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Abstract

Newtonian fluids fail to accurately model fluid flow behavior in various phys-
ical scenarios due to their non-Newtonian nature. This article delves into an
analytical investigation of how chemical reactions impact the onset of rotat-
ing convection in a couple-stress (CS) fluid. Utilizing linear stability theory,
we derive equations for both stationary and oscillatory Rayleigh numbers.
Graphical representations illustrate the influence of key parameters such as
the CS fluid parameter, solutal Rayleigh number, Damkohler number, Lewis
number, and Prandtl number on the onset of convection. The Lewis and
Taylor numbers act to stabilize the system, with the Damkohler number ex-
erting differing effects on oscillatory and stationary convection. Stationary
instability is reached when the Taylor number is below 910.331, with oscilla-
tory convection prevailing otherwise. If the Damkohler number is less than
1.76455, oscillatory instability occurs, while stationary convection dominates
otherwise.

Keywords: Couple-stress fluid, Chemical Reaction, Linear stability analy-
sis.



Nomenclature

P Pressure; Pr Prandtl number;
RT thermal Rayleigh number; RS solutal Rayleigh number;
βT thermal expansion coefficient; βS solutal expansion coefficient;
∆T Temperature difference; t Time;
∆S concentration difference; Dm Damkohler number;
q Wave number; x, y, z Coordinates;
Ta Taylor number; V Velocity;
Dv solutal diffusivity; Ω Angular velocity;
T Temperature; d Height of fluid;
g acceleration due to gravity; κ thermal diffusivity;
µ dynamic viscosity; ρ Density;
µ1 CS viscosity; S concentration;
Le Lewis number; CS CS parameter;
ν kinematic viscosity ;

Superscripts

’ Perturbed quantity;
Subscripts

b Basic state; c Critical value;
0 Reference value;
Other symbols

∇2 ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
; ∇h

2 ∂2

∂x2
+

∂2

∂y2
;

1. Introduction

Thermal instability in Newtonian fluids garners significant attention, es-
pecially in addressing geological and industrial challenges. However, when
dealing with non-Newtonian fluids, which are frequently encountered in vari-
ous physical scenarios, Newtonian models fall short. Among non-Newtonian
fluids, CS fluids stand out and find applications in fields like lubrication,
pharmaceutical manufacturing, and medical science [1]-[14]. Stokes [15] pio-
neered the study of CS fluids, delving into their behavioral intricacies. This
theoretical framework offers insights into the rheological characteristics of
diverse complex fluids [16, 17, 18, 19].

Hsu and colleagues [20] delved into the influence of CS and surface rough-
ness on non-Newtonian fluids. Sunil and colleagues [21] provided comprehen-
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sive global non-linear stability findings for CS fluids. Shivakumara and col-
leagues explored the linear and weakly nonlinear stability of CS fluids in their
work [22] [23]. Gaikwad and Kouser [24] delved into the thermal instability of
CS fluids in a porous layer with an internal heat source. Additionally, Shiv-
akumara and Naveen Kumar [25] examined triple diffusive convection in CS
fluids, employing a Fourier series approach to investigate weakly nonlinear
theory.

Srivastava and Bera [26] studied the onset of convection in a CS fluid
within an anisotropic porous layer with a chemical reaction. Meanwhile,
Malashetty and Biradar [27] explored the onset of double reaction-convection
in an anisotropic porous layer. Ravi and colleagues [28] delved into the im-
pact of cross diffusion on secondary convective instabilities in CS fluids. Wol-
lkind and Frisch [29, 30] conducted the pioneering study on convection onset
with reactive effects in a fluid layer. Their research considered convection in
a horizontal layer of dissociating fluid. Subsequently, Bdzil and Frisch [31]
delved into the thermal instability of variable density under the influence
of gravitational forces in a fluid layer, examining chemical reactions in both
equilibrium and non-equilibrium states within the quiescent phase. Steinberg
and Brand [32] [33] were the first to explore thermoconvective instabilities
in a binary mixture within a reactive porous medium. Meanwhile, Gatica,
Viljoen, and Hlavacek [34] employed a variational approach to investigate
oscillatory and monotonic instabilities within a porous layer, considering the
impact of chemical reactions. Pritchard and Richardson [35] examined ther-
mosolutal convection in a binary fluid confined within a porous layer. Their
study assumed fixed temperatures and chemical equilibrium at the bound-
ing surfaces, accounting for solubility variations with temperature. Using
a linear stability analysis, these authors probed how solute precipitation or
dissolution influenced the onset of convection. The Galerkin method was
subsequently employed to advance this analysis and predict the initial bifur-
cation’s structure.

On one hand, in their work cited as [36], Wang and Tan explored both
stationary and oscillatory convection of thermosolutal instability in a porous
medium with a reaction term. They focused on the Darcy-Brinkman model
for a loosely packed, porous medium and investigated the relationship be-
tween the Lewis number, Darcy number, and the reaction term concern-
ing the onset of double-diffusive convection. Additionally, in the presence
of a first-order chemical reaction, Hill and Morad examined convective in-
stabilities in an anisotropic porous medium, as documented in [37]. Their
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findings indicated that altering the balance between horizontal and verti-
cal solutal diffusivities minimally affected the instability’s behavior. In [38],
Ward and colleagues conducted a comprehensive analysis of the onset of con-
vection in an isotropic porous medium with a first-order chemical reaction.
They employed stability analyses, time-dependent simulations, spectral and
asymptotic methods, and stability analysis to explore this phenomenon. The
authors also delved into the numerous bifurcations that emerge in steady-
state solutions. Expanding upon the work of Pritchard and Richardson
[35], Bushra Al-Sulaimi [39] extended the analysis by employing the energy
method to investigate the nonlinear energy stability of the Darcy convec-
tion model with a reaction. A recent energy analysis of nonlinear convection
in an anisotropic reactive porous medium was undertaken by Gautam and
Narayana [40]. Their work demonstrated that altering the ratio of vertical
to horizontal permeabilities had minimal impact on the instability’s behav-
ior when the solutal horizontal diffusivity exceeded the vertical diffusivity.
Furthermore, in [41], Reddy and colleagues harnessed a chemical reaction to
examine the onset of instability in a Maxwell fluid-saturated porous layer.
They employed analytical and numerical techniques to assess the system’s
stability, resolving eigenvalue problems as part of their analysis. Most re-
cently, in [42], Reddy and colleagues examined dissolution-driven convection
in a porous medium influenced by the vertical axis of rotation and a magnetic
field. They employed artificial neural network modeling to predict the criti-
cal Rayleigh number, subsequently comparing these predictions to simulation
results.

Moreover, traditional studies of thermal convection in confined spaces
typically involve the upward flow of a fluid heated from below, a phenomenon
commonly known as Rayleigh-Benard convection. This natural process plays
a crucial role in various contexts, including the Earth’s magnetic field rever-
sals [43]-[45], where rotating convection becomes a significant and influential
factor. Rotation frequently exerts its influence on fluid dynamics, affecting
geophysical flows, technological processes, and astrophysical phenomena [46],
including the Earth’s atmosphere [47] and oceans [48, 49, 50, 51].

The existing literature notably lacks an exploration of the impact of chem-
ical reactions on rotating convection within a CS fluid. This paper addresses
this research gap by investigating the linear stability theory of CS fluid in
a horizontal layer featuring the Coriolis effect and chemical reactions. Our
primary focus is on discerning the presence of instability and evaluating the
effects of various physical parameters on linear instability.
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The paper is organized as follows: Section 2 provides a comprehensive
mathematical formulation. Section 3 delves into the intricacies of linear
stability analysis. Section 4 showcases the key findings elucidated in this
article, along with detailed discussions. Lastly, Section 5 offers the conclusion
of our study.

2. Mathematical basis

We commence by establishing the mathematical framework for the prob-
lem under consideration. Our focus is on a horizontal layer of CS fluid, which
is confined within the region z ∈ (0, d). This layer maintains a constant tem-
perature of T0 at the upper boundary and T0 + ∆T (∆T > 0) at the lower
boundary. Additionally, the layer exhibits solutal concentration levels of S0

at the upper boundary and S0 + ∆S (∆S > 0) at the lower boundary, as
illustrated in Figure 1.

The dimensional governing equations for this system can be precisely
formulated, as documented in [23, 25, 28, 41, 49].

z = d    

g

T = To
S = So

z

Couples stress fluid

T = To+   T S= So +    S z = 0    
x

y

Figure 1: Physical configuration of the problem
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∇ ·V = 0, (1)

ρ0
∂V

∂t
= −∇P + µ∇2V− µ1∇4V + ρg + 2ρ0Ω(V× êz), (2)

∂T

∂t
+ (V · ∇)T = κ∇2T, (3)

∂S

∂t
+ (V · ∇)S = Dv∇2S + χ(Seq(T )− S), (4)

ρ = ρ0(1− βT (T − T0) + βS(S − S0)). (5)

Assuming the equilibrium solute concentration as a linear function of
the temperature, i.e., Seq(T ) = S0 + π(T − T0), and considering chemical
equilibrium at the boundaries, we can obtain φ = ∆S

δT
. The conduction state

is marked by

Tb =
(

1− z

d

)
∆T + T0, (6)

Sb =
(

1− z

d

)
∆S + S0. (7)

In the fundamental state, we overlay minor perturbations in the following
manner:

V = Vb + V′,

T = Tb(z) + T ′,

S = Sb(z) + S ′,

P = Pb(z) + P ′,

ρ = ρb(z) + ρ′(x, y, z, t). (8)
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To delve deeper, let us introduce the following (non-dimensional) parameters:

(x′, y′, z′) = d(x∗, y∗, z∗),

V’ = κ
d
V∗,

t′ = d2

κ
t∗,

T ′ = (∆T )T ∗,

S ′ = (∆S)S∗,

P ′ = ρ0κ2

d2
P ∗.

We obtain the subsequent non-dimensional equations (upon removing the
asterisks):

∇ ·V = 0, (9)

1

Pr

∂V

∂t
= −∇P

Pr
+∇2V− CS∇4V + (RT θ −RSS)êz + Ta(V× êz), (10)

∂θ

∂t
+ (V · ∇)θ = ω +∇2θ, (11)

∂S

∂t
+ (V · ∇)S = ω +

1

Le
∇2S +Dv(θ − S), (12)

where

RT =
βTg∆Td3

κν
, RS =

βS∆Sd3

κν
, CS =

µ1

µd2
,

P r =
µ

ρ0κ
, Le =

κ

Dv

, Ta =
2ρ0Ωd2

µ
,

Dm =
d2χ

κ
.

It is important to note that all of the terms used in the aforementioned
equations have definitions in the nomenclature.
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3. Linear stability analysis

3.1. Equations

Let us re-consider Eqs. (9) - (12) as

1

Pr

∂V

∂t
= −∇P

Pr
+∇2V− CS∇4V + (RT θ −RSS)êz + Ta1/2(V× êz),

(13)

∂θ

∂t
= ω +∇2θ, (14)

∂S

∂t
= ω +

1

Le
∇2S +Dm(θ − S). (15)

By extracting the third components of the curl from Eq. (13), we attain(
1

Pr

∂

∂t
−∇2 + CS∇4

)
ωz − Ta1/2∂w

∂z
= 0, (16)(

1

Pr

∂

∂t
−∇2 + CS∇4

)
∇2w −

(
RT∇2

hθ −RS∇2
hS
)

+ Ta1/2∂ωz
∂z

= 0. (17)

where ωz represents the z-component of vorticity ((∇×V) êz), while w cor-
responds to the z-component of velocity, and

∇2
h =

∂2

∂x2
+

∂2

∂y2

is the horizontal Laplacian operator. By removing ωz from Eqs. (16) and
(17), one obtains(

1

Pr

∂

∂t
−∇2 + CS∇4

)2

∇2w −
(

1

Pr

∂

∂t
−∇2 + CS∇4

)(
RT∇2

hθ −RS∇2
hS
)

+ Ta
∂2w

∂z2
= 0. (18)

Introducing normal modes involves expressing perturbations in the following
form:

(w, θ, S) = (W (z), θ(z), S(z)) ei(lx+my)+σt, (19)
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where l and m are the wave numbers along the x and y directions, respec-
tively, with q =

√
l2 +m2 and σ is a complex parameter. Substituting the

above expressions into Eqs. (18), (14) and (15), we obtain

A2
1(D2 − q2)W − A1(RSS −RT θ)q

2 + TaD2W = 0, (20)

σθ = W + (D2 − q2)θ, (21)

σS = W +
1

Le

(
D2 − q2

)
S +Dm (θ − S) , (22)

W = θ = S = 0 at z = 0, 1, (23)

where A1 =
(
σ
Pr
− (D2 − q2) + CS(D2 − q2)2

)
, D = d

dz
and q2 = l2 +m2. We

assume that the solutions to W, θ and S are under the following form:

 W (z)
θ(z)
S(z)

 =

 W0 sin(πz)
θ0 sin(πz)
S0 sin(πz)

 , (24)

which satisfy the boundary conditions in Eq. (23). On substituting Eq. (24)
into Eqs. (20) - (22), one obtains A2

2(−δ2)− Taπ2 A2RT q
2 −A2RSq

2

1 (−δ2 − σ) 0
1 Dm

(
− 1
Le
δ2 −Dm− σ

)
 W

θ
S

 =

 0
0
0

 ,

(25)

where A2 =
(
σ
Pr

+ δ2 + CSδ
4
)
, δ2 = π2 + q2. For the nontrivial solution of

the above matrix Eq. (25), the determinant of above matrix is zero, from
which one obtains the following approximate instability threshold:

RTc =
(iω + δ2)(π2Pr2Ta+ δ2A2

3)

Prq2A3

+
LeRS(Dm+ iω + δ2)

DmLe+ iLeω + δ2
, (26)

being

A3 = iω + Prδ2 + CSPrδ
4. (27)
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3.2. Stationary Convection

Substituting ω = 0 allows us to ascertain the critical Rayleigh number
for the initiation of stationary convection (denoted as Rsc

Tc
). This results in

Rsc
Tc =

π2Ta+ δ6(1 + CSδ
2)2

q2(1 + CSδ2)
+
LeRS(Dm+ δ2)

DmLe+ δ2
. (28)

For Newtonian fluid, in the absence of the Coriolis effect and chemical reac-
tion, the above Rayleigh number reduces to

Rsc
Tc =

δ6

q2
, (29)

which is well agree with the results obtained by Chandrasekhar [52].

3.3. Oscillatory Convection

Now, let us delve into the examination of the real and imaginary compo-
nents of R, with a requirement for the imaginary part of R to be nullified.
When we substitute ω2 into the real part of R, we arrive at the thermal
Rayleigh number, denoted as Roc

Tc
, signifying oscillatory convection.

4. Discussion

In this article, we examine the eigenvalue problem related to the stabil-
ity of thermosolutal convection in a CS fluid and the impact of Coriolis and
chemical reactions. We highlight some features of the sets of expansion func-
tions that can be used for an analytical analysis of this problem using the
spectral methods that we applied.

The behavior of the thermal critical Rayleigh number at the onset of
stationary convection (Rsc

Tc
) versus the Dm with different values of Le =

2, 4, 6 is displayed in Fig. 2, with the other parameters held constant at
RS = 800, CS = 0.04 and Ta = 50. This figure makes it clear that the
Damkohler number has a destabilizing effect on a fluid layer because the Dm
increases as Rsc

Tc
decreases.

Fig. 3 illustrates the relationship between Rsc
Tc

and Le for various values
of CS, while keeping other parameters constant. This figure highlights the
positive correlation between the values of Rsc

Tc
and CS as Le increases. Con-

sequently, it can be inferred that increasing the value of Le stabilizes the
system.
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5 10 15 20

2500

3000

3500

4000

4500

5000

Dm

 Le=2
 Le=4
 Le=6

RTc

sc

Figure 2: Change in the thermal critical Rayleigh number at the onset of stationary
convection with the Damkohler number for distinct values of the Lewis number fixed at
RS = 800, CS = 0.04 and Ta = 50.
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2 4 6 8 10

1500

1600

1700

1800

1900

2000

Le

 CS=0.02
 CS=0.04
 CS=0.06

RTc

sc

Figure 3: Change in the thermal critical Rayleigh number at the onset of stationary
convection with the Lewis number for distinct values of the CS parameter fixed at RS =
500, Dm = 25 and Ta = 50.
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0 200 400 600 800 1000

1600

1800

2000

2200

2400

2600

2800

Ta

 CS=0.02
 CS=0.04
 CS=0.06

RTc

sc

Figure 4: Change in thermal critical Rayleigh number at the onset of the stationary
convection with the Taylor number for distinct values of the CS parameter fixed at RS =
500, Le = 5 and Dm = 25.
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0 200 400 600 800 1000

2000

2400

2800

3200

Ta

 RS=500
 RS=800
 RS=1000

RTc

sc

Figure 5: Change in the thermal critical Rayleigh number at the onset of stationary
convection with the Taylor number for distinct values of the solute Rayleigh number fixed
at Dm = 25, CS = 0.04 and Le = 5.

Fig. 4 illustrates that Rsc
Tc

with Ta for different values of CS and for
fixed at RS = 500, Le = 5 and Dm = 25. In addition, it shows that, as
CS increases, Rsc

Tc
increases. As a result, it should be highlighted that a rise

in CS’s value stabilizes the system. An increase in the viscosity of a liquid,
which slows down fluid motion, is represented by an increase in the values of
CS. As a result, the CS parameter stabilizes convection.

The graph in Figure 5 illustrates the relationship between Rsc
Tc

and Ta,
while holding distinct values of RS constant at Dm,CS, Le. It is evident from
this graph that as the value of Ta increases, both Rsc

Tc
and RS also increase,

suggesting a positive correlation. This implies that Ta exerts a stabilizing
influence on the system. The introduction of vorticity into the fluid as it
rotates results in an accelerated flow in horizontal planes. However, this
rotational motion causes a reduction in fluid velocity perpendicular to these
planes. Consequently, there is an observed increase in Rsc

Tc
with the rise in

Ta.
With varying values of Le, Fig. 6 gives a visual representation of the

critical wave number at the onset of stationary convection (qscc ) versus the
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1.85

1.90

1.95

2.00

2.05

2.10

Dm

 Le=2
 Le=4
 Le=6

qc
sc

Figure 6: Change in the thermal critical wave number at the onset of stationary convection
with the Damkohler number for distinct values of the Lewis number fixed at RS = 800,
CS = 0.04 and Ta = 50.
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1 2 3 4 5 6 7 8 9 10

2.05

2.10

2.15

2.20

2.25

Le

 CS=0.02
 CS=0.04
 CS=0.06

qc
sc

Figure 7: Change in the thermal critical wave number at the onset of stationary convection
with the Lewis number for distinct values of the CS parameter fixed at RS = 500, Dm = 25
and Ta = 50.

Damkohler number (Dm). This figure makes it clear that, up to a cer-
tain point, the critical wave number decreases with an increasing value of
Dm = Dm∗, and increases with Dm thereafter. Consequently, qscc is a non-
monotonic function of Dm.

Fig. 7 illustrates the relationship between qscc and Le for different values
of CS (0.02, 0.04, 0.06), with the remaining parameters held constant at RS =
500, Dm = 25, Ta = 50. Within this figure, qscc exhibits a decreasing trend
as both Le and CS increase, establishing qscc as a decreasing function of Le
and CS. Furthermore, Figs. 8 and 9 highlight the upward trajectory of qscc
concerning Ta, portraying its variation across different parameter values.

The behavior of the thermal critical Rayleigh number at the onset of
oscillatory convection Roc

Tc
versus Dm with different values of Le is depicted in

Fig. 10, the remaining parameters are held fixed. This figure unequivocally
demonstrates that Dm increases as Roc

Tc
decreases. Therefore, Dm has a

destabilizing effect on the system. Fig. 11 represents the variation of Roc
Tc

versus Le for the different values of CS fixed at RS = 500, Dm = 25, Ta = 50
and Pr = 0.0001. This figure clearly shows the stabilizing effect of Le on the
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0 200 400 600 800 1000

2.1

2.4

2.7

3.0

Ta

 CS=0.02
 CS=0.04
 CS=0.06

qc
sc

Figure 8: Change in the thermal critical wave number at the onset of stationary convection
with the Taylor number for distinct values of the CS parameter fixed at RS = 500, Le = 5
and Dm = 25.
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0 200 400 600 800 1000

2.0

2.2

2.4

2.6

2.8

Ta

 RS=500
 RS=800
 RS=1000

qc
sc

Figure 9: Change in the wave with the Taylor number for distinct values of the solute
Rayleigh number fixed at Dm = 25, CS = 0.04 and Le = 5.

system. As the Lewis number decreases, the distinction between solutal and
thermal diffusivities diminishes, rendering it more challenging for inherently
double diffusive processes, like the initiation of oscillatory convection, to
transpire.

Fig. 12 shows that Roc
Tc

with Ta for distinct values of CS = 0.02; 0.04; 0.06
and fixed values of RS, Dm, Le and Pr. This figure shows that as CS
increases, Roc

Tc
increases. Hence, Ta and CS have a stabilizing effect on the

system.
The behavior of Roc

Tc
versus Ta with different values of RS is shown in

Fig. 13. All other parameters are held constant. The enhancement of Roc
Tc

with the increase in the value of Ta is shown in this figure. It is noted that
an increment in the value of Ta makes the system stable.

In Fig. 14, Roc
Tc

is plotted against the Prandtl number (Pr) for distinct
values of Dm = 8; 12; 16 and for the fixed values of RS, CS, Le and Ta. This
figure shows that Roc

Tc
increases with an increasing value of Dm = Dm∗, and

beyond Dm = Dm∗, Roc
Tc

decreases with Dm. Hence, Roc
Tc

is a non-monotonic
function of Pr.

Fig. 15 depicts the critical wave number at the onset of oscillatory con-
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RTc
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Figure 10: Change in the thermal critical Rayleigh number at the onset of oscillatory
convection with the Damkohler number for distinct values of the Lewis number fixed at
RS = 800, CS = 0.04, Ta = 50 and Pr = 0.0001.
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 CS=0.04
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RTc
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Figure 11: Change in the thermal critical Rayleigh number at the onset of oscillatory
convection with the Lewis number for distinct values of the CS parameter fixed at RS =
500, Dm = 25, Ta = 50 and Pr = 0.0001.
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RTc
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Figure 12: Change in the thermal critical Rayleigh number at the onset of oscillatory
convection with the Taylor number for distinct values of the CS parameter fixed at RS =
500, Le = 5, Dm = 25 and Pr = 5.
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 RS=500
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RTc
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Figure 13: Change in the thermal critical Rayleigh number at the onset of oscillatory
convection with the Taylor number for distinct values of the solute Rayleigh number fixed
at Dm = 25, CS = 0.04, Le = 5 and Pr = 5.
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RTc

oc

Figure 14: Change in the thermal critical Rayleigh number at the onset of oscillatory
convection with the Prandtl number for distinct values of the Damkohler number when
RS = 1000, CS = 0.04, Le = 5 and Ta = 50.

23



5 10 15 20

1.88

1.92

1.96

2.00

2.04

Dm

 Le=2
 Le=4
 Le=6

qc
oc

Figure 15: Change in the thermal critical wave number at the onset of oscillatory convec-
tion with the Damkohler number for distinct values of the Lewis number fixed at RS = 800,
CS = 0.04, Ta = 50 and Pr = 0.0001.
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1.96

2.00

2.04
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 CS=0.04
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Figure 16: Change in the thermal critical wave number at the onset of oscillatory convec-
tion with the Lewis number for distinct values of the CS parameter fixed at RS = 500,
Dm = 25, Ta = 50 and Pr = 0.0001.

vection (qocc ) versus Dm for various values of Le. This figure shows that
Dm increases but qscc decreases and then increases, indicating qscc is a non-
monotonic function of Dm.

Fig. 16 depicts the linear instability thresholds with the qocc versus Le
for different values of CS, with the remaining parameters held constant at
RS = 500, Dm = 25, Ta = 50, and Pr = 0.0001. In this figure, qocc decreases
as Le increases, but CS decreases as qscc increases.

Fig. 17 represents qocc versus Ta by taking into account distinct values of
CS at RS = 500, Le = 5, Dm = 25 and Pr = 5. The enhancement of qocc
with the enhancement in the value of Ta is observed. A similar trend of qocc
versus Ta can be observed in Fig. 18.

We give some examples of steady or oscillatory instability developing for
constant values of physical parameters in Tables 1 and 2. According to
Table 1, the stationary instability threshold occurs when Ta ≤ 910.331, and
convection is oscillatory when Ta > 910.331. From Table 2, we can see that
the oscillatory instability threshold occurs when Dm ≤ 1.76455, whereas
the stationary convection dominates when Dm > 1.76455.To put it another
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Figure 17: Change in the thermal critical wave number at the onset of oscillatory convec-
tion with the Taylor number for distinct values of the CS parameter fixed at RS = 500,
Le = 5, Dm = 25 and Pr = 5.

Ta Rsc
Tc

qoscc Roc
Tc

qocc Instability
850 3953.117 2.672 4006.643 1.978 St.
860 3961.338 2.672 4005.879 1.978 St.
870 3969.509 2.682 4005.120 1.978 St.
880 3977.662 2.682 4004.364 1.978 St.
890 3985.747 2.691 4003.612 1.979 St.
900 3993.816 2.701 4002.865 1.979 St.
910 4001.834 2.702 4002.121 1.979 St.

910.331 4002.097 2.703 4002.097 1.979 St.
920 4009.822 2.710 4001.382 1.979 Os.
930 4017.775 2.714 4000.646 1.979 Os.
940 4025.683 2.720 3999.914 1.980 Os.
950 4033.571 2.726 3999.186 1.979 Os.

Table 1: Critical values of RT for the case Pr = 0.1, RS = 800, Le = 5, Dm = 5 and
CS = 0.04 (St. is for Stationary and Os. is for Oscillatory)
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Figure 18: Change in the thermal critical wave number at the onset of oscillatory con-
vection with the Taylor number for distinct values of the solute Rayleigh number fixed at
Dm = 25, CS = 0.04, Le = 5 and Pr = 5.

Dm Rsc
Tc

qoscc Roc
Tc

qocc Instability
1 4489.224 2.177 3707.138 2.181 Os.

1.1 4429.914 2.169 3767.729 2.182 Os.
1.2 4373.429 2.162 3826.564 2.180 Os.
1.3 4319.584 2.156 3883.190 2.177 Os.
1.4 4268.209 2.150 3937.057 2.170 Os.
1.5 4219.144 2.146 3987.525 2.161 Os.
1.6 4172.243 2.142 4033.889 2.149 Os.
1.7 4127.372 2.138 4075.444 2.133 St.

1.76455 4099.427 2.137 4099.427 2.122 St.
1.8 4084.404 2.136 4111.601 2.115 St.
1.9 4043.223 2.133 4142.011 2.096 St.
2 4003.724 2.131 4166.667 2.077 St.

Table 2: Critical values of RT for the case Pr = 0.1, RS = 800, Le = 5, Ta = 200 and
CS = 0.04 (St. is for Stationary and Os. is for Oscillatory) .
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way, oscillatory convection begins, but as soon as the value of Dm reaches
a critical value (1.76455), it stops being oscillatory and the first bifurcation
occurs as stationary convection.

5. Conclusion

In this article, we investigated the chemical reaction on the stability of
thermo-solutal convection in a rotating CS fluid. Various parameters such as
RT , q, RS, Dm, Ta, Le , CS and Pr have been studied. The following is a
summary of the findings:

Stationary convection:

• The Damkohler number has a destabilizing influence on a fluid layer.

• The Lewis, Taylor number and solute Rayleigh numbers have a stabi-
lizing effect on the system.

• The critical wave number is a non-monotonic function of the Damkohler
number.

• The critical wave number is a decreasing function of the Lewis number,
solute Rayleigh number and CS parameters.

• The critical wave number is a increasing function of the Taylor number.

Oscillatory convection:

• As we saw in the case of stationary convection, the Damkohler number
has a destabilizing effect on the fluid layer.

• The Lewis, Taylor and olute Rayleigh numbers have a stabilizing effect
on the system.

• The critical Rayleigh number is a non-monotonic function of the Prandtl
number.

• The critical wave number is a non-monotonic function of the Damkohler
number.

• The critical wave number is a decreasing function of the Lewis number,
solute Rayleigh number and CS parameter.
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• The critical wave number is an increasing function of the Taylor num-
ber.

Furthermore:

• The stationary instability threshold occurs when Ta ≤ 910.331 and
convection is by oscillation when Ta > 910.331.

• The oscillatory instability threshold occurs whenDm ≤ 1.76455, whereas
the stationary convection dominates when Dm > 1.76455.

In future, we plan to explore the heat and mass transport by deriving the
amplitude equation using weakly non-linear analysis. Also, we want to study
the non-linear instability analysis using the energy method.
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