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Abstract:  12 

This article addresses the challenges of environmental variability and damage detection in 13 

structural health monitoring by introducing a hybrid unsupervised learning approach. The 14 

method combines a novel two-level artificial neural network (TLANN) for data normalization 15 

to mitigate environmental variations and employs k-means clustering (KMC) for damage 16 

detection. In the TLANN algorithm, feature samples are processed through two neural 17 

networks to generate a residual matrix used as the primary input for KMC. The Silhouette 18 

value technique is applied to determine the number of clusters. The key contribution of this 19 

article is the development of an innovative hybrid unsupervised learning method that 20 

effectively handles environmental variability and enhances damage detection. The method's 21 

performance is validated using the Z24 bridge and compared favorably with classical 22 

techniques, demonstrating its effectiveness in detecting damage and mitigating environmental 23 

variations. 24 
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 Introduction 1.27 

Civil infrastructures are vital components of society but are susceptible to various forms of 28 

damage, including aging, natural disasters, and wear and tear. Structural health monitoring 29 
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(SHM) is an interdisciplinary research field that offers a practical approach for detecting and 30 

evaluating damage in civil engineering structures [1-3]. One effective method within SHM is 31 

vibration-based damage detection, which assesses the structural health of buildings and 32 

infrastructure by analyzing vibration parameters [4]. Vibration-based structural health 33 

monitoring can be categorized into two approaches: model-driven and data-driven. Model-34 

driven methods involve creating detailed finite element models and using dynamic theories, 35 

inverse problems, and model updating techniques. In contrast, data-driven methods rely solely 36 

on raw vibration data without constructing numerical models or employing model updating 37 

strategies. Data-driven approaches offer advantages in handling uncertainties in damage 38 

detection and are considered to complement and improve upon model-driven techniques [5]. 39 

In structural health monitoring (SHM), the data-driven approach aligns with statistical pattern 40 

recognition, involving two primary steps: feature extraction and feature classification [3]. 41 

Feature extraction is a data analysis method aimed at uncovering meaningful information 42 

(features) from raw system data [6, 7]. This process can utilize techniques such as time series 43 

analysis, operational modal identification (particularly in novel frameworks), and time-44 

frequency signal processing [8, 9]. Feature classification involves statistically analyzing these 45 

extracted features using machine learning techniques to assess the condition of a civil 46 

structure and determine whether it has sustained damage or remains in normal behavior [10-47 

12]. It needs to clarify before feature extraction and feature classification, sensor deployment 48 

and data measurement are mandatory for data-driven SHM. Recent advancement in sensor 49 

technologies allow civil engineers to benefit different sensor systems such as non-contact 50 

optical sensors [13], remote sensors [14], and even smartphones [15]. 51 

Machine learning is a field that involves analyzing training data to build a model (classifier or 52 

detector) for making decisions using test data, a methodology beneficial not only in structural 53 

health monitoring (SHM) but also across various aspects of structural engineering [16]. In 54 

SHM, two types of machine learning algorithms are employed: supervised and unsupervised 55 

learning. Supervised learning requires training data containing features from both normal and 56 

damaged states of a structure, necessitating information about damaged conditions. 57 

Conversely, unsupervised learning relies solely on features from the normal condition, 58 

making it more practical, especially in complex and costly civil engineering infrastructures 59 

where introducing additional damage for training data is unreasonable [17-20]. While 60 

supervised machine learning can be applied to SHM, unsupervised learning is often preferred 61 

for damage detection and health assessment of full-scale civil structures [21].  62 



3 

 

Unsupervised machine learning involves training a statistical model using features extracted 63 

exclusively from the normal/undamaged condition as training data. This process utilizes 64 

various statistical models, including artificial neural networks [22-24], clustering algorithms 65 

[25-26], and statistical distance measures [27-29]. Once the model is trained, features 66 

extracted from vibration data related to the current or unknown state of the structure are 67 

inputted into the model for decision-making and feature classification, which is essentially 68 

damage detection. To perform this procedure, an initial threshold level is determined using the 69 

model's outputs based on the training data. Any deviation in the model's output using test data 70 

beyond this threshold is indicative of the presence of damage [30].  The described procedure 71 

for damage detection faces significant challenges, primarily stemming from environmental 72 

and operational variations caused by factors like temperature and humidity fluctuations, wind 73 

speed fluctuations, live loads, additional masses, and human activities [31]. These challenges 74 

are substantial because they can lead to changes in structural properties and vibration 75 

responses, similar to those caused by actual damage. Consequently, in such cases, any 76 

structural change might be incorrectly interpreted as damage, resulting in a false positive 77 

(Type I). Conversely, environmental and operational variations may sometimes produce 78 

changes of greater magnitude than actual damage, making it challenging to accurately detect 79 

damage occurrences, leading to false negatives (Type II) [32]. To address these issues, it's 80 

crucial to perform data (feature) normalization to mitigate the impact of environmental and 81 

operational effects on the extracted features [31].  82 

In the field of bridge structure health monitoring, Sarmadi conducted a comprehensive study 83 

comparing various machine learning algorithms, categorizing them as non-parametric, semi-84 

parametric, or parametric based on their suitability for different bridge types and sizes [33]. It 85 

was found that non-parametric algorithms perform well when environmental and operational 86 

variability is low, while semi-parametric and parametric methods are more suitable when 87 

dealing with higher variability, requiring careful determination of hyperparameters to address 88 

these effects. Several techniques have been introduced to mitigate environmental and 89 

operational variability. Shi et al. [34] used cointegration analysis for detrending nonstationary 90 

time series data. Silve et al. [35] introduced a deep principal component analysis to normalize 91 

data by extracting salient features, irrespective of environmental variations. Sarmadi et al. 92 

[36] proposed an unsupervised feature normalization method using a hybrid feature 93 

weighting-selection algorithm and a concept called natural neighbors. Entezami et al. [37] 94 

employed empirical learning to develop a non-parametric unsupervised learning method for 95 
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bridge health assessment under severe environmental variability. Daneshvar and Sarmadi [21] 96 

introduced an innovative information-based anomaly detection method inspired by density 97 

peaks clustering for assessing damage in civil structures. Their approach is applicable to both 98 

short- and long-term monitoring programs, considering different environmental variations in 99 

dynamic and statistical features. Entezami et al. [38] proposed a novel double hybrid learning 100 

methodology consisting two steps with double learning algorithm for damage assessment 101 

under different environmental variation patterns. 102 

In structural health monitoring (SHM), effectively classifying features for damage detection is 103 

a challenging task. While unsupervised models based on artificial neural networks, clustering 104 

algorithms, and statistical distance measures can be used individually, they may produce 105 

erroneous results. Hybrid unsupervised learning methods have emerged as a promising 106 

solution to address poor performance and reduce errors. Several innovative hybrid methods 107 

have been proposed in this context: Entezami et al. [39] developed an online hybrid learning 108 

method for SHM using spaceborne remote sensing technology and an online transfer learning 109 

model based on auto-associative neural networks to eliminate environmental effects from 110 

displacement responses of a masonry bridge. Daneshvar et al. [40] introduced a locally 111 

unsupervised hybrid learning method based on a discriminative reconstruction-based 112 

dictionary learning model to remove environmental effects from bridge modal frequencies. 113 

Wang et al. [41] presented a hybrid approach combining principal component analysis and 114 

Gaussian mixture models for bridge damage detection, particularly in scenarios involving 115 

temperature variations. Daneshvar et al. [42] introduced two innovative hybrid methods, one 116 

combining the Gaussian mixture model with Mahalanobis distance and another incorporating 117 

an artificial neural network for early damage detection. Entezami et al. [43] proposed a novel 118 

hybrid learning method based on unsupervised meta-learning for damage assessment in bridge 119 

structures. In a separate study, Entezami et al. [44] developed an unsupervised hybrid learning 120 

method using the concept of multi-task learning for continuous health monitoring of various 121 

bridges under severe environmental variability.  122 

This study introduces a novel hybrid unsupervised learning approach, named TLANN-KMC, 123 

for damage detection in the presence of environmental variability. The key innovation lies in 124 

the data normalization process achieved through a two-level artificial neural network 125 

(TLANN). In the first level, a multiple feedforward neural network learns to predict features 126 

of the normal condition based on training data. In the second level, predicted features are used 127 

as new inputs to train another neural network, yielding final features for damage detection. 128 
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The same process is applied to features from the current state (test data) using the trained 129 

networks to obtain final features. For feature classification and damage detection, the 130 

normalized features from both normal and current conditions are inputted into the k-means 131 

clustering technique (KMC). The number of clusters is determined using the normalized 132 

features from the normal condition, and a damage index (DI) based on the Euclidean norm is 133 

calculated to detect damage in the current state. Damage detection relies on a threshold limit 134 

established using a generalized extreme value distribution and the block maxima method. The 135 

proposed TLANN-KMC method excels in addressing the adverse effects of environmental 136 

variability. It utilizes natural frequencies of the Z24 bridge as dynamic features for damage 137 

detection and outperforms several existing methods, demonstrating its capability to detect 138 

structural damage even in the presence of significant environmental variations.  139 

 Multiple feedforward neural network 2.140 

Artificial Neural Networks (ANNs) are computational models inspired by biological neural 141 

networks. They aim to approximate unknown functions by mapping inputs to desired outputs. 142 

ANNs consist of layers and neurons, with each neuron resembling a simplified biological cell 143 

body, involving weights, biases, summation, and transfer functions. Typically, the network's 144 

architecture, including the number of layers and neurons, as well as summation and transfer 145 

functions, is defined before training. During training, the primary objective is to estimate or 146 

adjust the weights and biases to enable the network to perform its desired function. 147 

2.1. Network architecture 148 

This article employs a multilayer feedforward neural network as its chosen architecture to 149 

address the impacts of operational and environmental variability. A key advantage of this 150 

network is its unsupervised learning capability, enabling it to reconstruct input data, which, in 151 

turn, mitigates operational and environmental variability. The multilayer feedforward neural 152 

network consists of an input layer, multiple hidden layers, and an output layer [45]. The 153 

normal condition's structural features serve as input data, which are fed into the input layer. 154 

Simultaneously, reconstructed or output data are obtained from the output layer, mirroring the 155 

input data's size. Essentially, the output layer acts as a filtered version of the input data, aiding 156 

in reducing variability [46]. 157 

The main part of the multilayer feedforward neural network is hidden layers. These are 158 

composed of mapping and de-mapping layers as well as a bottleneck layer. The mapping layer 159 
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often uses a transfer function, which is non-linear like sigmoid function, to map the input data 160 

into the next (bottleneck) layer. The bottleneck layer plays a prominent role in the 161 

functionality of the multiplayer feedforward network. This layer limits an internal 162 

encoding/compression of the input data with a subsequent decoding/decompression after the 163 

bottleneck to make the output data of the network. Finally, the de-mapping layer exploits a 164 

non-linear transfer function (e.g. sigmoid function) to decode/de-map the compressed data in 165 

the bottleneck layer and then extract the output data. Fig. 1 illustrates the general view of the 166 

neural network used in this article for data normalization, where nm, nb, nd are indicative of the 167 

numbers of neurons regarding the mapping layer, bottleneck layer, and de-mapping layer, 168 

respectively. 169 

The multilayer neural network employs a feedforward architecture, which distinguishes it 170 

from recurrent neural networks. Unlike recurrent networks, a feedforward algorithm propels 171 

data in a unidirectional manner without any cycles or loops. Consequently, a feedforward 172 

network configuration involves transmitting information from input neurons through hidden 173 

neurons to output neurons in a forward direction. The network's weights and biases for each 174 

layer are unknown parameters that must be properly estimated. Various learning techniques 175 

are employed in multilayer networks, with back-propagation being the most widely used 176 

method. This technique aims to iteratively adjust the weights to minimize the error between 177 

input and output, ultimately achieving the desired output. Further details on different aspects 178 

of artificial neural networks (ANNs) can be found in reference [47], but are not covered 179 

within the scope of this current research study. 180 

2.2. Selection of neuron sizes 181 

In a multilayer feedforward neural network, while the number of layers is known, it is crucial 182 

to accurately determine the sizes of neurons in each hidden layer. The selection of these 183 

neuron numbers must strike a balance to avoid underfitting and overfitting issues. 184 

Underfitting occurs when the neuron numbers are insufficient for the layer, necessitating an 185 

increase. Overfitting, on the other hand, means that the network performs well with training 186 

data but exhibits unreliable performance with validation data [47]. Therefore, it is vital to 187 

choose neuron sizes based on a reliable criterion. In this article, the criterion used is the mean-188 

squared error (MSE) between network inputs and outputs. To determine the neuron numbers 189 

in hidden layers, a grid search algorithm is applied based on this criterion. It's worth noting 190 

that when dealing with a small number of hyperparameters, grid search is considered the most 191 
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effective and efficient hyperparameter optimization algorithm [48]. Given the need to 192 

determine two types of neuron numbers, the choice of the grid search algorithm in this paper 193 

is reasonable.  194 

This process involves splitting the input data into training and validation sets. The primary 195 

goal is to train a neural network using the training data, considering a substantial number of 196 

sample neurons. Each sample neuron is used to train a neural network solely on the training 197 

data (the network input). After obtaining the network's output, the Mean Squared Error (MSE) 198 

between the input and output is calculated. The same procedure is applied to the validation 199 

data (new input fed into the network) without training a new neural network. Instead, the pre-200 

trained network is used to generate the new output, and the MSE between the new input and 201 

output data is computed. To facilitate this process, MSE values are stored in a matrix. Rows 202 

in this matrix correspond to neuron numbers for the mapping and de-mapping layers, while 203 

columns represent neuron numbers for the bottleneck layer. By calculating the direct 204 

difference between the MSE matrices for training and validation data, one can determine the 205 

optimal neuron sizes for the hidden layers. The rows and columns associated with the 206 

minimum value of this direct MSE difference (referred to as DMSE) indicate the optimal 207 

neuron sizes for the mapping layer, de-mapping layer, and bottleneck layer, respectively. It's 208 

important to note that since the mapping and de-mapping layers have the same number of 209 

neurons, the rows of the MSE matrices refer to the neurons in these layers. Additionally, to 210 

prevent overfitting, the neuron sizes of the mapping and de-mapping layers should be larger 211 

than the bottleneck layer [46]. 212 

 K-means clustering 3.213 

Clustering is a widely used unsupervised learning technique that divides sample data into 214 

clusters or groups. Different clustering methods exist, including connectivity-based, 215 

hierarchical, centroids-based, partitioning, distribution-based, density-based, fuzzy, and 216 

constraint-based or supervised clustering. In essence, a cluster comprises samples with 217 

significant similarities, and various distance measures are employed to gauge the similarity 218 

among these samples [49]. 219 

The KMC is the simplest and most popular partition-based clustering method, for which the 220 

given data is clustered by a pre-defined number of clusters (k). The main idea behind the 221 

KMC is to define k centroids (i.e. the means or averages) of all 48 clusters. Given the given 222 
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data x1,…,xn, the KMC aims to cluster these samples into k clusters via the following 223 

objective function: 224 

 

2
=1 =1

 
k n

j i

i j

J x c  (1) 

where ci is the mean of the i
th

 cluster and ||.||2 refers to the Euclidean norm. The KMC is 225 

generally an optimization problem, aiming at minimizing the objection function J. In this 226 

regard, this function decreases monotonically at each iteration so that this  227 

decreasing in a monotonic manner will finally converge to a local minimum. 228 

 Proposed hybrid method 4.229 

The proposed hybrid damage detection method consists of two main components: data 230 

normalization and feature classification. This method is employed during both the training 231 

and monitoring stages. In the initial stage, two models (TLANN and KMC) are trained for 232 

these components using training samples, which include certain features extracted from 233 

vibration data recorded under the structure's normal condition. The second stage involves 234 

utilizing test samples, which consist of the remaining features from the normal condition and 235 

all features from the current/unknown state of the structure. These test samples are input into 236 

the trained models from the training stage to produce respective outputs. 237 

4.1. Data normalization by TLANN 238 

Due to the importance of the negative influences of the operational and environmental 239 

variability condition, it is necessary to remove them from the extracted features. This article 240 

proposes the TLANN method that consists of two multilayer feedforward neural networks. 241 

The process of data normalization is performed in both the training and monitoring phases. 242 

Assume that X∈ℝp×m
 is the matrix of the training data including p variables and m 243 

observations. The initial step is to train a multilayer feedforward neural network based on the 244 

training data X with the aid of the selected neuron sizes of the hidden layers obtained from the 245 

grid search technique so as to determine the network output matrix �̂�∈ℝp×m
. It is important to 246 

mention that the numbers of neurons in the hidden layers are determined before training the 247 

neural network. The main goal is to calculate the residual matrix Hx=X-�̂�. This matrix is then 248 

incorporated as the new input data and it is fed into a new multilayer feedforward neural 249 

network so as to extract the new output of the network �̃�∈ℝp×m
. The main goal in the second 250 



9 

 

level of the data normalization method proposed in this study is to calculate the new residual 251 

matrix Rx= Hx-�̃� as the main normalized features of the training stage. 252 

During the monitoring period, one supposes that Y∈ℝp×n
 is the matrix of the test samples 253 

including p variables and n observations. For the process of data normalization, this matrix is 254 

considered as the input data in order to feed into the first neural network, which was trained in 255 

the training stage. In similar, one attempts to extract the network output matrix �̂�∈ℝp×n
 and 256 

compute the residual matrix Hy=Y-�̂�. Subsequently, this matrix is applied to the second 257 

trained neural network to determine the new output matrix �̃�∈ℝp×n
. Finally, the residual 258 

matrix 259 

Ry= Hy -�̃� is calculated as the main normalized features of the monitoring phase. For the sake 260 

of simplicity, Fig. 2 illustrates the flowchart of the first algorithm of the proposed hybrid 261 

method related to the TLANN. 262 

4.2. Feature classification by KMC 263 

After removing the operational and environmental variations from the extracted features, the 264 

matrices Rx∈ℝ
p×m

 and Ry∈ℝ
p×n

 are applied to the KMC to detect damage. In this case, the 265 

latter serves as the training data, while the former is the test set. Although the KMC is still 266 

one of the most popular clustering algorithms, it is sensitive to outliers, noise, and 267 

uncertainties such as environmental and operational variations. However, the proposed 268 

TLANN method before utilizing the KMC addresses this issue and makes it effective for 269 

feature classification. The direct use of the KMC or other kinds of clustering algorithms may 270 

not be sufficiently effective for damage detection. Accordingly, it is necessary to define a 271 

damage index (DI). Using this criterion, one initially attempts to determine the cluster 272 

numbers k cluster. It should be pointed out that the cluster selection procedure is only carried 273 

out by the training data or the extracted features related to the normal condition of the 274 

structure. In this article, the well-known Silhouette value technique [49] is applied to 275 

determine the cluster numbers. In the following, the KMC algorithm is used to cluster the 276 

feature samples of Rx into k clusters c1,…,ck. For each feature vector (sample) regarding the 277 

test data ry, the divergence of this vector from each of the clusters is calculated by the 278 

following DI: 279 

  1 22 2 2
DI min , ,...,   

y y y
r c r c r ck

 (2) 
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From Eq. (2), the output is a scalar value. Hence, for all m feature samples of the test data, 280 

one can determine m DI values. The same procedure is carried out using the feature vectors 281 

obtained from training data Rx. Therefore, it is possible to determine n DI values regarding 282 

the normal condition. For this case, each of the feature vector (rx) obtained from the training 283 

data is substituted by the vector ry in Eq. (2). The decision-making for damage detection 284 

procedure is on the basis of comparing all DI values with a threshold level [50]. Because 285 

threshold level determination plays a crucial role in obtaining precise damage detection 286 

results, this study utilizes a methodology on the basis of the extreme value theory proposed by 287 

Sarmadi and Karamodin [29]. It is important to mention that the threshold level is obtained 288 

from the DI value of the only normal condition or the training data. Thus, if the DI value 289 

exceeds the threshold level, this is indicative of damage occurrence; otherwise, the structure is 290 

undamaged. On the other hand, it is expected that the DI values of the normal condition of the 291 

structure, either the training or validation data, are under the threshold level. The flowchart of 292 

the second algorithm of the proposed hybrid method regarding the KMC is shown in Fig. 3. 293 

 Case study: The Z24 bridge 5.294 

The Z24 bridge is a well-known post-tensioned concrete box girder bridge within the 295 

Structural Health Monitoring (SHM) community. This bridge features a main span of 30 296 

meters and two side spans of 14 meters, as depicted in Fig. 4. It was located in Canton Bern, 297 

Switzerland, connecting Koppigen and Utzenstorf, serving as a highway overpass for the A1 298 

route connecting Bern and Zurich. The bridge was supported by two rows of three pinned 299 

concrete columns at the endpoints, and two concrete piers were clamped into the girders at the 300 

main span's endpoints. Unfortunately, the Z24 bridge was demolished in late 1998 to make 301 

way for a new bridge with larger side spans. Between November 11th, 1997, and September 302 

11th, 1998, an extensive and continuous monitoring test was conducted, gathering 303 

environmental data, including air temperature, wind characteristics, humidity, and more, using 304 

49 sensors. Additionally, dynamic responses, such as acceleration time histories, were 305 

recorded using 8 accelerometers. In the month leading up to its demolition, the Z24 bridge 306 

was deliberately subjected to gradual and controlled damage. For further information 307 

regarding the SHM project and progressive damage scenarios, please refer to [51]. 308 

Peeters and De Roeck [51] conducted a stochastic subspace identification-based operational 309 

modal analysis on the Z24 bridge to extract its modal parameters. In this study, we focus on 310 
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the bridge's natural frequencies (f) from the four vibration modes. These natural frequencies 311 

are the primary damage-related features for our damage detection process. The dataset 312 

consists of a total of 5652 frequency samples, some of which have missing data. To clean the 313 

data, we utilized a data cleaning algorithm proposed by Entezami et al. [51], resulting in a 314 

feature dataset containing 3932 modal frequencies, given in Table 1. Among these, the first 315 

3476 samples represent the bridge in its normal condition, while the remaining 456 samples 316 

correspond to the damaged state [27, 31]. Figure 5 illustrates the natural frequencies of the 317 

four identified vibration modes. Notably, there are abrupt jumps between measurements 1-318 

1738, indicating the influence of environmental variability in the bridge's normal condition. 319 

Modal frequencies in measurements 3477-3932 gradually decrease, aligning with the concept 320 

of reduced modal frequencies due to stiffness reduction caused by damage. However, it's 321 

essential to acknowledge that environmental variations, particularly in normal conditions, can 322 

significantly impact modal frequencies. These variations may lead to false alarms and 323 

incorrect detection results in vibration-based techniques. 324 

In order to detect damage by the proposed hybrid TLANN-KMC technique, it is necessary to 325 

divide the dataset into training and test parts. On this basis, 75% of the natural frequencies of 326 

the normal condition of the structure are selected to make the training matrix as X∈ℝ4×2607
, 327 

where p=4 and m=2607. Moreover, the remaining natural frequencies of the normal condition 328 

of the structure related to the measurements 2608-3476 as well as all the natural frequencies 329 

of the damaged state of the structure regarding the measurements 3477-3932 are considered 330 

the test matrix Y∈ℝ4×1325
, where p=4 and n=1325. It is worth remarking that the same 331 

percentages of the training and validation datasets (i.e. 75% and 25%) are used to generate Rx 332 

and Ry. 333 

5.1. Damage detection 334 

As the first step of the proposed hybrid technique relates to the process of data normalization, 335 

one initially requires determining the neuron numbers of the hidden layers, for two levels of 336 

the proposed TLANN approach. Using the direct MSE between the training and validation 337 

data, Fig. 6 shows the amounts of nm, nb, and nd related to the mapping layer, bottleneck layer, 338 

and de-mapping layer of the first and second levels. For better observations, the inverses of 339 

the DMSE matrices are used to find the number of neurons. Accordingly, the maximum 340 

values are considered to choose these numbers. From Fig. 6(a) concerning the first level, it is 341 

seen that the mapping layer as well as de-mapping layer need 12 neurons (i.e. nm=nd=12) and 342 
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the bottleneck layer requires 4 neurons (i.e. nb=4). In Fig. 6(b), the neurons of these layers in 343 

the second level are identical to 9, 2, and 9, respectively.  344 

According to these numbers, the final feature matrices Rx and Ry, as shown in Fig. 2, are 345 

extracted to use in the KMC for feature classification and damage detection. Considering the 346 

flowchart in Fig. 3, the first step is to determine the cluster numbers on the basis of the only 347 

training data Rx as illustrated in Fig. 7. As can be seen in in Fig. 7, the fifth sample cluster 348 

presents the maximum Silhouette value among all ten sample numbers. Therefore, the KMC 349 

needs five clusters to divide all the training samples and obtain the vectors c1,…,c5. In the 350 

following, the values of DI regarding the training data are calculated in order to apply the 351 

obtained values for the threshold level estimation by modeling the generalized extreme value 352 

distribution based on the block maxima method [29]. Finally, the same clusters obtained from 353 

the training phase are incorporated to compute the values of DI regarding the test samples in 354 

the monitoring stage. On this basis, Fig. 8 illustrates the damage detection result in the Z24 355 

bridge by the proposed hybrid method. 356 

Observing the results, it's evident that all DI values for training samples 1-2607 remain below 357 

the threshold level, indicating no false alarms. Moreover, the majority of validation samples 358 

2608-3476, representing the normal condition of the structure, fall below the threshold, with 359 

only a few exceptions. Concerning the damaged state (samples 3477-3932), most DI values 360 

exceed the threshold, indicating precise damage detection. Only one point has a DI value 361 

under the threshold. Regardless of the threshold level, it's notable that DI values related to the 362 

damaged state are consistently higher than those for the normal condition. This finding 363 

underscores the high damage detectability achieved by the proposed hybrid method. In 364 

conclusion, this technique is well-equipped to handle the effects of environmental variability 365 

and accurately detect damage. 366 

5.2. Comparisons 367 

While the hybrid method proposed in this study demonstrates its capability to accurately 368 

detect damage and handle environmental variability, it's crucial to compare it with established 369 

methods and their counterparts. For data normalization, this article introduces the TLANN 370 

approach. Therefore, it's fitting to assess the method's performance when only the first level of 371 

data normalization is employed. In this context, the article extracts residual matrices Hx and 372 

Hy, which are then used as primary features for the one-level ANN (OLANN) approach. 373 

Consequently, the first comparison evaluates the proposed TLANN-KMC method against the 374 
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OLANN-KMC approach. The direct use of ANN or the OLANN method is another technique 375 

for damage detection. Hence, the second comparison involves evaluating the proposed hybrid 376 

technique against the traditional OLANN method. Additionally, KMC is a popular 377 

unsupervised machine learning technique for damage detection process [52]. Therefore, the 378 

final comparison involves assessing the proposed hybrid method against KMC. In Fig. 9, you 379 

can observe the cluster numbers required for the OLANN-KMC and KMC methods. The 380 

maximum Silhouette values correspond to the eighth and second sample clusters. 381 

Furthermore, Fig. 10 displays the damage detection results for the OLANN-KMC, OLANN, 382 

and KMC methods. The same threshold estimation methodology is applied to compare their 383 

DI values with the threshold levels. Table 2 provides numerical analyses, including Type I 384 

and Type II errors, as well as the total error for the proposed hybrid method and the 385 

mentioned classical techniques. 386 

In Fig. 10, noticeable variations in DI values can be observed, particularly for the training 387 

samples, especially around samples 869-1738, which align with the sudden jumps in modal 388 

frequencies shown in Fig. 5. The KMC method exhibits the poorest performance, mainly due 389 

to the influence of environmental variability in the modal frequencies, leading to significant 390 

variations in DI values as seen in Fig. 10(c). Consequently, a high threshold level has been 391 

estimated, resulting in serious false detections. For samples 3477-3932, the majority of DI 392 

values fall below the threshold, making it challenging to differentiate between normal and 393 

damaged structural conditions, indicating low damage detectability. Although both OLANN-394 

KMC and OLANN methods outperform the classical KMC method, some erroneous results 395 

still persist. To provide a more comprehensive evaluation, the study employs triple error 396 

metrics, including Type I, Type II, and total errors, to compare the proposed technique with 397 

other methods. With the exception of the classical KMC, it's evident that the TLANN-KMC 398 

method outperforms both OLANN-KMC and OLANN techniques, boasting the smallest 399 

numbers and the lowest percentages of triple errors. Furthermore, the OLANN approach 400 

performs better than the OLANN-KMC method. In summary, the comparisons in this section 401 

highlight that the hybrid method proposed in this study surpasses other techniques in terms of 402 

damage detection under varying environmental conditions. 403 

All the previous results have been obtained by applying a large set of normal and damaged 404 

features. In order to evaluate the proposed method under small data, the daily measurements 405 

of the Z24 bridge are considered here as shown in Fig. 11. These measurements include 235 406 

samples of modal frequencies, where the samples 1-198 relate to the normal condition and the 407 
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samples 199-235 are concerned with the damaged state [26]. Accordingly, one can determine 408 

a new training matrix by taking 90% of the modal frequencies of the normal condition and 409 

making the new matrix X∈ℝ4×178
, where m=178. Moreover, the remaining 10% of the daily 410 

modal frequencies concerning the undamaged condition as well as daily data of the damaged 411 

state are inserted into a new testing matrix Y∈ℝ4×57
.  412 

Using the grid search algorithm, the neuron numbers for the first ANN are determined as 7, 3, 413 

and 7 for the mapping, bottleneck, and de-mapping layers, respectively. For the second ANN, 414 

the neuron numbers are 4, 2, and 4 for the same respective layers. Figure 12 illustrates the 415 

results of damage detection in the Z24 bridge using a limited set of modal frequencies. It's 416 

evident that all DI values for the normal condition (samples 1-198) fall below the threshold 417 

line, indicating the method's ability to accurately recognize the undamaged state of the bridge. 418 

With the exception of three points, the majority of DI values for the damaged state surpass the 419 

threshold. Therefore, it can be concluded that the proposed method is also successful in 420 

detecting damage using a reduced set of modal frequencies. 421 

 Conclusions 6.422 

This study introduced a hybrid unsupervised learning method combining ANN and KMC to 423 

address two key challenges: data normalization and feature classification. The goal of data 424 

normalization was to mitigate environmental variations in features extracted from measured 425 

vibration data, while feature classification aimed at detecting damage. For data normalization, 426 

the TLANN approach, consisting of two ANNs, was proposed. The residual matrices, 427 

obtained as the difference between the input and output of the second ANN, were used as the 428 

primary features. Hyperparameter estimation determined the neuron numbers in the hidden 429 

layers of each ANN using the direct MSE. For damage detection, classical KMC clustered the 430 

extracted features and calculated DI values, with Silhouette values determining cluster 431 

numbers. The Z24 bridge's natural frequencies, a benchmark in the SHM community, were 432 

used to validate the method's performance and reliability. Comparisons with classical methods 433 

demonstrated the superiority of the proposed technique. The results revealed that the TLANN-434 

KMC method effectively detected damage even in the presence of strong environmental 435 

variability. The TLANN algorithm for data normalization significantly reduced the impact of 436 

environmental variability, as evidenced by damage detection results and error rates compared 437 

to the OLANN-KMC method. The proposed method also outperformed the classical OLANN 438 
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approach. However, it's worth noting that direct use of KMC for feature classification and 439 

damage detection is not recommended when environmental variability strongly affects 440 

extracted features. Despite its effectiveness in detecting damage occurrence, the proposed 441 

method has room for improvement in recognizing the type and severity of damage. As 442 

reported in table 1, The Z24 bridge had various damage patterns with differing levels of 443 

severity, suggesting potential enhancements for damage type recognition. Another limitation 444 

is the computational time of the proposed method, particularly in the hyperparameter selection 445 

process. The TLANN, consisting of two ANNs, requires determining two sets of 446 

hyperparameters in different search domains, making it more complex and time-consuming 447 

than OLANN-KMC, OLANN, and KMC methods. 448 
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Table 1. Progressive damage tests and their simulation patterns [51] 607 

No. Damage level Simulation of real damage patterns 

1 First reference measurement Undamaged condition 

2 Second reference measurement After installing the lowering system 

3 Lowering of pier, 20 mm 

Settlement of the subsoil, erosion 
4 Lowering of pier, 40 mm 

5 Lowering of pier, 80 mm 

6 Lowering of pier, 95 mm 

7 Tilt of foundation Settlement of the subsoil, erosion 

8 Third reference measurement After lifting of the bridge to its first position 

9 Spalling of concrete, 24 m2 Vehicle impact, carbonization, and subsequent 

corrosion of reinforcement 10 Spalling of concrete, 12 m2 

11 Landslide at abutment Heavy rainfall, erosion 

12 Failure of concrete hinge Chloride attack, corrosion 

13 Failure of anchor heads #1 
Corrosion, overstress 

14 Failure of anchor heads #2 

15 Rupture of tendons #1 

Erroneous or forgotten injection of tendon tubes, 

chloride influence 
16 Rupture of tendons #2 

17 Rupture of tendons #3 

 608 

 609 

Table 2. Comparison of the damage detection methods based on feature classification errors 610 

Method 

Classification errors 

Type I Type II Total 

No. % No. % No. % 

TLANN-KMC 17 0.48 1 0.21 18 0.45 

OLANN-KMC 60 1.72 7 1.53 67 1.70 

OLANN 36 1.03 10 2.19 46 1.17 

KMC 0 0 407 89.25 407 10.35 

 611 

 612 
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 613 

 614 

Fig. 1. The multilayer feedforward neural network for data normalization 615 

 616 

 617 

 618 

Fig. 2. Flowchart of the first algorithm of the proposed hybrid technique regarding the 619 

TLANN: (a) the training stage, (b) the monitoring stage 620 
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ˆH =Y-Y ANN2 Y y yR =H -Y

Input 3

  

Output 3

 

Residual Matrix 3

 

 

Input 4

 

Output 4

 

Residual Matrix 4

(a)

(b)



21 

 

 623 

Fig. 3. Flowchart of the second algorithm of the proposed hybrid method regarding the KMC: 624 

(a) the training phase, (b) the monitoring phase 625 
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 628 

 629 

Fig. 4. The Z24 bridge [48]  630 
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 631 

 632 

 633 

Fig. 5. The natural frequencies in Hz regarding the Z24 bridge: (a) the first vibration mode, 634 

(b) the second vibration mode, (c) the third vibration mode, (d) the fourth vibration mode 635 

 636 

  

Fig. 6. Hyperparameter estimation for the TLANN: (a) the first level, (b) the second level 637 
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 638 

Fig. 7. Selection of the cluster number using the Silhouette value technique 639 

 640 

 641 

Fig. 8. Damage detection in the Z24 bridge by the proposed hybrid technique 642 
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Fig. 9. Selection of the cluster number using the Silhouette value method: (a) the OLANN-644 

KMC, (b) KMC 645 
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Fig. 10. Damage detection results of the Z24 bridge: (a) OLANN-KMC, (b) OLANN, (c) 661 

KMC 662 

 663 
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 664 

Fig. 11. The small set of natural frequencies in Hz regarding the Z24 bridge: (a) the first 665 

vibration mode, (b) the second vibration mode, (c) the third vibration mode, (d) the fourth 666 

vibration mode 667 

 668 

Fig. 12. Damage detection in the Z24 bridge by the proposed hybrid technique and the small 669 

set of the modal frequencies (i.e., daily measurement) 670 
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