conditions. 

 

 

 

 

 

 

 

 

Tables Captions 

Table 1. XGBoost optimized parameters using Bayesian optimization in various cut-offs (× 109) 

Table 2. XGBoost and Smote_NC optimized parameters using Bayesian optimization in various cut-offs (× 109) 

Table 3. LightGBM optimized parameters using Bayesian optimization in various cut-offs (× 109) 

Table 4. LightGBM  and Smote_NC optimized parameters using Bayesian optimization in various cut-offs (× 109) 

Table 5. UCB banking rates after application of ensemble learning algorithm (Cut-off=0.7 × 109) 

Table 6. UCB banking rates after application of ensemble learning algorithm (Cut-off=1 × 109) 

Table 7. UCB banking rates after application of ensemble learning algorithm (Cut-off=1.5 × 109) 

Table 8. Performance evaluation of classifiers for cut-off 0.7 × 109 

Table 9. Performance evaluation of classifiers for cut-off 1 × 109 

Table 10. Performance evaluation of classifiers for cut-off 1.5 × 109 
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Tables 

 

 

 

Table 11 

Cut-

off 

Learning 

rate 

iteration Max_depth reg_alpha reg_lambda gamma subsample colsample_bytree AUC 

0.7 0.6 936 10 60 8.86 0.121 0.82 0.761 0.56 

1 0.097 308 11 60 45.4 0.021 0.7 0.7 0.54 

1.5 0.11 599 19 0 0 0.01 1 1 0.57 

 

Table 12 

Cut-

off 

Learning 

rate 

iteration Max_depth reg_alpha reg_lambda gamma subsample colsample_bytree AUC 

0.7 0.51 928 20 0 60 0.01 0.82 1 0.89 

1 0.005 1000 190 0 0 0.255 0.852 0.967 0.63 

1.5 0.18 1000 20 3.03 0 0.01 0.809 1 0.82 

 

Table 13 

Cut-

off 

Learning 

rate 

iteration Max_depth reg_alpha reg_lambda num_leaves bagging_fraction feature_fraction AUC 

0.7 0.162 629 7 49.69 49.03 28 0.718 0.71 0.56 

1 0.005 300 23 0 60 40 0.889 0.9  0.543 

1.5 0.005 900 15 0 0 40 0.9 0.7 0.555 

 

Table 14 

Cut-

off 

Learning 

rate 

iteration Max_depth reg_alpha reg_lambda num_leaves bagging_fraction feature_fraction AUC 

0.7 0.17 900 23 0 0 40 0.9 0.81 0.8 

1 0.23 900 30 16.24 12.3 40 0.9 0.9 0.58 

1.5 0.21 900 25 0.2 16.44 40 0.7 0.9 0.71 

 

Table 15 

 

Method 

Discarded Test  

Collected 

(n) 

Banking 

rate  True- 

negative 

False-

negative 

False-

positive 

True- 

positive 

No model 0 0 1276 9844 9844 0.8852 

XGBoost 893 5920 383 3924 3924 0.911 

XGBoost_Smote_NC 943 6745 333 3099 3099 0.902 

LightGBM 620 3761 656 6083 6083 0.902 

LightGBM_Smote_NC 540 3802 736 6042 6042 0.891 
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Table 16 

 

Method 

Discarded Test  

Collected 

(n) 

Banking 

rate  True- 

negative 

False-

negative 

False-

positive 

True- 

positive 

No model 0 0 4501 6619 6619 0.595 

XGBoost 3074 4062 1427 2557 2557 0.641 

XGBoost_Smote_NC 3023 3966 1478 2653 2653 0.642 

LightGBM 2563 3201 1938 3418 3418 0.638 

LightGBM_Smote_NC 2772 3845 1729 2774 2774 0.616 

 

Table 17 

 

Method 

Discarded Test  

Collected 

(n) 

Banking 

rate  True- 

negative 

False-

negative 

False-

positive 

True- 

positive 

No model 0 0 8507 2613 2613 0.234 

XGBoost 7917 1985 590 626 628 0.515 

XGBoost_Smote_NC 7246 1812 1261 801 801 0.388 

LightGBM 4877 1237 3630 1376 1376 0.274 

LightGBM_Smote_NC 4262 1061 4245 1552 1552 0.267 

 

Table 18 

Method AUC accuracy sensitivity specificity F_score precision 

XGBoost 0.567 0.433 0.398 0.699 0.554 0.911 

XGBoost_Smote_NC 0.531 0.363 0.314 0.739 0.466 0.902 

LightGbm 0.569 0.602 0.617 0.485 0.733 0.902 

LightGBM_Smote_NC 0.517 0.591 0.613 0.423 0.726 0.891 

 

Table 19 

Method AUC accuracy sensitivity specificity F_score precision 

XGBoost 0.54 0.506 0.386 0.682 0.482 0.641 

XGBoost_Smote_NC 0.542 0.51 0.4 0.671 0.493 0.642 

LightGbm 0.554 0.537 0.516 0.569 0.570 0.638 

LightGBM_Smote_NC 0.521 0.498 0.419 0.615 0.498 0.616 

 

Table 20 

Method AUC accuracy sensitivity specificity F_score precision 

XGBoost 0.60 0.768 0.240 0.930 0.327 0.515 

XGBoost_Smote_NC 0.592 0.723 0.306 0.851 0.342 0.388 

LightGbm 0.563 0.562 0.526 0.573 0.361 0.274 

LightGBM_Smote_NC 0.557 0.522 0.593 0.500 0.369 0.267 

 


