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Abstract 

The innovative aspect of this work is to understand how the intricate interplay between bio-

convection, heat transfer, and other behaviours of nanoparticles in a porous zone is affected by 

Prandtl nanofluid flow across an inclined stretched sheet. The stated equations are transformed into 

dimensionless form using appropriate similarity transformations, and the resultant set of equations is 

then numerically solved using MATLAB bvp4c. The acquired results are additionally verified against 

existing data. The incorporation of special parameters, including the Forchheimer drag ( )rF , bio-

convection Rayleigh number ( )bR , density ratio of motile microorganism ( ) , stretching parameter 

( ) , Prandtl fluid parameter ( ) , and elastic parameter ( ) , adds novelty and complexity to the 

analysis. The density ratio of motile microorganism plays a crucial role in determining the impact of 

microorganisms on bio-convection. Depending on whether this parameter is higher or lower than the 

surrounding fluid, the behaviour of velocity can vary, leading to different fluid flow patterns and 

dynamics within the system. The higher concentration causes the density of mobile microorganisms 

to increase, which has a stronger effect on the dynamics of bio-convection. The motile 

microorganisms considerably contribute to convective heat transmission, and the bacteria's density is 

extremely excessive compared to the fluid around them. 

Keywords: Prandtl fluid, bio-convection Rayleigh number, Forchheimer drag, density ratio, 

stretching parameter, and elastic parameter. 

 

1. Introduction –  

Bio-convection, the collective motion of microorganisms induced by gradients in their 

surrounding fluid medium, has been a subject of significant exploration interest owing to its vital role 

in several natural processes, such as nutrient transport, ecological dynamics, and harmful algal 

blooms. Moreover, bio-convection has attracted attention for its potential applications in 

biotechnology, bioengineering, and wastewater treatment. This literature intends to provide an 

overview of the existing studies on the behaviour of microorganisms in bio-convection over a Prandtl-
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nanofluid flowing into an inclined, stretched flat surface in a non-Darcy background.  By examining 

the current state of research in this field, this review aims to identify knowledge gaps and potential 

avenues for further investigation. 

The inclusion of nanofluids in bio-convection studies introduces additional complexities due 

to the presence of nanoparticles. Prandtl-nanofluids, characterised by enhanced thermal properties, 

have gained prominence in recent years. The Forchheimer drag term captures the additional drag 

forces arising from non-Darcy flow. Several studies have inspected the outcome of the Forchheimer 

drag on flow patterns and bio-convection performance. For instance, researchers have investigated the 

impact of different drag coefficients on the motion and distribution of microorganisms in the fluid. 

Several studies have investigated the impact of the Forchheimer drag on microorganisms in bio-

convection with different parameters and conduits. For instance, Li et al. [1] examined the effects of 

the Forchheimer drag coefficient on the stability and patterns of bio-convection. They detected an 

upsurge in the drag coefficient directed towards enhanced mixing and a more uniform distribution of 

microorganisms. A numerical investigation on mixed bioconvection in porous media saturated with 

nanofluid, including oxytactic microorganisms, was carried out by Bég et al. [2]. They looked at how 

different parameters affected the flow and heat transmission properties, highlighting the significance 

of microbial behaviour in porous media filled with nanofluid. In a computer examination of 

bioconvection in Prandtl nanofluid Darcy-Forchheimer flow across different conduits, Waqas et al. 

[3], Ahmad et al. [4], and Wang et al. [5] presented their findings. They investigated how inclination 

affected the bioconvection process, which has repercussions for a number of engineering applications. 

Yaseen et al.'s [6] investigation of the Cattaneo-Christov heat flux model in the MoS2-SiO2/kerosene 

oil Darcy-Forchheimer radiative flow.  

The microorganisms may cause flow instabilities that result in the formation of bioconvection 

cells, which are patterns and structures. The microorganisms can move around and disperse 

throughout the fluid thanks to the stretched sheet's dynamic environment. The features of the system's 

heat and mass transmission can be considerably impacted by this interaction between the 

microorganisms and the flow. A numerical analysis of the movement of gyrotactic microorganisms in 

nanofluids via a porous medium over a stretched surface was done by Shahid et al. [7], Alharbi et al. 

[8], and Waqas et al.'s [9]. They investigated the behaviour of the random motion of microorganisms 

via bio-convection in nanofluids and develop some significant findings and resolve then numerically. 

Khan et al. [10] examined the combined effects of bioconvection and velocity slip in the 

three-dimensional flow of the Eyring-Powell nanofluid with Arrhenius activation energy and binary 

chemical reactions, this work leads to the incorporation of the study of chemical reaction by 

microorganisms in bio-fluid which is quite significant they mentioned. Muhammad et al.'s [11] 

investigation of the bioconvection flow of magnetised Carreau nanofluid under the influence of slip 
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over a wedge with motile microorganisms; they were stretched the study on the impact of slip flow 

under the action Lorentz force in bio-fluid and resolve the model by numerical scheme.  

Majeed et al. [12] examined thermal radiation in a flow of magneto-hydrodynamic motile 

gyrotactic microorganisms that included minute nanoparticles moving at a slipping velocity towards a 

nonlinear surface, they claimed their work is novel under the applications of slipping velocity of the 

nanoparticles in bio-fluid and also it has feasibility due to the movement of microorganisms. The 

computational modelling of bioconvection and heat transfer studies of Prandtl nanofluid in an inclined 

stretched sheet was presented by Das and Ahmed [13] using a finite difference approach. The study 

[13] asserts that microorganisms can move thermophoretically in response to temperature gradients, 

but the density ratio can influence this motion. A computational solution for chemically reactive and 

thermally radiative MHD Prandtl nanofluid over a curved surface with convective boundary 

conditions was presented by Rasheed et al. [14]. Babu and Sandeep [15] looked into how nonlinear 

thermal radiation affected the flow of a magnetic nanofluid across a stretching sheet when it reached a 

non-aligned bio-convective stagnation point. In a water-based nanofluid, Waqas et al.'s study [16] 

examined how heat radiation and convective circumstances affected bio-convection. The bio-

convection flow of a Casson nanofluid caused by a revolving and stretched disc was studied by 

Siddiqui et al. [17], while Wang et al. [18] explored a numerical modelling of a hybrid Casson 

nanofluid flow taking into account the impact of a magnetic dipole and gyrotactic microorganism. 

The findings contribute to a better understanding of the complex behaviour of nanofluids with 

magnetic and biological influences. Wang et al.'s study [19] concentrated on the MHD Williamson 

nanofluid flow through a thin elastic sheet with an erratic thickness. Additionally, Wang et al. [20] 

used the modified Mittag-Leffler kernel of Prabhakar's kind to analyse the time-dependent thermal 

transport flow of Casson nanofluids. In 2003, Shampine [21] presented the crucial numerical solution 

by utilizing the finite difference scheme to resolve the ODEs via the bvp4c MATLAB algorithm. 

The authors [22–28] purposefully brought attention to the examination of the characteristic's 

nanoparticles using hybrid-nanofluid and CNTS under specific boundary conditions for the relevant 

different surfaces with non-axisymmetric flow, and they discovered appropriate recommendations. 

The mathematical modelling of blood flow was investigated by the authors [29 – 31] via bio-

convection characteristics with suitable configurations. The shapes of various surfaces, like heated 

wavy-walled lid-driven enclosures, open-sided cubical enclosures, and heated flexible-walled cavities 

in a rotating cylinder, are crucial to investigating the motion of nanoparticles in different base fluids 

under the action of magnetic drag force, CNTs, and free convections that have been studied by the 

authors [32–34]. The authors [35 – 41] presented various flow models through the Darcy-Forchheimer 

model for ferromagnetic nanoparticles and bioconvection Casson nanofluid with gyrotactic 

microorganisms and activation energy aspects; they also analysed the behaviour of generalised 

Eyring-Powell liquid subject to Cattaneo–Christov double diffusion aspects for magnetised Carreau 
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and Maxwell viscoelastic nanofluids in different boundary conditions. Finally, the behaviour of power 

law fluids using a variety of numerical schemes in relation to the bioconvection flow of nanofluids of 

microorganisms inside a wavy wall of porous materials, an omega-shaped porous enclosure, or a lid-

driven cavity have also been presented by [42–46]. The idea of microorganisms has attracted a lot of 

attention from contemporary researchers [47–57] due to its application in commercial and industrial 

items, such as fertilisers, biofuel, and medicine delivery. Multi-physical factors and different 

geometries are taken into account in these investigations [47–57], and the results show that gyrotactic 

bacteria and nano-liquid consideration stabilise the adjourned nanoparticles. 

 

This inquiry is distinctive and novel in several ways. The originality of this study is to explore 

the behaviour of microorganisms in bio-convection over a Prandtl-nanofluid, which is a relatively 

new and emerging research area. Combining bio-convection with nanofluid flow introduces novel 

complexities and interactions between microorganisms and nanoparticles, affecting the overall fluid 

dynamics and heat transfer processes. The study considers an inclined, stretching flat surface in a non-

Darcy background, which is less explored in the context of bio-convection. The inclusion of the 

Forchheimer drag term allows for the investigation of deviations from Darcy flow, providing a more 

realistic representation of fluid flow in practical scenarios. The study incorporates special parameters, 

including the Forchheimer drag, bio-convection Rayleigh number, density ratio, stretching parameter, 

and elastic parameter, to analyse their effects on the bio-convection phenomenon. The study employs 

a comprehensive numerical analysis by solving the coupled nonlinear partial differential equations 

using a finite difference scheme. The study provides insights for optimising bio-convection-based 

systems and can guide the design and operation of such applications. The study expands the 

understanding of bio-convection phenomena and provides a foundation for further research in this 

exciting and evolving field. 

 

2. Mathematical Formulation –  

The study of how microorganisms move through bioconvection in Prandtl nanofluids 

provides the novel background for this investigation and provides an insight into new techniques for 

improving heat transfer and fluid mixing, with applications ranging from advanced cooling systems to 

more effective chemical processes. The interaction of microorganisms and nanoparticles in nanofluids 

is a fascinating confluence of biology, nanotechnology, and fluid dynamics, giving intriguing 

potential for scientific research and technological advancement.  

  Figure 1 depicts the flow configuration of the model, which simulates the flow of 

microorganism bio-convection in a Prandtl nanofluid over an inclined stretched surface with an 

inclination of 𝛾 and a stretching velocity of wu ax  along the x-axis. The surface normal to it is 
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subject to a magnetic drag force of strength 
0B . The thermal and molar species as well as the motile 

microorganisms at the wall are designated as 
0 1 0 2,f fT T a x C C a x    and 

0 3 ,fN N a x   

respectively.  

The Prandtl fluid equation is (Wang et al. [5]) 

0.5
2 2
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2 2

1
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*

u v
A

y yC

u v

y y





                   


     
    

      

                                       (1) 

where, the material constants for the Prandtl fluid are A  and C .  

The vectorial equations for fluid flow are given by (Wang et al. [5] and Shahid et al. [7]): 

 

Continuity (mass conservation) equation: 

0q                                                                                                            (2) 

Momentum equation: 
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                            (3) 

Energy equation: 

 2 2 2 2( ) sinT
B

P P

D
q T T D C T T T B x u

C T C

 
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 

 
         

 
               (4) 

Oxygen conservation equation: 

2 2 ,T
B

D
q C D C T

T

                                                                                             (5) 

Conservation equation for microorganisms: 

0,NJ                                                                                                                  (6) 

where, q  is the velocity vector, J  is the electric current density in the fluid, B  is the magnetic field, 

NJ is the flux of gyrotactic micro-organisms. 
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The flux of microorganisms, NJ , is defined as 

2 ,N NJ N D N                                                                                   (7) 

where,  

0

c

f

dw C
N
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                                                                         (8) 

 2 2( ) sinJ B B x u                                                                           (9) 

 

The Eqs. (2) – (6) become with the aid of (7) – (9) in Cartesian coordinates: 

0
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                                                                                                            (10) 
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   (11) 
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                                                        (14) 

The formulated boundary conditions are (Wang et al. [5], Das et al. [13]): 

0 0 1
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0 1 0 2
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, , ,
0 :

, ,

0, , ,
:
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                       (15) 

Physical explanations of the boundary conditions (15) –  

The boundary conditions (15) describe the behaviour of a bio-convective nanofluid near a boundary 

 0y   and how it behaves as it moves towards the far field  0y  . The specific values of the 

constants occurred in Eq. (15) will determine the exact behaviour of the fluid, but this set of 
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conditions is often used in mathematical modelling and simulations for bio-convective nanofluid 

dynamics, heat, and mass transfer models. 

At y=0: 

Velocity  wu u ax  : The velocity component 𝑢, in the x-direction, is defined as a function of x 

and has two components: 

The term 
wu  represents the velocity at 0y  , scaled by a factor  and it suggests that the velocity 

near the wall is influenced by the wall's motion or properties. 

The term ax  represents an additional velocity component that varies linearly with x . This means that 

the velocity increases linearly away from the wall in the positive x-direction. 

Velocity  0v v : It indicates that there is no change in velocity in the x-direction, and it remains 

equal to 
0v  at all points along the 0y   boundary. 

Temperature  0 1fT T T a x   : The temperature T is constant at 0y  and the temperature 

increases linearly with x away from the wall.  

Concentration  0 1fC C C a x   : The concentration C is constant at 0y   and the concentration 

also increases linearly with x away from the wall. 

Number Density  0 3fN N N a x   : The number density N  is constant at 0y   and the 

number density increases linearly with x. 

At the free stream  y  : 

Velocity  0u  : The velocity becomes negligible, and the fluid comes to rest in the x−direction. 

Temperature  0 1T T T d x   : The temperature T increases without bound as y  and it 

continues to rise linearly with x in the free stream. 

Similar to temperature, the concentration C and the number density N also increases without bound 

as y  and they continue to increase linearly with x in the free stream. 

 

To alter the above system of equations, subsequent similarity transformations [Wang et al. [5] and 

Das and Ahmed [13]] are defined as:  
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here,   is the stream function. 

 

Using (16), the converted system of Eqs. are:  
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The converted boundary conditions are: 
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From the perspective of Eqs. (17) to (20), non-dimensional variables are 
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3. Physical quantities of interests: 

The features of a few physical quantities are defined in this section. The following list 

includes the density number of motile microorganisms, Nusselt number, Sherwood number, and 

coefficient of skin friction: 
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w w

y
y

N C
q D q D

y y

T A u A u
q

y x yC C
 

 




     
       

      
 

                         

                          (24) 

Here , ,n m wq q q  and 
w are the density of motile microorganisms’ flux, mass flux, heat flux and shear 

stress respectively. 

By using of (16) and (24), the Eq. (23) is converted to: 

 
1

2 (0) ,x xRe Nn 


                                                                     (25) 

 
1

2 (0) ,x xRe Sh 


                                                                       (26) 

 
1

2 (0) ,x xRe Nu 


                                                                      (27) 

1

32 (0) (0) ,
3

x fxRe C f f



 

    
 

                                               (28) 

1

2 ,w
x

U x
Re


 is the local Reynolds number. 

4. Solution Methodology –  

Using similarity variables, the simulated non-linear PDEs were transformed into a two-point 

boundary value problem. There is no closed-form analytical solution for the non-linear boundary 

value problem given by Eqs. (17) to (20) and boundary conditions given by Eq. (21), and so 

numerically solved the systems of ODEs using bvp4c via MATLAB algorithm by Shampine [21]. 

The behaviour of the solutions is precisely captured by this solver, which applies the finite difference 

approach that was widely analysed by Das and Ahmed [13] in conjunction with adaptive mesh 

refinement techniques. To utilize bvp4c, we need to specify the system of ODEs, the boundary 

conditions, and an initial guess for the solution. It then iteratively refines the solution by adjusting the 

mesh until the desired accuracy is achieved. For purposes of computation, a step length of 

0.0001  is used, and a relative tolerance of 
610
 is taken into account.  

The Eqs. (17 – 20) have to be transformed into the order-one ODE’s with help of the 

substitutions: 

1 2 3

4 5

6 7

8 9

, , ,

, ,

, ,

,

f y f y f y

y y

y y

y y

 

 

 

    
   
 

  
   

                                                                      (29) 
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Now, the transformed system of equations is: 

   

2

1 3 2 2

3 2 2
3 2 4 6 8

sin ( )1

(1 ) 1 cos( )

P

r r b

y y M y K y
y

y F y w y N y R y



  

    
            

                        (30) 

 

 2 2

5 4 1 5 4 7 5 2b ty Pr y y y N y y N y M Ec y                                                        (31) 

   2

7 2 6 1 7 4 1 5 4 7 5 ,t
b t

b

N
y Sc y y y y Pr y y y N y y N y

N
                                      (32) 

 

 

2 6 1 7

9 2 8 1 9 7 9 4 1 5

2

4 7 5

b b t

b b t

Sc y y y y

y L y y L y y Pe y y y y yN
Pr

N N y y N y



  
  

        
         

         (33) 

 

The Boundary conditions are: 

1 2 4 1

6 2 8 3

2 4 8

(0) , (0) , (0) 1 ,

(0) 1 , (0) 1 ,

( ) 0, ( ) 0, ( ) 0,

y S y y S

y S y S

y y y

    
 

    
       

                                                               (34) 

 

5. Validity and Stability Analysis –  

To demonstrate the validity of the present inquiry, a comparison of the velocity distribution 

has been conducted and found excellent agreement with the available results attained by Wang et al. 

[5] and Das and Ahmed [13]. Here, the numerical values for Table 1 are taken to be 0.5  , 

0.71,Pr  0.5M  , 
4


  , 1.5   , and the other parameters are assumed as zero.  

According to Table 2, it can inferred that taking 0.001h  and 0.0001h  ,  the solutions of 

velocity, temperature, concentration, and bio-convection’s density are stable and convergent, as the 

boundary conditions are also satisfied. That is from Table 1 and Table 2, it is concluded that our 

proposed model is validated and the chosen numerical scheme is stable and convergent. 

 

6. Results and Discussion –  

It has been discussed in this section how several significant parameters effect on ( )f  , 

( ),  ( )  and ( )  , taking the numerical values of the prime parameters as 0.5  , 0.71,Pr 

0.5,M 
4


  , 0.2  ,

4


  , 0.5bR  , 0.5 , 1.5rF  . 

In this study, the flow is more likely to remain laminar when taking into account lower 

nanoparticle concentrations, where the nanoparticles have a limited impact on fluid viscosity and flow 

behaviour. Several factors, including the concentration of nanoparticles, flow velocity, and the 

existence of the microorganisms driving the bioconvection, determine whether the flow of 
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bioconvection in a nanofluid maintains laminar or transitions to turbulent behaviour. Low 

nanoparticle concentrations and diluted nanofluids are more likely to have laminar flow than high 

concentrations or severe bioconvection effects. 

The novel physical variables of this study are summarized as –  

𝑷𝒓-nanofluid ( ): The Prandtl number nanofluid, also known as Pr-nanofluid or the Prandtl number 

nanofluid, is a particular kind of nanofluid with exceptional thermal and heat transmission 

characteristics. Its importance comes from its superiority over conventional fluids in terms of 

improving heat transfer in a variety of applications. 

Forchheimer drag (
rF ): It is known as Forchheimer inertial resistance, is the additional resistance 

that fluid flow experiences when it passes through a porous media, as a result of the presence of solid 

particles or barriers inside the medium. It is a non-Darcy flow effect and is often defined by a 

quadratic relationship between the velocity of the fluid and the pressure drop across the porous media. 

It comprises both viscous resistance (Darcy's law) and inertial resistance (Forchheimer's law).  

Bio-convection Rayleigh number ( bR ): In the study of biological convection, where fluid velocity 

is influenced by the presence of microorganisms, it is a dimensionless parameter that is used. It is 

referred to as the Grashof-Péclet product and is used to assess the relative importance of buoyancy 

forces brought on by density differences as well as the impacts of biological activity on fluid motion 

within a system. 

Density ratio of motile microorganism ( ): It characterizes the relative density of the 

microorganisms in relation to the density of the fluid in which they are suspended. By calculating the 

buoyant forces that these microorganisms exert on the fluid, this parameter is essential for 

comprehending how they affect fluid flow and buoyancy-driven phenomena, such bio-convection. 

 

Figures 2(a-d) depict the impact of   and bR on ( )f  , ( )  , ( )  and ( )  . When 

considering the bio-convection Rayleigh number (𝑅𝑏) and the density ratio of motile microorganism 

parameter ( ), the behaviour of velocity, temperature, concentration, and microorganism’s density 

can differ depending on the specific parameter values. When 5 , and the bio-convection Rayleigh 

number is high, it suggests that motile microorganisms’ density is relatively higher compared to the 

surrounding fluid. In this case, the motile microorganisms contribute significantly to the convective 

motion and fluid flow. As a result, the velocity is heightened, indicating a more vigorous and 

pronounced fluid motion due to the active movement and behaviour of the microorganisms. On the 

contrary, motile microorganisms have less influence on convective heat transfer. The enhanced 

temperature indicates that the convective heat transfer due to fluid motion dominates over the heat 

generated by the microorganisms. This can lead to an increase in temperature in the system. 
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Furthermore, the profiles of ( )  is elevated, which means that there is a higher concentration of 

microorganisms present in the system. The density of motile microorganisms rises due to the greater 

concentration, resulting in a more significant impact on the bio-convection dynamics. On the other 

hand, when 0.5 and the bio-convection Rayleigh number is high, it implies that the density of the 

motile microorganisms is relatively lower compared to the surrounding fluid. In this scenario, the 

motile microorganisms have less influence on the convective motion and fluid flow. Consequently, 

the velocity may exhibit an opposite behaviour, potentially showing a decrease or a different pattern 

of fluid motion compared to the case with a higher density ratio. In addition, microorganisms’ density 

is relatively extreme compared to the surrounding fluid, and the motile microorganisms contribute 

significantly to convective heat transfer. The opposite behaviour of temperature recommends that the 

heat generated by the microorganisms dominate over the convective heat transfer due to fluid motion. 

This can lead to a drop in temperature or a different pattern of temperature distribution compared to 

the case with a lower density ratio. Furthermore, the concentration of microorganisms in this system 

is reduced, resulting in a lower density of motile microorganisms. These observations endorse that 

influences the concentration and density of motile microorganisms within the bio-convection system. 

Depending on whether the density of the microorganisms is higher or lower than the surrounding 

fluid, the impact of the density and concentration can vary. These variations in the density and 

concentration of motile microorganisms can have implications for the bio-convection dynamics, 

nutrient transport, and overall behaviour of the system. Bio-convection Rayleigh number ( 1)bR 

suggests that buoyancy-driven convection is not a dominant factor in the system of microorganisms of 

nanofluid that depends on the higher and lower and higher motile microorganism parameter ( ) . The 

fluid velocity ( )f  enhanced by the action of 1bR   when 5 , which indicates that the 

microorganisms' buoyancy forces are becoming more pronounced, strengthening bio-convection and 

raising the system's fluid velocity. This behaviour of ( )f  is reversed when 0.5 and it means 

that a decrease in fluid velocity can result from the suppression of buoyancy-driven convection caused 

by the density contrast between the microorganisms and the surrounding fluid. A reversed trend has 

been observed for the profiles of ( ),  ( )  and ( )  in comparison to ( )f  for the effects of 

1bR  when 0.5 and 5 . 

The behaviour of velocity, temperature, concentration, and density of microorganism with 

respect to the Prandtl fluid parameter ( ) and the Forchheimer drag parameter ( )rF are displayed in 

Figures 3 (a – d) respectively.  In Figure 3 (a), when the Forchheimer drag parameter ( )rF is taken as 

0.1, the velocity is boosted. This means that the fluid exhibits a higher velocity under these 

conditions. On the other hand, when 1.5rF  , the velocity declines. The interaction between 

momentum and thermal diffusion is the cause of these observations. It is implied by a smaller 
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Forchheimer drag parameter (0.1) that the fluid has greater momentum diffusivity than heat 

diffusivity. Due to the dominance of momentum transport, augmented velocity is noticed. In contrast, 

a higher Forchheimer drag parameter ( 1.5)rF  results in greater thermal diffusivity, which causes a 

reduction in velocity. Furthermore, the Forchheimer drag parameter ( )rF reduces the velocity. This 

shows that the Forchheimer drag causes an increase in flow resistance, which causes a drop in 

velocity. The existence of impediments or porous structures that obstruct the flow and raise drag 

forces is often related to the Forchheimer drag. These drag forces act against the motion of the fluid, 

leading to a drop in velocity. 

The temperature, concentration, and microorganism’s density are enhanced when the Forchheimer 

drag parameter is taken as 1.5, but decreased when it is taken as 0.1. When 1.5rF  , the momentum 

diffusivity and thermal diffusivity of the fluid behave alike, which asserts that an improvement has 

occurred in the temperature, concentration, and microorganisms’ density. This implies that heat and 

mass are transmitted more effectively, leading to enhanced profiles of temperature, concentration, and 

microorganism density. On the contrary, when 0.1rF  , it infers that momentum diffusivity 

surpasses heat diffusivity. As a result, the efficiency of the movement of heat, mass, and 

microorganisms’ density declines, which diminishes temperature, concentration, and the 

microorganism’s density. The presence of 
rF indicates increase in flow resistance due to obstacles or 

porous structures. This enhances flow resistance and causes the fluid to experience more convective 

mixing, which leads to improved transmission of heat and mass. Consequently, temperature, 

concentration, and microorganism density are enhanced. Additionally, the augmented concentration 

leads to improved mass transfer, which raises the concentration of the transported species. In addition, 

the amplified density of the microorganisms suggests stronger convective mixing, enabling the 

microorganisms to be more evenly dispersed and densely packed throughout the fluid. When a fluid's 

Prandtl fluid parameter ( ) is less than one, it means that it resists flow more effectively than it 

conducts heat (high viscosity). This results in slower heat transfer and is a property of some 

substances, such as excessively viscous oils or polymers. Significantly, the Prandtl fluid parameter, 

declines all the profiles ( ),  ( )  and ( )  in bio-convection motion. 

In Table 3, we have portrayed the effects of some of the significant parameters on Effect of 

various governing parameters on 

1

2
x fxRe C , 

1

2
x xRe Nu


, 

1

2
x xRe Sh


and 

1

2
x xRe Nn


.  

Impact of  on 

1

2
x fxRe C , 

1

2
x xRe Nu


, 

1

2
x xRe Sh


and

1

2
x xRe Nn


: 

 A lower skin friction due to 𝛿 indicates that the fluid is undergoing less drag or resistance as 

it flows over the stretching surface. A non-dimensional parameter known as the Nusselt number 

1

2( )x xRe Nu


connects the convective rate of change of heat to the conductive rate of change of heat at 
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a boundary surface. An increased Nusselt number designates that the convective heat transmute is 

more efficient, leading to enhanced heat dissipation or transfer from the surface to the fluid. The 

enhancement of the Sherwood number suggests an improvement in the mass transfer characteristics of 

the system. The Sherwood number 

1

2( )x xRe Sh


is a non-dimensional parameter that narrates the 

convective rate of mass transfer to the diffusive rate of mass transfer at a boundary surface. An 

increased Sherwood number indicates that the mass transfer from the surface to the fluid is more 

efficient, i.e., there is an amplified rate of mass transfer, which could be important in applications 

where the transport of chemical species or nutrients is crucial, such as in biofilm growth or biological 

reactors. The rise in rate of change of microorganism’s density intends that the concentration of 

motile microorganisms in the fluid is higher. This higher density could be influenced by the Prandtl 

fluid parameter, which may provide more favourable conditions for the growth and movement of 

microorganisms. 

Impact of 
rF on 

1

2
x fxRe C , 

1

2
x xRe Nu


, 

1

2
x xRe Sh


and

1

2
x xRe Nn


:   

The increase in skin friction acclaims the resistance to the flow of the fluid over the inclined, 

stretching flat surface is heightened due to the Forchheimer drag parameter. The reduction in the 

Nusselt number signifies a reduction in convective heat transfer efficiency. A lower Nusselt number 

indicates less efficient convective heat transfer, which may be accredited to the increased skin friction 

and altered flow patterns caused by the Forchheimer drag parameter. The decrease in the Sherwood 

number indicates a decline in mass transfer efficiency. A lower Sherwood number suggests reduced 

mass transfer from the surface to the fluid. The increased skin friction and altered flow patterns 

caused by the Forchheimer drag parameter could potentially hinder the transport of species or 

nutrients, leading to a decrease in mass transfer efficiency. The decrease in the rate of change of the 

microorganism’s density suggests a lower concentration of motile microorganisms in the fluid. This 

reduction could be influenced by the altered flow patterns and reduced mass transfer efficiency 

associated with the Forchheimer drag parameter. 

Impact of bR on 

1

2
x fxRe C , 

1

2
x xRe Nu


, 

1

2
x xRe Sh


and

1

2
x xRe Nn


:  

The reduced

1

2
x fxRe C  and enhanced

1

2
x xRe Nu


,

1

2
x xRe Sh


and

1

2
x xRe Nn


due to the Bio-

convection Rayleigh number suggest favourable outcomes in terms of reduced flow resistance, 

improved convective heat transfer, and enhanced mass transfer efficiency. These findings highlight 

the significant role of bio-convection and motile microorganisms in influencing the system behaviour 

and optimizing heat and mass transfer processes. Understanding these effects is crucial in various 

applications, such as in biological systems, environmental engineering, where convective transport 

and microorganism dynamics play essential roles. 
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Impact of   on 

1

2
x fxRe C , 

1

2
x xRe Nu


, 

1

2
x xRe Sh


and

1

2
x xRe Nn


:  

The presence of motile microorganisms and their influence on fluid flow can alter the flow 

behaviour and reduce the skin friction experienced by the fluid. This declination indicates a more 

efficient flow with reduced drag or resistance. The increase in the Nusselt number due to the density 

ratio of motile microorganisms signifies improved convective heat transfer efficiency, i.e., enhanced 

convective heat transfer. The presence of motile microorganisms can enhance convection, leading to 

improved heat transmutation or dissipation from the surface to the fluid. An augmented Sherwood 

number designates improved transmission of mass from the surface to the fluid, which can be 

influenced by the presence of motile microorganisms and their role in promoting fluid mixing and 

enhancing mass transport. The increase in rate of change of density directs a higher concentration of 

motile microorganisms in the fluid, which can lead to more intense bio-convection, alter flow 

patterns, and promote convective heat and mass transfer. 

  

7. Conclusions –  

The physical situation being modelled involves understanding how microorganisms interact 

with nanoparticles under the implications of Prandtl fluid parameter, Forchheimer drag force, density 

ratio of motile microorganism, and bio-convection Rayleigh number in the nanofluid and how these 

interactions influence the flow patterns. In these contexts, the major findings of this investigation on 

bio-convection heat diffusion along a stretching flat surface are summarised as – 

 In this study, the behaviour of moving microorganisms that are added in a nanofluid via bio 

convection has been analysed. Bio-convection is a natural process that occurs as 

microorganisms move randomly in single-celled or colony-like formation. The directional 

motion of various forms of microorganisms is the basis for various bio-convection systems. 

 This investigation emphasises the significant role played by mobile microorganisms in 

shaping the behaviour of the system and enhancing mass and heat transfer operations.  

 The incorporation of the Prandtl fluid parameter and elastic parameter in this numerical 

investigation of bio-convection and heat transfer analysis significantly affects the system 

behaviour. These parameters have notable impacts on momentum, transmission of heat and 

mass, and microorganism’s density. 

 The presence of Forchheimer drag increases flow resistance and hinders convective heat 

transfer, mass transfer efficiency, and the concentration of motile microorganisms. 

 The elastic parameter has led to enhance 

1

2
x xRe Nu


, 
1

2
x xRe Sh


and

1

2
x xRe Nn


, and reduced

1

2
x fxRe C . The elasticity in the system improves convective heat transfer, mass transfer 

efficiency, and promotes a higher concentration of motile microorganisms. 
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 A higher Nusselt number indicates a more effective convective heat transfer process, which 

improves heat transmission from the surface to the fluid. The improvement in the Sherwood 

number shows that the system's mass transport properties have improved. 

 The Prandtl fluid parameter may have an impact on this greater density, which might result in 

more hospitable conditions for the growth and movement of microorganisms. 

 Since the mobility of nanoparticles has no effect on the movement of microorganisms, the 

interface between bio convection and nanofluids arises for microfluid appliances. 

 Some of the limitations of magnetic nanoparticles in drug delivery is that they cannot be 

concentrated into a three-dimensional space, since the application of an external magnetic 

field organizes the magnetic nanoparticles into a two-dimensional area. 

 Tiny microorganisms that float in a fluid's upper layer cause irregular development and 

instability through a process known as bioconvection. Because they swim so quickly, 

gyrotactic microorganisms like algae are likely to collect in the fluid's upper layer, creating an 

unstable peak that leads to heavy density stabilisation. 

 Convective transport and microorganism’s dynamics play crucial roles in many applications, 

including biological systems, environmental engineering, and bioreactors, therefore 

understanding these impacts is important in future projects. 

It is expected that a combination of scientific, technological, and interdisciplinary efforts will be 

necessary to overcome the restrictions in the research of magnetohydrodynamic bioconvection in 

nanofluids. These restrictions might be overcome in the near future by appropriate computer 

simulations, nanoparticle engineering, real-world applications, and interdisciplinary research. 

 

Nomenclature –   

 

M  Magnetic Parameter ,u v  Velocity component along x and y 

directions respectively, (m/s) 

Pr  Prandtl Number ,x y  Chosen co-ordinate system 

w  Mixed Convection ,A C  Material constants for the Prandtl 

fluid 

rF  Forchheimer drag , ,T C N  Dimensional Temperature (K), 

Concentration (mol/ m3), 

Microorganisms density (kg/m3). 

PK  Permeability , ,T N C    Dimensional Temperature (K), 

Concentration (mol/ m3), 

Microorganisms density (kg/m3) at 

free stream. 

rN  Buoyancy parameter , , ,f     Non-dimensional velocity, 

Temperature, Concentration, 

Microorganisms density. 

Sc  Schimdt number 
BD  mass diffusivity, (m2s-1) 
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bR  Bio-convection Rayleigh    

Number 
TD  co-efficient of mass flux, through 

temperature gradient, (Kgm-2s-1) 

  mean swimming velocity 

vector of the gyrotactic 

micro-organisms 

d  chemotaxis constant 

Cw  maximum cell swimming 

speed 
ND  diffusivity of micro-organisms 

cdw   constant 
0fC C C    Characteristic nanoparticle volume 

fraction 

bN  Brownian Parameter   Prandtl fluid parameter 

tN  Thermophoresis parameter   Elastic parameter 

bL  Lewis number   Angle of inclination of magnetic 

field 

eP  Peclet number   Angle of inclination of the sheet 

Ec  Eckert number   Density ratio of motile 

microorganism 

S  Suction/ Injection   Stretching parameter 

1 2 3, ,S S S  Thermal stratification 

parameters 

  Similarity variable 

 

   

References –  

1. Xia Li, Y., Kamel Al- Khaled, Khan, S. U., et al. “Bio-convective Darcy-Forchheimer 

periodically accelerated flow of non-Newtonian nanofluid with Cattaneo–Christov and Prandtl 

effective approach”, Case Studies in Thermal Engineering, 26, 101102 (2021), 

https://doi.org/10.1016/j.csite.2021.101102 

2.  Bég, O. A.,  Prasad, V. R., and Vasu, B. “Numerical Study Of Mixed Bioconvection In Porous 

Media Saturated With Nanofluid Containing Oxytactic Microorganisms”, Journal of Mechanics 

in Medicine and Biology, 13(04) 1350067 (2013). https://doi.org/10.1142/S021951941350067X 

3. Waqas, H., Imran, M., Muhammad, T., et al. “On bio-convection thermal radiation in Darcy – 

Forchheimer flow of nanofluid with gyrotactic motile microorganism under Wu’s slip over 

stretching cylinder/plate”, International Journal of Numerical Methods for Heat & Fluid Flow, 

31(5), pp. 1520-1546 (2021). https://doi.org/10.1108/HFF-05-2020-0313 

4. Ahmad, A., Ashraf, M., and Ali, K. “Bioconvection due to gyrotactic microbes in a nanofluid flow 

through a porous medium”, Haliyon, 6(12) e05832 (2020). 

https://doi.org/10.1016/j.heliyon.2020.e05832 

https://www.sciencedirect.com/journal/case-studies-in-thermal-engineering
file:///G:/LAPTOP_DATA/F-Drive/SILPI-ALL/ScientiaIranica/26
https://doi.org/10.1016/j.csite.2021.101102
https://www.worldscientific.com/doi/abs/10.1142/S021951941350067X
https://www.worldscientific.com/doi/abs/10.1142/S021951941350067X
https://www.worldscientific.com/doi/abs/10.1142/S021951941350067X
https://www.worldscientific.com/worldscinet/jmmb
https://www.worldscientific.com/worldscinet/jmmb
file:///G:/LAPTOP_DATA/F-Drive/SILPI-ALL/ScientiaIranica/%2013(04)%201350067%20(2013)
https://doi.org/10.1142/S021951941350067X
https://www.emerald.com/insight/search?q=H.%20Waqas
https://www.emerald.com/insight/search?q=H.%20Waqas
https://www.emerald.com/insight/search?q=Taseer%20Muhammad
https://www.emerald.com/insight/publication/issn/0961-5539
https://doi.org/10.1108/HFF-05-2020-0313
https://pubmed.ncbi.nlm.nih.gov/?term=Ahmad%20S%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Ashraf%20M%5BAuthor%5D
https://doi.org/10.1016%2Fj.heliyon.2020.e05832


18 

 

5. Wang, J., Mustafa, Z., Siddique, I., et al. “Computational Analysis for Bioconvection of 

Microorganisms in Prandtl Nanofluid Darcy–Forchheimer Flow across an Inclined 

Sheet”, Nanomaterials, 12(11), pp. 1791 (2022). 

https://doi.org/10.3390/nano12111791  

6. Yaseen, M., Rawat, S. K., and Kumar, M. “Cattaneo–Christov heat flux model in Darcy–

Forchheimer radiative flow of MoS2–SiO2/kerosene oil between two parallel rotating 

disks”, Journal of Thermal Analysis Calorimetry, 147, pp. 10865–10887 (2022). 

https://doi.org/10.1007/s10973-022-11248-0 

7. Shahid, A., Huang, H., Bhatti, M. M., et al. “Numerical Investigation on the Swimming of 

Gyrotactic Microorganisms in Nanofluids through Porous Medium over a Stretched 

Surface”, Mathematics, 8(3), pp. 380 (2020). https://doi.org/10.3390/math8030380 

8. Alharbi, F. M., Naeem, M., Zubair, M., et al. “Bioconvection Due to Gyrotactic Microorganisms 

in Couple Stress Hybrid Nanofluid Laminar Mixed Convection Incompressible Flow with 

Magnetic Nanoparticles and Chemical Reaction as Carrier for Targeted Drug Delivery through 

Porous Stretching Sheet”, Molecules, 26(13), pp. 3954 (2021). 

https://doi.org/10.3390/molecules26133954.PMID: 34203543  

9. Waqas, H., Khan, S. U., Hassan, et al. “Analysis on the bioconvection flow of modified second-

grade nanofluid containing gyrotactic microorganisms and nanoparticles”, Journal of Molecular 

Liquids, 291, 111231 (2019). https://doi.org/10.1016/j.molliq.2019.111231 

10. Khan, S. U., Waqas, H., Muhammad, T., et. Al. “Simultaneous effects of bioconvection and 

velocity slip in three-dimensional flow of Eyring-Powell nanofluid with Arrhenius activation 

energy and binary chemical reaction”, Int. Communication of Heat and Mass Transfer, 117, 

104738 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104738 

11. Muhammad, T., Alamri, S. Z., Waqas, H. D., et al. “Bioconvection flow of magnetized Carreau 

nanofluid under the influence of slip over a wedge with motile microorganisms”, Journal of 

Thermal Analysis Calorimetry, 143, pp. 945–957 (2021). https://doi.org/10.1007/s10973-020-

09580-4 

12. Majeed, A., Golsanami, N., Gong, B., et al. “Analysis of thermal radiation in magneto-

hydrodynamic motile gyrotactic micro-organisms flow comprising tiny nanoparticle towards a 

nonlinear surface with velocity slip”, Alexandria Engineering Journal,  66, (2023). 

https://doi.org/10.1016/j.aej.2022.11.012 

13. Das, B., Ahmed, S. “Numerical modeling of bioconvection and heat transfer analysis of Prandtl 

nanofluid in an inclined stretching sheet: A finite difference scheme”, Numerical Heat Transfer, 

Part A: Applications, (2023). https://doi.org/10.1080/10407782.2023.2237184 

https://doi.org/10.3390/nano12111791
https://doi.org/10.1007/s10973-022-11248-0
https://doi.org/10.3390/math8030380
https://pubmed.ncbi.nlm.nih.gov/34203543/
https://pubmed.ncbi.nlm.nih.gov/34203543/
https://pubmed.ncbi.nlm.nih.gov/34203543/
https://pubmed.ncbi.nlm.nih.gov/34203543/
https://doi.org/10.1016/j.molliq.2019.111231
https://www.sciencedirect.com/journal/alexandria-engineering-journal
file:///G:/LAPTOP_DATA/F-Drive/SILPI-ALL/ScientiaIranica/%2066
https://doi.org/10.1016/j.aej.2022.11.012
https://doi.org/10.1080/10407782.2023.2237184


19 

 

14. Rasheed, H. U., Islam, S., Khan, J., et al. “Numerical solution of chemically reactive and 

thermally radiative MHD Prandtl nanofluid over a curved surface with convective boundary 

conditions”, ZAMM‐ J. Appl. Math. Mech., (2021) e202100125. 

15. Babu, M. J., and Sandeep, N. “Effect of nonlinear thermal radiation on non-aligned bio-

convective stagnation point flow of a magnetic-nanofluid over a stretching sheet”, AEJ - 

Alexandria Engineering Journal, 55(3) (2016).  https://doi.org/10.1016/j.aej.2016.08.001  

16. Waqas, H., Farooq, U., Muhammad, T., et al. “Thermal effect on bioconvection flow of Sutterby 

nanofluid between two rotating disks with motile microorganisms”,  

Case Studies in Thermal Engineering, 26, 101136 (2021).  

https://doi.org/10.1016/j.csite.2021.101136 

17. Siddiqui, B. K., Batool, S., Malik, M. Y., et al. “Darcy Forchheimer bio-convection flow of 

Casson nanofluid due to a rotating and stretching disk together with thermal radiation and entropy 

generation”, Case Studies in Thermal Engineering, 27, 101201 (2021). 

https://doi.org/10.1016/j.csite.2021.101201. 

18. Wang, F., Zhang, J., Algarni, S., et al. “Numerical simulation of hybrid Casson nanofluid flow by 

the influence of magnetic dipole and gyrotactic microorganism”, Waves in Random and Complex 

Media, pp. 1–16 (2022). 

https://doi.org/10.1080/17455030.2022.2032866 

19. Wang, F., Asjad, M. I., Rehman, S. U., et al. “MHD Williamson Nanofluid Flow over a Slender 

Elastic Sheet of Irregular Thickness in the Presence of Bio-convection”, Nanomaterials, 11, 2297 

(2021). https://doi.org/10.3390/nano11092297 

20. Wang, F. Z., Asjad, M. I., Zahid, M., et al. “Unsteady thermal transport flow of Casson nanofluids 

with generalized Mittag-Leffler kernel of Prabhakar’s type”, Journal of Materials Research and 

Technology, 14, pp. 1292–1300 (2021). 

https://doi.org/10.1016/j.jmrt.2021.07.029 

21. Shampine, L. F., Glandwell, I., and Thomson, S. “Solving ODEs with Matlab”. Cambridge, New 

York, USA: Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511615542 

22. Ahmed, J., Shahzad, A., Farooq, A. et al. “Thermal analysis in swirling flow of titanium dioxide–

aluminum oxide water hybrid nanofluid over a rotating cylinder”, J Therm Anal Calorim, 144, pp. 

2175–2185 (2021). https://doi.org/10.1007/s10973-020-10190-3 

23. Ahmed, A., Khan, M. & Ahmed, J. “Thermal analysis in swirl motion of Maxwell nanofluid over 

a rotating circular cylinder’, Appl. Math. Mech.-Engl. Ed., 41, pp. 1417–1430 (2020). 

https://doi.org/10.1007/s10483-020-2643-7 

24. Ahmed, J., Shahzad, A., Farooq, A. et al. Radiative heat transfer in Homann stagnation-point 

flow of hybrid nanofluid. Appl Nanosci 10, 5305–5314 (2020). 

https://doi.org/10.1007/s13204-020-01464-1 

https://www.researchgate.net/profile/Macherla-Babu?_sg%5B0%5D=_D1wT4Sk7jwhEOEZbTNqn_SpyUqdLEIyA4BGHvig1kGWa9w9V3bE7NL8eCk-Mb7rMc_Ep40.SE_BCbVjAmBBJQoR0tENkG3NE72tNF-PDKBY7KWWifphJhR0s8ch8TPCSvWfUzVg1lPoU9QLtTS5bDP571K9BQ&_sg%5B1%5D=Fxv0NHEwJNyLsosakRtGIriGTX30tLSjk0LNEzNN2gVGnCZbZPTkcOg8PZOiJIwQN0yRDfY.si0gv24igvPmoSXZ6XGeX302gPTeTCHLMzVijFBLBgfNGuqNI1vpO5kyNv1KzZ_qYZ1PTBASZRU7Ck_r4-JfJw
https://www.researchgate.net/profile/DrN_Sandeep?_sg%5B0%5D=_D1wT4Sk7jwhEOEZbTNqn_SpyUqdLEIyA4BGHvig1kGWa9w9V3bE7NL8eCk-Mb7rMc_Ep40.SE_BCbVjAmBBJQoR0tENkG3NE72tNF-PDKBY7KWWifphJhR0s8ch8TPCSvWfUzVg1lPoU9QLtTS5bDP571K9BQ&_sg%5B1%5D=Fxv0NHEwJNyLsosakRtGIriGTX30tLSjk0LNEzNN2gVGnCZbZPTkcOg8PZOiJIwQN0yRDfY.si0gv24igvPmoSXZ6XGeX302gPTeTCHLMzVijFBLBgfNGuqNI1vpO5kyNv1KzZ_qYZ1PTBASZRU7Ck_r4-JfJw
https://www.researchgate.net/journal/AEJ-Alexandria-Engineering-Journal-1110-0168
https://www.researchgate.net/journal/AEJ-Alexandria-Engineering-Journal-1110-0168
http://dx.doi.org/10.1016/j.aej.2016.08.001
https://www.sciencedirect.com/journal/case-studies-in-thermal-engineering/vol/26/suppl/C
http://dx.doi.org/10.1016/j.csite.2021.101136
https://doi.org/10.1016/j.csite.2021.101201
http://dx.doi.org/10.1080/17455030.2022.2032866
https://doi.org/10.3390/nano11092297
https://doi.org/10.1016/j.jmrt.2021.07.029
https://doi.org/10.1017/CBO9780511615542
https://doi.org/10.1007/s10973-020-10190-3
https://doi.org/10.1007/s10483-020-2643-7
https://doi.org/10.1007/s13204-020-01464-1


20 

 

25. Shao, Y., Ahmad, L., Javed, S., et al. “Heat and mass transfer analysis during Homann Visco-

elastic slippery motion of nano-materials”, Int. Comm. in Heat and Mass Transfer, 139, 106425 

(2022). https://doi.org/10.1016/j.icheatmasstransfer.2022.106425 

26. Khan, M., Ahmed, J., Sultana, F. et al. “Non-axisymmetric Homann MHD stagnation point flow 

of Al2O3-Cu/water hybrid nanofluid with shape factor impact”, Appl. Math. Mech.-Engl. Ed., 41, 

pp. 1125–1138 (2020). https://doi.org/10.1007/s10483-020-2638-6 

27. Ghoneim, M.E., Ahmed, J., Ali, W. et al. “Carbon nanotubes (CNT) based nanofluid flow due to 

a rotating cylinder: static and dynamics models”, Microfluid Nanofluid, 26, pp. 83 (2022). 

https://doi.org/10.1007/s10404-022-02582-8 

28. Ahmed, J., Ahmed, A., Sultana, F., and Khan, M. “Numerical investigation for non-axisymmetric 

Homann stagnation point flow of a SWCNT/MWCNT-water nanofluid over a disk”, Waves in 

Random and Complex Media, (2021). https://doi.org/10.1080/17455030.2021.2022245 

29. Priyadharsini, M., David, M. G. A., Ismail, M. S., et al. “Numerical and sensitivity study on the 

heat transfer due to bioconvection on unsteady radiative MHD blood flow over a permeable artery 

with chemical reaction effects”, Int. Comms. in Heat and Mass Transfer, 147, 106981 (2023). 

https://doi.org/10.1016/j.icheatmasstransfer.2023.106981 

30. Priyadharsini, M., David, M. G. A. “Mathematical modelling and analysis of thermoregulation 

effects on blood viscosity under magnetic effects and thermal radiation in a permeable stretching 

capillary”, Journal of Thermal Biology, 111, 103398 (2023). 

https://doi.org/10.1016/j.icheatmasstransfer.2023.106981 

31. Priyadharsini, M. “Mathematical analysis of drug-induced chemical reaction on unsteady mhd 

blood flow with radiation effects through a permeable stretching capillary”, Journal of Porous 

Media, 26, pp. 63 – 83 (2023). 10.1615/JPorMedia.2023044167 

32. Hakan F. Öztop, H. F., Ahmad, S., Abu-Nada, E., et al. “Mixed convection of MHD flow in 

nanofluid filled and partially heated wavy walled lid-driven enclosure”, Int. Communications in 

Heat and Mass Transfer, 86, pp. 42-51 (2017). 

https://doi.org/10.1016/j.icheatmasstransfer.2017.05.011 

33. Lioua, K., Abdullah, A.A.A. Alrashed, Al-Salem, et al. “Control of natural convection via 

inclined plate of CNT-water nanofluid in an open sided cubical enclosure under magnetic field”, 

Int. Journal of Heat and Mass Transfer, 111, pp. 1007-1018 (2017). 

https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.069 

34. Selimefendigil, F., Öztop, H. F., and Abu-Hamdeh, N. “Mixed convection due to rotating cylinder 

in an internally heated and flexible walled cavity filled with SiO2–water nanofluids: effect of 

nanoparticle shape”, Int. Commun. in Heat and Mass Transfer, 71, pp. 9-19 (2016). 

https://doi.org/10.1016/j.icheatmasstransfer.2015.12.007 

https://www.sciencedirect.com/journal/international-communications-in-heat-and-mass-transfer
https://doi.org/10.1016/j.icheatmasstransfer.2022.106425
https://doi.org/10.1007/s10483-020-2638-6
https://doi.org/10.1007/s10404-022-02582-8
https://www.tandfonline.com/author/Ahmed%2C+Jawad
https://www.tandfonline.com/author/Ahmed%2C+Awais
https://www.tandfonline.com/author/Sultana%2C+Fouzia
https://www.tandfonline.com/author/Khan%2C+Masood
https://doi.org/10.1080/17455030.2021.2022245
https://www.sciencedirect.com/journal/international-communications-in-heat-and-mass-transfer
https://www.sciencedirect.com/journal/international-communications-in-heat-and-mass-transfer/vol/147/suppl/C
https://doi.org/10.1016/j.icheatmasstransfer.2023.106981
https://www.sciencedirect.com/journal/journal-of-thermal-biology
https://www.sciencedirect.com/journal/journal-of-thermal-biology/vol/111/suppl/C
https://doi.org/10.1016/j.icheatmasstransfer.2023.106981
https://www.sciencedirect.com/author/6603833743/hakan-fehmi-oztop
https://www.sciencedirect.com/journal/international-communications-in-heat-and-mass-transfer
https://www.sciencedirect.com/journal/international-communications-in-heat-and-mass-transfer
https://www.sciencedirect.com/journal/international-communications-in-heat-and-mass-transfer/vol/86/suppl/C
https://doi.org/10.1016/j.icheatmasstransfer.2017.05.011
https://www.sciencedirect.com/author/16309887800/kolsi-lioua
https://www.sciencedirect.com/journal/international-journal-of-heat-and-mass-transfer
https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.069
https://www.sciencedirect.com/author/6603833743/hakan-fehmi-oztop
https://www.sciencedirect.com/journal/international-communications-in-heat-and-mass-transfer
https://www.sciencedirect.com/journal/international-communications-in-heat-and-mass-transfer/vol/71/suppl/C
https://doi.org/10.1016/j.icheatmasstransfer.2015.12.007


21 

 

35. Nasir, Md., Waqas, M. Bég, O. A., et al. “Functional magnetic Maxwell viscoelastic nanofluids 

for tribological coatings- a model for stretching flow using the generalized theory of heat-mass 

fluxes, Darcy-Forchheimer formulation and dual convection”, Tribology International, 

187, 108610 (2023). https://www.sciencedirect.com/science/article/pii/S0301679X23003973 

36. Tabrez, M., Khan, W. A., Taseer, M., et al. “Significance of thermo-dynamical moment of 

ferromagnetic nanoparticles and bioconvection analysis for magnetized Carreau fluid under the 

influence of gyrotactic moment of microorganisms”, Tribology International, 186, 108633 

(2023). https://www.sciencedirect.com/science/article/pii/S0301679X23004218 

37. Ahmad, A., Anjum, N., Shahid, H., et al. “Impact of Darcy–Forchheimer–Brinkman model on 

generalized Eyring–Powell liquid subject to Cattaneo–Christov double diffusion aspects”, Int. 

Journal of Modern Physics B, 37(18), 2350173 (2023). 

https://www.worldscientific.com/doi/abs/10.1142/S0217979223501734 

38. Hussain, Z., Khan, W. A., Taseer, M., et al. “Dynamics of gyrotactic microorganisms for 

chemically reactive magnetized 3D Sutterby nanofluid flow comprising non-uniform heat sink-

source aspects”, Journal of Magnetism and Magnetic Materials, 578, 170798 (2023). 

https://doi.org/10.1016/j.jmmm.2023.170798 

39. Anjum, N., Khan, W.A., and Azam, M. “Significance of bioconvection analysis for thermally 

stratified 3D Cross nanofluid flow with gyrotactic microorganisms and activation energy aspects”, 

Thermal Science and Engineering Progress, 38, 101596. (2023). 

https://doi.org/10.1016/j.tsep.2022.101596 

40. Nasir, M., Waqas, M., Zamri, N. et al. “Diffusion of dual diffusive chemically reactive Casson 

nanofluid under Darcy–Forchheimer porosity and Robin conditions from a vertical convective 

surface: a comparative analysis using HAM and collocation procedures”, Comp. Part. Mech. 10, 

pp. 1267–1279 (2023). https://doi.org/10.1007/s40571-022-00547-w 

41. Waqas, M., Kausar, M. S., and Bég, O. A. “Numerical study of dissipative SW/MWCNT-

nanofluid coating flow from a stretching wall to a porous medium with shape factor effects”, Int. 

Journal of Hydrogen Energy, 48(88), pp. 34536-34550. (2023). 

https://doi.org/10.1016/j.ijhydene.2023.05.036 

42. Hussain, S., Raizah, Z., and Aly, A.M. “Thermal radiation impact on bioconvection flow of nano-

enhanced phase change materials and oxytactic microorganisms inside a vertical wavy porous 

cavity”, Int. Commu. Heat and Mass Transfer, 139, 106454 (2022).  

https://doi.org/10.1016/j.icheatmasstransfer.2022.106454 

43. Hussain, S., Aly, A.M., and Alsedias, N. “Bioconvection of oxytactic microorganisms with nano-

encapsulated phase change materials in an omega-shaped porous enclosure”, Journal of Energy 

Storage, 56, Part A, 105872 (2022). https://doi.org/10.1016/j.est.2022.105872  

https://www.sciencedirect.com/journal/tribology-international
https://www.sciencedirect.com/journal/tribology-international/vol/187/suppl/C
https://www.sciencedirect.com/science/article/pii/S0301679X23003973
https://www.sciencedirect.com/journal/tribology-international
https://www.sciencedirect.com/journal/tribology-international/vol/186/suppl/C
https://www.sciencedirect.com/science/article/pii/S0301679X23004218
https://www.worldscientific.com/doi/abs/10.1142/S0217979223501734
https://www.worldscientific.com/doi/abs/10.1142/S0217979223501734
https://www.worldscientific.com/doi/abs/10.1142/S0217979223501734
https://www.worldscientific.com/worldscinet/ijmpb
https://www.worldscientific.com/worldscinet/ijmpb
https://www.worldscientific.com/toc/ijmpb/37/18
https://www.worldscientific.com/doi/abs/10.1142/S0217979223501734
https://www.sciencedirect.com/journal/journal-of-magnetism-and-magnetic-materials
https://www.sciencedirect.com/journal/journal-of-magnetism-and-magnetic-materials/vol/578/suppl/C
https://doi.org/10.1016/j.jmmm.2023.170798
https://www.sciencedirect.com/journal/thermal-science-and-engineering-progress
https://www.sciencedirect.com/journal/thermal-science-and-engineering-progress/vol/38/suppl/C
https://doi.org/10.1016/j.tsep.2022.101596
https://doi.org/10.1007/s40571-022-00547-w
https://www.sciencedirect.com/journal/international-journal-of-hydrogen-energy
https://www.sciencedirect.com/journal/international-journal-of-hydrogen-energy
https://www.sciencedirect.com/journal/international-journal-of-hydrogen-energy/vol/48/issue/88
https://doi.org/10.1016/j.ijhydene.2023.05.036
https://www.sciencedirect.com/journal/international-communications-in-heat-and-mass-transfer
https://www.sciencedirect.com/journal/international-communications-in-heat-and-mass-transfer/vol/139/suppl/C
https://doi.org/10.1016/j.icheatmasstransfer.2022.106454
https://www.sciencedirect.com/journal/journal-of-energy-storage
https://www.sciencedirect.com/journal/journal-of-energy-storage
https://www.sciencedirect.com/journal/journal-of-energy-storage/vol/56/part/PA
https://doi.org/10.1016/j.est.2022.105872


22 

 

44. Hussain, S., Aly, A.M., and Öztop, H.F. “Magneto-bioconvection flow of hybrid nanofluid in the 

presence of oxytactic bacteria in a lid-driven cavity with a streamlined obstacle”, In. Commu. 

Heat and Mass Transfer, 134, 106029 

(2022). https://doi.org/10.1016/j.icheatmasstransfer.2022.106029 

45. Hussain, S. “Finite Element Solution for MHD Flow of Nanofluids with Heat and Mass Transfer 

through a Porous Media with Thermal Radiation, Viscous Dissipation and Chemical Reaction 

Effects”, Advances in Applied Mathematics and Mechanics, 9(4), pp. 904-923 (2017). 

https://doi.org/10.4208/aamm.2014.m793 

46. Hussain, S., Jamal, M., Haddad, Z., et al. “Numerical modeling of magnetohydrodynamic 

thermosolutal free convection of power law fluids in a staggered porous enclosure”, Sustainable 

Energy Technologies and Assessments, 53, Part A, 102395 

(2022).  https://doi.org/10.1016/j.seta.2022.102395 

47. Li, S., Nasir, M., and Waqas, M., et al. “Bioconvection transport of upper convected Maxwell 

nanoliquid with gyrotactic microorganism, nonlinear thermal radiation, and chemical reaction”, 

Nanotechnology Reviews, 12, pp. 1-15 (2023). https://doi.org/10.1515/ntrev-2022-0569 

48. Elayarani, M., Shanmugapriya, M., and Kumar, P.S. “Intensification of heat and mass transfer 

process in MHD Carreau nanofluid flow containing gyrotactic microorganisms”, Chem Eng 

Process – Process Intensif, 160, 108299 (2021). 

49. Anjum, N., Khan, W.A., Azam, M., and et al. “Significance of bioconvection analysis for 

thermally stratified 3D cross nanofluid flow with gyrotactic microorganisms and activation 

energy aspects”, Therm Sci Eng Prog., 38(9),101596 (2023). 

https://doi.org/10.1016/j.tsep.2022.101596 

50. Khan, A.A., Arshad, A., Ellahi, R., et al. “Heat transmission in Darcy Forchheimer flow of 

Sutterby nanofluid containing gyrotactic microorganisms”, Int J Numer Methods Heat & Fluid 

Flow, 33, pp. 135–152 (2023). https://doi.org/10.1108/HFF-03-2022-0194 

51. Shahzad, F., Sagheer, M., and Hussain, S. “Transport of MHD nanofluid in a stratified medium 

containing gyrotactic microorganisms due to a stretching sheet”, Scientia Iranica F, 28(6), pp. 

3786-3805 (2021).  https://doi.org/10.24200/SCI.2021.56459.4734 

52. Shakiba, A., and Rahimi, A.B. “Reverse flow analysis of hybrid nanofluid MHD mixed 

convection flow in a vertical cylindrical annulus: An exact solution”, Scientia Iranica B, 30(5), 

pp. 1612-1624 (2023). https://doi.org/10.24200/SCI.2023.59823.6446 

53. Habibishandiz, M.  Saghir, Z. and Zahmatkesh, I. “Thermo-bioconvection performance of 

nanofluid containing oxytactic microorganisms inside a square porous cavity under constant and 

periodic temperature boundary conditions”, International Journal of Thermofluids, 17, pp. 1-13 

(2023). https://doi.org/10.1016/j.ijft.2022.100269 

https://www.sciencedirect.com/author/6603833743/hakan-fehmi-oztop
https://www.sciencedirect.com/journal/international-communications-in-heat-and-mass-transfer
https://www.sciencedirect.com/journal/international-communications-in-heat-and-mass-transfer
https://www.sciencedirect.com/journal/international-communications-in-heat-and-mass-transfer/vol/134/suppl/C
https://doi.org/10.1016/j.icheatmasstransfer.2022.106029
https://doi.org/10.4208/aamm.2014.m793
https://www.sciencedirect.com/journal/sustainable-energy-technologies-and-assessments
https://www.sciencedirect.com/journal/sustainable-energy-technologies-and-assessments
https://www.sciencedirect.com/journal/sustainable-energy-technologies-and-assessments/vol/53/part/PA
https://doi.org/10.1016/j.seta.2022.102395
https://doi.org/10.1515/ntrev-2022-0569
https://doi.org/10.1016/j.tsep.2022.101596
http://dx.doi.org/10.1108/HFF-03-2022-0194
https://scientiairanica.sharif.edu/article_22429.html
https://scientiairanica.sharif.edu/article_22429.html
https://doi.org/10.24200/sci.2021.56459.4734
https://scientiairanica.sharif.edu/article_23086.html
https://scientiairanica.sharif.edu/article_23086.html
https://doi.org/10.24200/sci.2023.59823.6446
https://www.sciencedirect.com/journal/international-journal-of-thermofluids
https://doi.org/10.1016/j.ijft.2022.100269


23 

 

54. Shamshuddin, M. D., Mabood, F. and Beg, O. A. Thermomagnetic reactive ethylene glycol-

metallic nanofluid transport from a convectively heated porous surface with ohmic dissipation, 

heat source, thermophoresis and Brownian motion effects. Int. J. Modell. Simul. 42, pp. 782–796 

(2021). https://doi.org/10.1080/02286203.2021.1977531 

55. Megahed, A.M. “Improvement of heat transfer mechanism through a Maxwell fluid flow over a 

stretching sheet embedded in a porous medium and convectively heated”, Math Comput Simul. 

187, pp. 97–109 (2022). https://doi.org/10.1016/j.matcom.2021.02.018 

56. Khan, M.R., Ahammad, N.A., Alhazmi SE, et al. “Energy and mass transport through hybrid 

nanofluid flow passing over an extended cylinder with the magnetic dipole using a computational 

approach”, Front. Energy Res. 10:980042, pp. 1-14 (2022). 

https://doi.org/10.3389/fenrg.2022.980042 

57. Alqahtani, A.M., Bilal, M., Ali, A. et al. “Numerical solution of an electrically conducting 

spinning flow of hybrid nanofluid comprised of silver and gold nanoparticles across two parallel 

surfaces”, Sci Rep 13, 7180, pp. 1-14 (2023). https://doi.org/10.1038/s41598-023-33520-5 

 

 

Figure captions –  

Figure 1. Flow configuration of the model. 

Figures 2(a-d). Distribution of ( )f  , ( )  , ( )  and ( )  for   and bR . 

Figures 3 (a-d). Distribution of ( )f  , ( )  , ( )   and ( )  for  and 
rF . 

 

Tables –  

Table 1. Velocity distribution for S . 

Table 2. Grid Point Stability and Convergence Analysis. 

Table 3. Influence of some noteworthy parameters on 

1

2
x fxRe C , 

1

2
x xRe Nu


, 

1

2
x xRe Sh


and 

1

2
x xRe Nn


. 

 

 

https://doi.org/10.1080/02286203.2021.1977531
https://doi.org/10.1016/j.matcom.2021.02.018
https://doi.org/10.3389/fenrg.2022.980042
https://doi.org/10.1038/s41598-023-33520-5


24 
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Figure 2(a)                                                            Figure 2(b) 

         

Figure 2(c)                                                        Figure 2(d) 

Figures 2(a-d). Distribution of ( )f  , ( )  , ( )  and ( )  for   and bR . 
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Figures 3 (a-d). Distribution of ( )f  , ( )  , ( )   and ( )  for  and rF . 

 

 

Table 1. Velocity distribution for S . 

S  Present study Wang et al. [5] Das and Ahmed [13] 

𝟐 3.3143 3.3142 3.3141 

𝟑 4.2028 4.2027 4.2026 

𝟒 5.3461 5.3460 5.3459 

 

Table 2. Grid Point Stability and Convergence Analysis. 
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0.001h   0.0001h   

 
  ( )f 

 

( )   ( )   ( )     ( )f   ( )   ( )   ( )   

0 0.5000 0.8000 0.7000 0.8000 0 0.4000 0.2000 0.7000 0.8000 

0.4990 0.0714 0.5409 0.4621 0.4004 0.4999 0.0291 0.1291 0.4929 0.4530 

0.8990 0.0181 0.3651 0.3099 0.2192 0.8999 -0.0068 0.0847 0.3457 0.2720 

1.4990 0.0029 0.1462 0.1265 0.0680 1.4999 -0.0044 0.0328 0.1482 0.0947 

1.7990 0.0007 0.0550 0.0487 0.0232 1.7999 -0.0013 0.0121 0.0578 0.0336 

1.9000 0.0003 0.0268 0.0239 0.0110 1.9000 -0.0006 0.0059 0.0286 0.0162 

1.9790 0.0001 0.0055 0.0050 0.0022 1.9799 -0.0001 0.0012 0.0057 0.0032 

1.9830 0.0000 0.0045 0.0040 0.0018 1.9839 -0.0001 0.0009 0.0046 0.0025 

1.9850 0.0000 0.0039 0.0035 0.0016 1.9859    -0.0001 0.0008 0.0040 0.0022 

1.9870 0.0000 0.0034 0.0031 0.0014 1.9879 -0.0001 0.0007 0.0034 0.0019 

1.9880 0.0000 0.0032 0.0028 0.0013 1.9889 -0.0001 0.0006 0.0032 0.0017 

2.0000 0 0 0 0 2.0000 0 0 0 0 

Table 3. Influence of some noteworthy parameters on 

1

2
x fxRe C , 

1

2
x xRe Nu


, 

1

2
x xRe Sh


and 

1

2
x xRe Nn


. 

  
rF  

bR    1

2
x fxRe C  

1

2
x xRe Nu


 
1

2
x xRe Sh


 
1

2
x xRe Nn


 

0.2 0.5 0. 2 0.5 …. …. …. …. 

0.2    2.3270 0.5377 0.8132 1.9897 

0.4    1.9700 0.5437 0.8238 2.0166 

0.6    1.5547 0.5479 0.8325 2.0383 

 0.5   1.3202 0.0937 0.7793 1.9897 

 1.0   1.4050 0.0842 0.7792 1.9896 

 1.5   1.5703 0.0709 0.7791 1.9894 

  0.2  1.0393 0.0734 0.2265 0.4596 

  0.4  1.0230 0.0804 0.2362 0.4804 

  0.6  1.0205 0.0924 0.2382 0.5059 

   0.5 1.0230 0.1052 0.2253 1.7297 

   0.7 1.0159 0.1055 0.2302 1.9093 

   0.9 1.0061 0.1059 0.2369 2.0890 
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