
1 

 

Design and Development of a Robotic System for Hand’s Wrist-Fingers Rehabilitation 

Fatemeh Mohandesi
1
, Alireza Mirbagheri

2,3,*
, Hamid Khabiri

2
, Mohamad M. Mirbagheri

2,4
, 

Noureddin N. Ansari
5,6

, Maryam Norouzi
7
, Rouzbeh Kazemi, M.D

8
, Mehrnaz Aghanouri

2  

1: Department of Computer and Biomedical Engineering, Ahar Branch, Islamic Azad University, 

Ahar, Iran. 

2: Department of Medical Physics and Biomedical Engineering, Medical School, Tehran 

University of Medical Science, Tehran, Iran. 

3: Research Centre for Biomedical Technologies and Robotics (RCBTR), Advanced Medical 

Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, 

Tehran, Iran.   

4: Department of Physical Medicine and Rehabilitation, Northwestern University, USA. 

5: Research Center for War-Affected People, Tehran University of Medical Science, Tehran, 

Iran. 

6: Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical 

Science, Tehran, Iran. 

7: Research Assistant, Electrical Engineering Department, University of Rhode Island, USA. 

8: Technical Director of Tabassom Stroke Rehabilitation center. 

 * Corresponding author: Alireza Mirbagheri is with the Department of Medical Physics and 

Biomedical Engineering, School of Medicine and joint affiliated with Research Center for 

Biomedical Technologies and Robotics (RCBTR), Advanced Medical Technologies and 

Equipment Institute (AMTEI), Tehran University of Medical Sciences (TUMS), Number21, 

Daneshgah St. Vali-E-Asr Ave., Tehran, Iran.  (Phone: 0098-21-64053245; Mobile:; fax: 0098-

21-66482654; e-mail: a-mirbagheri@tums.ac.ir).  

 

 

 

 

 

mailto:a-mirbagheri@tums.ac.ir


2 

 

Abstract 

Hand impairment, followed by stroke, causes significant deficits in performing different 

activities. Restoration of hand functions requires regular and repetitive therapy exercises. 

Although robotically physiotherapy systems have shown great promise in hand functions’ 

improvements, they are not widely and effectively used, as the needs and expectations of patients 

and physiotherapists have been ignored. In this paper, a 4-Degrees of freedom desktop-mounted 

robot is developed for four fingers and wrist rehabilitation, based on clinical observations. 

HandRoboHab provides the four mechanotherapy prevalent movements as follows: active, 

passive, active-assisted, and active resisted. In this study, the design and development of the 

robot are described. Then the efficiency and usability of the device are evaluated through two 

technical tests, and a preliminary clinical trial. The results of technical tests showed that 

HandRoboHab was able to cover the wrist range of motion of 99 to 203 degrees. Besides, the 

proposed device was capable of compensating its weight, which is a necessary step to 

accomplish the active modes exercises. In addition, clinical trial results showed that 

HandRoboHab was both operative and comfortable for patients with different hand sizes.  

Keywords: robotically physiotherapy, stroke, hand, clinical trials, technical tests 

 1- Introduction 

Different neurological consequences such as motor sensory, cognitive, language, and emotional 

disorders are followed by stroke, which is the second cause of death worldwide. Although the 

mortality rate due to stroke has been decreased, it is still the main cause of long-term disability. 

Post-stroke survivors suffer from exacerbation of hand functions as the human hand is one of the 

most complex limbs in terms of functionality and degrees of freedom [1–3].   

The Stroke Alliance for European has declared that every 20 seconds a new stroke case occurs in 

adults. It has been predicted that the number of affected people by stroke will increase by 35% to 

12 million in 2040 [4]. In the United States, about 800,000 subjects face stroke annually, among 

which 90% of the survivors are left with disability and 65% of them are not able to cooperate 

with their impaired hands in the different tasks even 6 months after stroke [5]. Furthermore, the 

exorbitant cost of rehabilitation plans and transportation, along with the lack of dexterity and 

strength of therapists have made the conventional methods difficult. The other drawback of  
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conventional methods is time-consuming along with tediousness for both patients and therapists. 

Finally, quantitative and accurate data of the hands’ performance improvements cannot be 

obtained [6]. 

Throughout the previous decade, Robot-Assisted Training (RAT), has been utilized to improve 

motor deficiencies in post-stroke survivors. In this regard, different models have been created. 

One of the most common groups of these devices is Exoskeletons, such as M3ROB which is a 

robotic platform for wrist and hand [7], a lightweight exoskeleton based on hand kinematic 

model [1], an exoskeleton for wrist-finger [8], a three-degrees of freedom exoskeleton [9], an 

exoskeleton for the thumb, index, middle and ring fingers [10], FlexoHand [11], a passive 

exoskeleton for wrist and forearm [12], a wrist exoskeleton [13], HandMate [14], a cable-driven 

exoskeleton [15], and a hand exoskeleton with series elastic actuation [16]. A wide range of 

these devices has been created just for fingers such as a finger exoskeleton [17], a linkage finger 

exoskeleton [18], a magnetic-force-based for paralyzed fingers [19], a portable hand 

rehabilitation finger [20] and a finger extensor [21]. Another group in this field refers to soft 

robotic devices which are often glove-shaped, such as SEG ( Soft Exoskeleton Glove) [22], hand 

re-extensor with steel ribbons [5], mirroring glove [23], a soft rehabilitation robot which holds 

continuous passive motion mode [24] and a wearable exoskeleton glove [25]. The last introduced 

category refers to desktop-mounted models such as parallel robotic system [26], an end-effector 

bilateral rehabilitation system [27], end-effector type desktop robot [28], wrist-forearm desktop 

robot [29], and CUBE, a cable-driven parallel structured robot desktop [30].   

Although there are a great number and variety of hand physiotherapy robots, only a few of them 

have been widely and effectively used. In other words, robot-assisted physiotherapy, which has 

shown great promise in hand-function improvements, has not yet replaced conventional 

physiotherapy. This problem has some reasons: first, the complexity of the robot configuration 

makes it unusable. Second, the needs of physiotherapists and patients have been ignored. This 

negligence would lead to creating a device with less effectiveness on the patients, and also not 

being very practical for the physiotherapists.  

To meet these challenges, a desktop-mounted physiotherapy system, “HandRoboHab”, is 

proposed in this paper. This device is introduced with a simple mechanical structure and can be 
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used for the wrist and four fingers. To satisfy both physiotherapists’ and patients' needs, the 

design is based on clinical observations. The main novel features of the robot are summarized as: 

 1- This device is usable for both right and left hands. 

 2- The 4 degrees of freedom are created by using just one actuator.  

3- This device is provided with four mechano-therapy movements which are the fundamental 

treatments in physiotherapy. 

 4- The proposed device can be used for the deformed hand, either. Therefore, it will be utilizable 

for a vast range of patients. To prove the robot’s features, technical and clinical tests are 

conducted. 

The rest of the paper is comprised of six sections. In section 2, the methodology including the 

mechanical structures and electrical components, is explained. The control strategy for four 

mechano-therapy modes is described in section 3. In section 4, the results of technical and 

clinical tests are described. The discussion and conclusion are stated in sections 5 and 6, 

respectively. 

2. Methodology 

2.1. Clinical Observations and design requirements 

In the first phase, physiotherapy observations and movement analyses were done to identify 

impairments of the affected hand. Afterward, the appropriate movement therapy was selected to 

target these impairments. The results showed that hand spasticity was the main problem of stroke 

survivors. Spasticity keeps the wrists and fingers in flexion position; therefore, the therapist has 

to re-extend them regularly during each exercise which may interrupt the current task. This 

intermittent job is shown in Figure 1.   

Due to the spasticity differences among the individual’s fingers, hand re-opening is a tedious 

task for physiotherapists. To address this impairment using the proposed robotic system, exerting 

flexion-extension movements on the four fingers and wrist were chosen. Furthermore, stretching 

the flexor muscles in the forearm has a great impact on spasticity reduction. Thus, this movement 

is also considered as one of the aims of the proposed device. These selected movements will be 
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achieved in all fundamental physiotherapy modes: passive, active-assisted, active and active-

resisted.  

 

2.2. Mechanical and electrical structure 

The functional requirements, resulted from the previous phase, lead to the construction of the 

device with 1-active and 3-passive degrees of freedom to exert selected movements on the 

fingers-wrist. In this regard, the proposed device is composed of three main parts: 1-an 

adjustable finger cover and its side shafts, 2-a linear guide and 3-the driving unit. 

 1- Finger cover 

The finger cover consists of two separated up-down segments called digit supporters, in which 

two phalanxes of the four fingers can be placed. The digit supporters are adjustable in length and 

thickness to fulfill the biomechanical compatibility with different fingers’ sizes. On the other 

hand, the digit supporters can be used for both left and right hands. This will be achieved by 

rotating the finger cover structure 180 degrees. Two shafts are screwed at both sides of the finger 

cover. The hand cover, digit supporters, and the side shafts are shown in Figure 2.  

The shafts are inserted in articulated bearings, which are connected to the linear guide wagon set 

via a connecting piece. The articulate bearing allows rotation of the shafts around the endpoint of 

the shaft, which is perpendicular to the palm.  

2- Linear Guide 

Two linear guides and wagons are connected to the digit supporter's side shafts, which can 

provide both linear and rotational movements of the fingers.  

This mechanism would create three passive degrees of freedom: a translational movement of 

finger cover along the linear guide, the rotation of shafts around their longitudinal axis, and a 

rotation around the vertical axis. 

3- Driving unit 
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The driving unit is comprised of a DC motor( Maxon, 118755,Switzarland) a position controller 

(Maxon, Encoder MR type ML), a power supply(QUINT-PS/10-2866763), and an amplifier 

(Dynamic strain Amplifier, DN-AM100 DACELL, South Korea). 

The DC motor provides an active degree of freedom which is a rotation of the mechanical arm 

around the sagittal axis. The overall degrees of freedom created by the device and the 

displacement of fingers and forearms are depicted in Figure 3.  

Furthermore, the robot is equipped with a force sensor, (Loadcell Zemic 1-S-B, Netherlands) to 

control the robot. To counteract the spasticity differences in the fingers, a constant force spring is 

used on both linear guides, which pulls the finger cover to fit the palm size.  

To keep the patient in an ergonomic position, a specific design is made on the forearm part of the 

device, in which the forearm can be placed at an angle of 30 degrees to the horizon. This angle is 

determined based on clinical observations. For safety considerations, an emergency stop and an 

emergency button are utilized which can be used by the therapist and the patient, respectively. 

Based on the findings, some designs were depicted in SolidWorks 2015 (Dassult-Systems, 

France, 1995). Then the best prototype was selected and manufactured. The hardware platform is 

shown in Figure 4. 

3.Control strategy 

The control system was developed in such a way that the robot exerted the movements in all four 

mechanotherapy movements: passive, active-assisted, active and active-resisted. To make the 

controller user-friendly, the Graphical User Interface (GUI) was created by C# in the visual 

studio program, (Microsoft Cooperation, Washington, United States). In the Figure 5, the 

graphical user interface, for the proposed device is shown.  

At the beginning of each exercise, the robot should be homed to make sure it would start moving 

from a pre-defined position, Figure 6-a shows the home position of the robot arm. Since, in the 

active modes the patient would displace the robot arm by his strength, the weight of the robot 

arm must be compensated and not imposed on the patient’s hand. On the other hand, the angle of 

the robot arm would change while moving, which is illustrated in Figure 6-b, therefore the 

portion of robot arm weight which would be sustained by the hand, changes constantly. A 

calibration stage was done to determine the weight of the robot arm at any angle. The aim of this 
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calibration is to find the relation between the force corresponding to the robot’s weight torque 

and its position (the robot angle). 

 

The calibration stage and control algorithm for each mode is explained in the following sub-

sections. Figure 7 shows the procedure for utilizing the device.  

3.1. Calibration 

For the calibration, the robot moved in a quasi-static mode, at a very slow speed without carrying 

the user’s hand. In such condition, the load cell would measure the torque resulting from the pure 

weight of the robot in any direction. The robot angles were also recorded using the encoder. By 

dividing the measured torque by the torque arm, the obtained force corresponding to each robot 

position is plotted in Figure 8. To extract the relation, the curve fitting tool of MATLAB was 

used and the equation 1 was obtained. 

𝐹𝑤𝑡 = 22.64 sin((0.020 × 𝐴𝑛𝑔𝑙𝑒) + 1.701                (1) 

 

3.2. Passive mode 

 In this mode, the motor moves the robot arm with a constant velocity specified by the user, until 

the current position is the same as the final position. Figure 9 illustrates all the control 

algorithms. After that, the direction of the motor rotation is reversed and the robot arm comes 

back to its home position. To stretch the flexor muscles in the forearm, the robot arm can be 

stopped in the maximum position, by means of setting the stopped time. For more safety, a Max. 

Force option is suggested which if set, the robot would stop immediately when it reaches the 

force set value. The robot's range of motion can be adjusted by the min. pos. and max. pos. 

options on the GUI. 

3.3. Active mode 

 To perform the active mode, the device calibration data is used to compensate the robot’s 

weight. The motor moves with a velocity commensurate with the weight obtained from the 

calibration based on the current angle. As the user changes the robot’s position by applying a 
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force, its weight changes. The new weight is read using the calibration formula and the new 

motor velocity is calculated. 

3.4. Active-Assisted mode 

In this mode, the difference between the force shown by the load cell (𝐹𝐿), and the robot’s weight 

corresponding to the current position is calculated, (𝐹𝑢). FL is the summation of the robot weight 

(FW) and the user’s force. According to this difference, the motor moves with a velocity 

proportional to 𝐹𝑊, or it moves with a velocity proportional to 𝐹𝑢. 

 3.5. Active-Resisted mode 

 To run this mode, the motor produces the torque, opposite to the hand movement direction with 

the help of the current control mode. The value of the motor velocity is proportional to 𝐹𝑢. 

4. Clinical and technical tests 

4.1. Technical tests 

Passive mode test: A technical test is performed on the passive mode to check the capability of 

the device in covering a standard wrist range of motion. To this end, a healthy subject trained 

with the robot in passive mode and the wrist range of motion is calculated. The angle of the robot 

changes from 0 to 110 degrees, set in the GUI, with an increment of 5˚. At each angle, the real 

angle of the wrist is measured. Table 1 shows the results of the passive mode test.  

Active mode test: Another technical test is performed to check the capability of the robot in 

compensating its weight while performing in the active mode. To perform this test, another load 

cell (1-B-S-50Kg.0.2B, Zemic, Netherlands) is attached to the connector piece. This new setup is 

shown in Figure 10. 

 By applying a finger force on this loadcell and moving the robot arm, periodically, two series of 

data are collected: the force monitored by the external loadcell and the torque measured by the 

internal loadcell. The force which is sensed by the internal sensor would be calculated by 

dividing the internal load cell output by the torque arm. Figure 11 shows these two forces. 

4.2. Clinical tests 
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To find any possible problem that may occur during the rehabilitation, the device is tested on 

five healthy subjects. None of them were reported to encounter a serious problem while 

exercising with the device. Afterward, the test is conducted on 10 post-stroke patients, within the 

age range of 21-70, and with left-side affected. Figure 12 shows the setup and the patient 

exercising with the device.  

The purpose of this test is to evaluate the effectiveness and usability of the device for the patients 

and therapists. In Table 2, the specifications of the recruited patients in this experiment have 

been shown. All participants were informed consent to the experiment that was approved by the 

Research Ethics Board of Tehran University of Medical Science (IR.TUMS.REC.1394.1505). 

Testing the device on the patients shows that the most used movement mode is the passive mode. 

Only one patient could do the exercise in active-assisted mode. 7 of 10 patients could do the 

exercises well without any problem. The duration of training was adjusted with respect to the 

strength and ability of patients. One of the three patients, who could not practice with the device, 

had wrist pain in the home position due to wrist stiffness. Therefore, a higher starting position 

was set for him. In the other two patients, the finger cover structure and the hand were not 

connected well and the hand came out of the cover while moving. It was concluded from the 

clinical test that HandRoboHab can increase the motivation of patients in the treatment process 

because some of them were passionate to work with the device more than once.  

5. Discussion 
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Neurological diseases such as CVA, can diminish the hand’s performance. In this regard, various 

types of devices have been developed to restore hand functions [11,31,32]. In this article, we 

presented the design and fabrication of HandRoboHab, a therapeutic device, to exert 

physiotherapy movements on the wrist and fingers. The design is based on clinical observations, 

through which the needs of therapists and patients are extracted. Accordingly, the most important 

need for therapists is eliminating repetitive and tedious movements, and for the patients pivotal 

movements to reduce spasticity. In this regard, according to the information in [33,34], the 

average length and thickness of fingers are obtained and the HandRoboHab is designed, 

fabricated, and evaluated by conducting some technical and clinical tests. 

One of the most important features of this robot is its simple structure where only one actuator is 

employed for 4 degrees of freedom provided by the robot, which is rarely seen among similar 

models. Compared to the [35] and [36] that use PAM(pneumatic artificial muscle), the 

components of this robot are designed to be very simple and efficient. 

Besides, the robot’s light weight makes it portable. The device is composed of a hand cover that 

can hold four fingers of different sizes and thicknesses. Another prominent feature of the 

proposed robot is its usability for both right and left hands, which is accomplished for the first 

time. Consequently, this device can be used for a wide range of patients regardless of the 

damaged side of the brain. Additionally, by using a force-constant spring, different spasticity 

among the four fingers and also among the different subjects can be compensated.   

A wide range of therapeutic robots have been designed solely for finger physiotherapy [20–22] 

and some of them can be used just for the wrist [29,37,38]. Since simultaneous functions of the 

wrist and fingers along with restoring appropriate their range of motion is important for 

achieving hand dexterity and satisfied healing, both wrist and fingers are considered as the target 

for the proposed robot.  

Another option that distinguishes this device from the other models is its software and control 

strategy. Most of the devices are CPM( Continous Passive Motion), such as [39] ,[40] , and can 

exert only passive motions. In the presented prototype, four mechano-therapy movements would 

be created. Consequently, the HandRoboHab can be used not only for post-stroke patients but 

also for any neurological deficit. 
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To investigate the device’s ability to cover an acceptable wrist range of motion, the passive mode 

test, is done as explained in the section. It can be seen from Table 3 that the device can 

rehabilitate the wrist in the range of 99 to 203 degrees. In the active mode test, the robot weight 

compensation ability is approved. By comparing the two graphs shown in Figure 11, it can be 

observed that the force corresponding to the internal load cell output follows the force calibration 

diagram. The finger forces shown in Figure 11-a add the disturbance-shaped signals to the force 

rsulting from the weight signal, Figure 11-b. Since the main load cell measures both the user 

force and robot weight at each angle, it can be inferred that the weight is not borne by the user 

and is compensated by the motor.  

For the clinical test, the device is tested on both healthy and post-stroke patients. The results 

show the usability and effectiveness of the device for both patients and therapists.  

6.Conclusion 

In this paper, a desktop robotic system is introduced with 4-DOFs, which are actuated by only 

one actuator, with the aim of rehabilitation of the wrist and four fingers. The system design 

satisfies the requirements of all physiotherapy movements: passive, active-assisted, active, and 

active resisted. This device is designed and fabricated based on patients’ and therapists’ needs. 

Besides, some important items such as velocity, time, and force are precisely controlled. All of 

these specifications bring great potential for its further clinical applications.  

The tests on healthy subjects and patients show that this device can be a good alternative to 

conventional therapies and is widely used in rehabilitation centers, due to the satisfaction of 

patients and physiotherapists. The patients show great motivation in utilizing this device and 

physiotherapists are satisfied when working with the device.  

To show the effects of the robot on the disease process and the rate of improvement in patients, 

more extensive clinical tests will be performed and the results of exercises with this robot can be 

seen in stroke patients.  
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Figure 1. Spasticity compensation and forearm traction exercises 

Figure 2. (a).The CAD model of digit supporters and the side shafts. (b). real model of the finger 

cover. (c). the real model of side shaft 

Figure 3.  a:(1). the finger cover. (2). the forearm placement. b: (3). active degree of freedom 

created by the DC motor. (4). linear movement of finger cover.  (5). rotation around the 

vertical axis (Yaw).  (6). rotation of finger cover around the latitudinal axis (Pitch). 

Figure 4.  The robot platform, a: 1. Encoder 2. DC motor 3. Reduction gearbox 4. coupling 

mechanism 5. Ball bearing, 6. loadcell 7. mechanical structures 8. power supply. 9. 

Position controller 10. Amplifier b: 11. Emergency stop 12. Linear Guide 13. An 

emergency stop button 14. Handset 

Figure 5. The GUI of the device 

Figure 6.  (a): home position, (b):the angles of the robot at which its weights are measured 

Figure 7. The procedure for utilizing the device 

Figure 8. The force corresponding to the weight torque at each angle 

Figure 9. The control diagram of the robot, mode1: passive, mode2: active, mode3: active-

assisted, mode4: active-resisted 

Figure 10. a: the whole setup for the active technical test. b: the closed view of the new sensor 

attachment. c- the external sensor 

Figure 11. The results of the active test. (a): the output of the external load cell. (b): the force 

corresponding to the internal load cell output 

Figure 12. a: The hardware setup for the clinical test. b: the patient’s hand in the home position. 

c- the hand in the stretching position 

Table1. The results of the passive mode technical test 

Table2. The specifications of the participants (patients) 
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Table.1 

Robot Angle (degrees) Real angle measured by SolidWorks(degrees) 

0- degree (home position) 99.24  

0-5  106 

5-10 110.01 

10-15  113.14 

15-20  115.23 

20-25  119.51 

25-30  124.97 

30-35  129.33 

35-40  132.39 

40-45  135 

45-50  140 

50-55  145 

55-60  149 

60-65  154.57 

65-70  159.93 

70-75  165.80 

75-80  169.20 

80-85  174.13 

85-90  178.90 

90-95  185.90 

95-100  190.67 

100-105  196.20 

105-110  202.80 

 

Table.2 

subjects sex 
Modes of 

movement therapy 

Duration and 

number of uses 
result 

Subject1 female passive 2 minutes- 1 time Done 

Subject2 female passive 3 minutes- 1 time Done 

Subject3 female passive 6 minutes- 2 times Done 

Subject4 male 
Passive- Active 

assisted 
5 minutes- 2 times Done 

Subject5 male passive 5 minutes- 2 times Done 

Subject6 female passive 5 minutes- 2 times Done 

Subject7 male passive 5 minutes Done 

Subject8 male passive Less than 1 minute 
Not completed, due to the wrist 

stiffness and pain 

Subject9 male passive Less than 1 minute Not completed 

Subject10 female passive Less than 1 minute Not completed 
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