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Hand impairment, followed by stroke, causes significant deficits in performing different activities. 
Restoration of hand functions requires regular and repetitive therapy exercises. Although robotically 
physiotherapy systems have shown great promise in hand functions’ improvements, they are not widely 
and effectively used, as the needs and expectations of patients and physiotherapists have been ignored. 
In this paper, a 4-degrees of freedom desktop-mounted robot is developed for four fingers and wrist 
rehabilitation, based on clinical observations. Hand-Robo-Hab provides the four mechanotherapy 
prevalent movements as follows: active, passive, active-assisted, and active resisted. In this study, the 
design and development of the robot are described. Then the efficiency and usability of the device are 
evaluated through two technical tests, and a preliminary clinical trial. The results of technical tests 
showed that Hand-Robo-Hab was able to cover the wrist range of motion of 99 to 203 degrees. Besides, 
the proposed device was capable of compensating its weight, which is a necessary step to accomplish 
the active modes exercises. In addition, clinical trial results showed that Hand-Robo-Hab was both 
operative and comfortable for patients with different hand sizes. 

1. Introduction
Different neurological consequences such as motor sensory, 
cognitive, language, and emotional disorders are followed by 
stroke, which is the second cause of death worldwide. 
Although the mortality rate due to stroke has been decreased, 
it is still the main cause of long-term disability. Post-stroke 
survivors suffer from exacerbation of hand functions as the 
human hand is one of the most complex limbs in terms of 
functionality and Degrees of Freedom (DOF) [1–3]. 

The Stroke Alliance for European has declared that every 
20 seconds a new stroke case occurs in adults. It has been 
predicted that the number of affected people by stroke will 
increase by 35% to 12 million in 2040 [4]. In the United 

States, about 800,000 subjects face stroke annually, among 
which 90% of the survivors are left with disability and 65% 
of them are not able to cooperate with their impaired hands 
in the different tasks even 6 months after stroke [5]. 
Furthermore, the exorbitant cost of rehabilitation plans and 
transportation, along with the lack of dexterity and strength 
of therapists have made the conventional methods difficult. 
The other drawback of conventional methods is time-
consuming along with tediousness for both patients and 
therapists. Finally, quantitative and accurate data of the 
hands’ performance improvements cannot be obtained [6].  

Throughout the previous decade, Robot-Assisted 
Training (RAT), has been utilized to improve motor 
deficiencies in post-stroke survivors. In this regard, different 
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models have been created. One of the most common groups 
of these devices is Exoskeletons, such as M3ROB which is a 
robotic platform for wrist and hand [7], a lightweight 
exoskeleton based on hand kinematic model [1], an 
exoskeleton for wrist-finger [8], a three-DOF exoskeleton 
[9], an exoskeleton for the thumb, index, middle and ring 
fingers [10], Flexor-Hand [11], a passive exoskeleton for wrist 
and forearm [12], a wrist exoskeleton [13], Hand Mate [14], a 
cable-driven exoskeleton [15], and a hand exoskeleton with 
series elastic actuation [16]. A wide range of these devices has 
been created just for fingers such as a finger exoskeleton [17], a 
linkage finger exoskeleton [18], a magnetic-force-based for 
paralyzed fingers [19], a portable hand rehabilitation finger [20] 
and a finger extensor [21]. Another group in this field refers to 
soft robotic devices which are often glove-shaped, such as Soft 
Exoskeleton Glove (SEG) [22], hand re-extensor with steel 
ribbons [5], mirroring glove [23], a soft rehabilitation robot 
which holds continuous passive motion mode [24] and a 
wearable exoskeleton glove [25]. The last introduced category 
refers to desktop-mounted models such as parallel robotic 
system [26], an end-effector bilateral rehabilitation system [27], 
end-effector type desktop robot [28], wrist-forearm desktop 
robot [29], and CUBE, a cable-driven parallel structured robot 
desktop [30].  

Although there are a great number and variety of hand 
physiotherapy robots, only a few of them have been widely 
and effectively used. In other words, robot-assisted 
physiotherapy, which has shown great promise in hand-
function improvements, has not yet replaced conventional 
physiotherapy. This problem has some reasons: First, the 
complexity of the robot configuration makes it unusable. 
Second, the needs of physiotherapists and patients have 
been ignored. This negligence would lead to creating a 
device with less effectiveness on the patients, and also not 
being very practical for the physiotherapists.  

 

To meet these challenges, a desktop-mounted physiotherapy 
system, “Hand-Robo-Hab”, is proposed in this paper. This 
device is introduced with a simple mechanical structure and can 
be used for the wrist and four fingers. To satisfy both 
physiotherapists’ and patients' needs, the design is based on 
clinical observations. The main novel features of the robot are 
summarized as: 
 

• This device is usable for both right and left hands; 
• The 4 DOF are created by using just one actuator; 
• This device is provided with four mechano-therapy 

movements which are the fundamental treatments in 
physiotherapy; 

• The proposed device can be used for the deformed 
hand, either. Therefore, it will be utilizable for a vast 
range of patients. To prove the robot’s features, 
technical and clinical tests are conducted. 
 

The rest of the paper is comprised of six sections. In Section 2, 
the methodology including the mechanical structures and 
electrical components, is explained. The control strategy for 
four mechano-therapy modes is described in Section 3. In 
Section 4, the results of technical and clinical tests are described. 
The discussion and conclusion are stated in Sections 5 and 6, 
respectively. 

2. Methodology 
2.1. Clinical observations and design requirements 

In the first phase, physiotherapy observations and 
movement analyses were done to identify impairments of the 
affected hand. Afterward, the appropriate movement therapy 
was selected to target these impairments. The results showed 
that hand spasticity was the main problem of stroke 
survivors. Spasticity keeps the wrists and fingers in flexion 
position; therefore, the therapist has to re-extend them 
regularly during each exercise which may interrupt the 
current task. This intermittent job is shown in Figure 1.  

 

 
 

Figure 1. Spasticity compensation and forearm traction exercises. 
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Figure 2. (a) The CAD model of digit supporters and the side shafts, (b) real model of the finger cover and (c) the real model of side shaft. 
 
 

 
Figure 3. (a): (1) The finger cover, (2) the forearm placement and (b): (3) active degree of freedom created by the DC motor, (4) linear 
movement of finger cover, (5) rotation around the vertical axis (Yaw), (6) rotation of finger cover around the latitudinal axis (Pitch). 

 
Due to the spasticity differences among the individual’s fingers, 
hand re-opening is a tedious task for physiotherapists. To 
address this impairment using the proposed robotic system, 
exerting flexion-extension movements on the four fingers and 
wrist were chosen. Furthermore, stretching the flexor muscles 
in the forearm has a great impact on spasticity reduction. Thus, 
this movement is also considered as one of the aims of the 
proposed device. These selected movements will be achieved in 
all fundamental physiotherapy modes: passive, active-assisted, 
active and active-resisted.  

2.2. Mechanical and electrical structure 
The functional requirements, resulted from the previous phase, 
lead to the construction of the device with 1-active and 3-
passive DOF to exert selected movements on the fingers-wrist. 
In this regard, the proposed device is composed of three main 
parts: 1-an adjustable finger cover and its side shafts, 2-a linear 
guide and 3-the driving unit. 
2.2.1. Finger cover 
The finger cover consists of two separated up-down segments 
called digit supporters, in which two phalanxes of the four 
fingers can be placed. The digit supporters are adjustable in 
length and thickness to fulfill the biomechanical compatibility 
with different fingers’ sizes. On the other hand, the digit 
supporters can be used for both left and right hands. This will be 
achieved by rotating the finger cover structure 180 degrees. Two 
shafts are screwed at both sides of the finger cover. The hand 

cover, digit supporters, and the side shafts are shown in 
Figure 2. 
      The shafts are inserted in articulated bearings, which are 
connected to the linear guide wagon set via a connecting 
piece. The articulate bearing allows rotation of the shafts 
around the endpoint of the shaft, which is perpendicular to 
the palm. 
2.2.2. Linear guide 
Two linear guides and wagons are connected to the digit 
supporter's side shafts, which can provide both linear and 
rotational movements of the fingers. This mechanism would 
create three passive DOF: a translational movement of finger 
cover along the linear guide, the rotation of shafts around their 
longitudinal axis, and a rotation around the vertical axis. 
2.2.3. Driving unit 
The driving unit is comprised of a DC motor (Maxon, 118755, 
Switzerland), a position controller (Maxon, Encoder MR type 
ML), a power supply (QUINT-PS/10-2866763), and an 
amplifier (Dynamic strain Amplifier, DN-AM100 DACELL, 
South Korea). 

The DC motor provides an active DOF which is a rotation 
of the mechanical arm around the sagittal axis. The overall DOF 
created by the device and the displacement of fingers and 
forearms are depicted in Figure 3.  

Furthermore, the robot is equipped with a force sensor, 
(Loadcell Zemic 1-S-B, Netherlands), to control the robot. To 
counteract the spasticity differences in the fingers, a constant 
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Figure 4.  The robot platform (a) 1. encoder, 2. DC motor, 3. reduction gearbox, 4. coupling mechanism, 5. ball bearing, 6. loadcell,   
7. mechanical structures, 8. power supply, 9. position controller, 10. amplifier and (b) 11. emergency stop, 12. linear Guide, 13. an emergency stop 
button, 14. handset. 

 
force spring is used on both linear guides that pull the finger 
cover to fit the palm size.  

To keep the patient in an ergonomic position, a specific 
design is made on the forearm part of the device, in which the 
forearm can be placed at an angle of 30 degrees to the horizon. 
This angle is determined based on clinical observations. For 
safety considerations, an emergency stop and an emergency 
button are utilized which can be used by the therapist and the 
patient, respectively. Based on the findings, some designs were 
depicted in SolidWorks 2015 (Dassault-Systems, France, 1995). 
Then the best prototype was selected and manufactured. The 
hardware platform is shown in Figure 4. 

3. Control strategy 
The control system was developed in such a way that the 
robot exerted the movements in all four mechanotherapy 
movements: passive, active-assisted, active and active-
resisted. To make the controller user-friendly, the Graphical 
User Interface (GUI) was created by C# in the visual studio 
program, (Microsoft Cooperation, Washington, United 
States). In the Figure 5, the GUI, for the proposed device is 
shown. 
      At the beginning of each exercise, the robot should be 
homed to make sure it would start moving from a pre-defined 
position, Figure 6(a) shows the home position of the robot 
 

 
Figure 5. The GUI of the device. 

arm. Since, in the active modes the patient would displace 
the robot arm by his strength, the weight of the robot arm 
must be compensated and not imposed on the patient’s 
hand. On the other hand, the angle of the robot arm would 
change while moving, which is illustrated in Figure 6(b), 
therefore the portion of robot arm weight which would be 
sustained by the hand, changes constantly. A calibration 
stage was done to determine the weight of the robot arm at 
any angle. The aim of this calibration is to find the relation 
between the force corresponding to the robot’s weight 
torque and its position (the robot angle).  
 

 
Figure 6.  (a) Home position and (b) the angles of the robot at which 
its weights are measured. 
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Figure 7. The procedure for utilizing the device. 

Figure 8. The force corresponding to the weight torque at each 
angle. 

The calibration stage and control algorithm for each 
mode is explained in the following sub-sections. Figure 7 
shows the procedure for utilizing the device. 

3.1. Calibration 
For the calibration, the robot moved in a quasi-static mode, 
at a very slow speed without carrying the user’s hand. In such 
condition, the load cell would measure the torque resulting 
from the pure weight of the robot in any direction. The robot 
angles were also recorded using the encoder. By dividing the 
measured torque by the torque arm, the obtained force 
corresponding to each robot position is plotted in Figure 8. 
To extract the relation, the curve fitting tool of MATLAB 
was used and Eq. (1) was obtained: 

𝐹𝐹𝑤𝑤𝑤𝑤 = 22.64 sin((0.020 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + 1.701). (1) 

3.2. Passive mode 

In this mode, the motor moves the robot arm with a constant 
velocity specified by the user, until the current position is the 
same as the final position. Figure 9 illustrates all the control 
algorithms. After that, the direction of the motor rotation is 
reversed and the robot arm comes back to its home position. 

To stretch the flexor muscles in the forearm, the robot arm 
can be stopped in the maximum position, by means of setting 
the stopped time. For more safety, a Max. Force option is 
suggested which if set, the robot would stop immediately 
when it reaches the force set value. The robot's range of 
motion can be adjusted by the min. pos. and max. pos. 
options on the GUI. 
3.3. Active mode 
To perform the active mode, the device calibration data is 
used to compensate the robot’s weight. The motor moves 
with a velocity commensurate with the weight obtained from 
the calibration based on the current angle. As the user 
changes the robot’s position by applying a force, its weight 
changes. The new weight is read using the calibration 
formula and the new motor velocity is calculated. 
3.4. Active-assisted mode 
In this mode, the difference between the force shown by the 
load cell (𝐹𝐹𝐿𝐿), and the robot’s weight corresponding to the 
current position is calculated, (𝐹𝐹𝑢𝑢). FL is the summation of 
the robot weight (FW) and the user’s force. According to this 
difference, the motor moves with a velocity proportional to 
𝐹𝐹𝑊𝑊, or it moves with a velocity proportional to 𝐹𝐹𝑢𝑢. 

3.5. Active-resisted mode 
To run this mode, the motor produces the torque, opposite to 
the hand movement direction with the help of the current 
control mode. The value of the motor velocity is proportional 
to 𝐹𝐹𝑢𝑢. 

4. Clinical and technical tests
4.1. Technical tests 
4.1.1. Passive mode test 
A technical test is performed on the passive mode to check 
the capability of the device in covering a standard wrist range 
of motion. To this end, a healthy subject trained with the 
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Figure 9. The control diagram of the robot, mode 1; passive, mode 2; active, mode 3; active-assisted and mode 4; active-resisted. 

Figure 10. (a) the whole setup for the active technical test, (b) the closed view of the new sensor attachment, (c) the external sensor. 

robot in passive mode and the wrist range of motion is 
calculated. The angle of the robot changes from 0 to 110 
degrees, set in the GUI, with an increment of 5 degree. At 
each angle, the real angle of the wrist is measured. Table 1 
shows the results of the passive mode test.  

4.1.2. Active mode test 
Another technical test is performed to check the capability of 
the robot in compensating its weight while performing in the 
active mode. To perform this test, another load cell (1-B-S-
50Kg.0.2B, Zemic, Netherlands) is attached to the connector 
piece. This new setup is shown in Figure 10. 

By applying a finger force on this loadcell and moving 
the robot arm, periodically, two series of data are collected: 
the force monitored by the external loadcell and the torque 
measured by the internal loadcell. The force which is sensed 
by the internal sensor would be calculated by dividing the 
internal load cell output by the torque arm. Figure 11 shows 
these two forces. 
4.2. Clinical tests 
To find any possible problem that may occur during the 
rehabilitation, the device is tested on five healthy subjects. 
None of them were reported to encounter a serious problem 

Table 1. The results of the passive mode technical test. 
Robot angle (degrees) Real angle measured by 

SolidWorks(degrees) 
0- degree (home position) 99.24 

0-5 106 
5-10 110.01 

10-15 113.14 
15-20 115.23 
20-25 119.51 
25-30 124.97 
30-35 129.33 
35-40 132.39 
40-45 135 
45-50 140 
50-55 145 
55-60 149 
60-65 154.57 
65-70 159.93 
70-75 165.80 
75-80 169.20 
80-85 174.13 
85-90 178.90 
90-95 185.90 

95-100 190.67 
100-105 196.20 
105-110 202.80 
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Figure 11. The results of the active test. (a) The output of the external load cell and (b) The force corresponding to the internal load cell output. 

Figure 12. (a) The hardware setup for the clinical test. (b) the patient’s hand in the home position. and (c) the hand in the stretching position. 

while exercising with the device. Afterward, the test is 
conducted on 10 post-stroke patients, within the age range of 
21-70, and with left-side affected. Figure 12 shows the setup 
and the patient exercising with the device.  

The purpose of this test is to evaluate the effectiveness 
and usability of the device for the patients and therapists. In 
Table 2, the specifications of the recruited patients in this 
experiment have been shown. All participants were informed 
consent to the experiment that was approved by the Research 
Ethics Board of Tehran University of Medical Science 
(IR.TUMS.REC.1394.1505).  

Testing the device on the patients shows that the most 
used movement mode is the passive mode. Only one patient 
could do the exercise in active-assisted mode. 7 of 10 
patients could do the exercises well without any problem. 
The duration of training was adjusted with respect to the 
strength and ability of patients. One of the three patients, who 
could not practice with the device, had wrist pain in the home 
position due to wrist stiffness. Therefore, a higher starting 
position was set for him. In the other two patients, the finger 
cover structure and the hand were not connected well and the 
hand came out of the cover while moving. It was concluded 
from the clinical test that Hand-Robo-Hab can increase the 
motivation of patients in the treatment process because some of 
them were passionate to work with the device more than once. 

5. Discussion
Neurological diseases such as CVA, can diminish the hand’s 
performance. In this regard, various types of devices have 
been developed to restore hand functions [11,31,32]. In this 
article, we presented the design and fabrication of Hand-
Robo-Hab, a therapeutic device, to exert physiotherapy 
movements on the wrist and fingers. The design is based on 
clinical observations, through which the needs of therapists 
and patients are extracted. Accordingly, the most important 
need for therapists is eliminating repetitive and tedious 
movements, and for the patient’s pivotal movements to 

reduce spasticity. In this regard, according to the information 
in [33,34], the average length and thickness of fingers are 
obtained and the Hand-Robo-Hab is designed, fabricated, 
and evaluated by conducting some technical and clinical 
tests. 

One of the most important features of this robot is its 
simple structure where only one actuator is employed for 4 
DOF provided by the robot, which is rarely seen among 
similar models. Compared to the [35,36] that use Pneumatic 
Artificial Muscle (PAM), the components of this robot are 
designed to be very simple and efficient. 

Besides, the robot’s light weight makes it portable. The 
device is composed of a hand cover that can hold four 
fingers of different sizes and thicknesses. Another 
prominent feature of the proposed robot is its usability for 
both right and left hands, which is accomplished for the 
first time. Consequently, this device can be used for a wide 
range of patients regardless of the damaged side of the 
brain. Additionally, by using a force-constant spring, 
different spasticity among the four fingers and also among 
the different subjects can be compensated.  

A wide range of therapeutic robots have been designed 
solely for finger physiotherapy [20–22] and some of them 
can be used just for the wrist [29,37,38]. Since 
simultaneous functions of the wrist and fingers along with 
restoring appropriate their range of motion is important for 
achieving hand dexterity and satisfied healing, both wrist 
and fingers are considered as the target for the proposed 
robot.  

Another option that distinguishes this device from the 
other models is its software and control strategy. Most of 
the devices are Continuous Passive Motion (CPM), such as 
[39,40], and can exert only passive motions. In the 
presented prototype, four mechano-therapy movements 
would be created. Consequently, the Hand-Robo-Hab can 
be used not only for post-stroke patients but also for any 
neurological deficit. 
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Table 2. The specifications of the participants (patients). 

Subjects Sex Modes of movement 
therapy Duration and number of uses Result 

Subject 1 Female Passive 2 minutes- 1 time Done 
Subject 2 Female Passive 3 minutes- 1 time Done 
Subject 3 Female Passive 6 minutes- 2 times Done 
Subject 4 Male Passive-active assisted 5 minutes- 2 times Done 
Subject 5 Male Passive 5 minutes- 2 times Done 
Subject 6 Female Passive 5 minutes- 2 times Done 
Subject 7 Male Passive 5 minutes Done 

Subject 8 Male Passive Less than 1 minute Not completed, due to the wrist 
stiffness and pain 

Subject 9 Male Passive Less than 1 minute Not completed 
Subject 10 Female Passive Less than 1 minute Not completed 

To investigate the device’s ability to cover an acceptable 
wrist range of motion, the passive mode test, is done as 
explained in the section. It can be seen from Table 2 that the 
device can rehabilitate the wrist in the range of 99 to 203 
degrees. In the active mode test, the robot weight 
compensation ability is approved. By comparing the two 
graphs shown in Figure 11, it can be observed that the force 
corresponding to the internal load cell output follows the 
force calibration diagram. The finger forces shown in Figure 
11(a) add the disturbance-shaped signals to the force 
resulting from the weight signal, Figure 11(b). Since the 
main load cell measures both the user force and robot weight 
at each angle, it can be inferred that the weight is not borne 
by the user and is compensated by the motor. 
      For the clinical test, the device is tested on both healthy 
and post-stroke patients. The results show the usability and 
effectiveness of the device for both patients and therapists. 

6. Conclusion
In this paper, a desktop robotic system is introduced with 4-
DOFs, which are actuated by only one actuator, with the aim 
of rehabilitation of the wrist and four fingers. The system 
design satisfies the requirements of all physiotherapy 
movements: passive, active-assisted, active, and active 
resisted. This device is designed and fabricated based on 
patients’ and therapists’ needs. Besides, some important 
items such as velocity, time, and force are precisely 
controlled. All of these specifications bring great potential 
for its further clinical applications. 

The tests on healthy subjects and patients show that this 
device can be a good alternative to conventional therapies 
and is widely used in rehabilitation centers, due to the 
satisfaction of patients and physiotherapists. The patients 
show great motivation in utilizing this device and 
physiotherapists are satisfied when working with the device. 

To show the effects of the robot on the disease process 
and the rate of improvement in patients, more extensive 
clinical tests will be performed and the results of exercises 
with this robot can be seen in stroke patients.  
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