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Abstract: 

In the present paper, a non-similar solution of a steady saturated nanofluid flow, heat, and mass transfer is 

investigated. The nanofluid flow is under dual effects of stagnation flow and natural convection heat transfer on a 

vertical flat plate in a porous medium. Effects of variations in thermophoresis, Brownian motion, and buoyancy 

force have been studied. The partial differential equations are transformed into six ordinary differential equations 

with appropriate non-similarity variables, which also consider the longitudinal coordinate of the x-axis. In order to 

solve, we have formed a set of fourteen ordinary differential equations of the first order. A complicated double 

method finds six unknown initial values in the boundary value problem. Variations of longitudinal velocity, shear 

stress, temperature, and nanoparticle volume fraction are considered as functions of transverse and longitudinal 

coordinates. As a result, the minimum accuracy of the first-order non-similar solution in regions very close to the 

stagnation point is 96%. Also, the velocity profile is observed to vary along the longitudinal x-axis near the 

stagnation point, which is an improvement over the existing knowledge which largely assumes a constant velocity 

profile throughout the stagnant flow region. 
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Nomenclature 
English 

a  Strain of the flow 

C  Heat capacity coefficient 

BD  Brownian motion diffusion coefficient 

TD  Thermophoretic diffusion coefficient 

g  acceleration of gravity 

xGr  Grashof number 

k  Thermal conductivity 

K  permeability 

p  pressure 

BN  Brownian motion parameter 

TN  Thermophoresis parameter 

n  A constant 

Pr  
Prandtl number ( 


 ) 

xRe  Reynolds number ( u x


 ) 

Sc  
Schmidt number (

BD


 ) 

T  Temperature  

U  Far-field velocity  

,u v  Velocity components in the x- and y-

directions, respectively 

,x y  Cartesian coordinates along the plate and 

normal to it 

Greek 

  Volumetric thermal coefficient 

Γ  An empirical constant 

1 2,    Arbitrary coefficients 

  Porosity 

,    
Nom-similar variables in the x-, y-

directions, respectively 

  Dimensionless temperature 

  
The mixed convection parameter, 

2

x

x

Gr

Re

 
 
 

 

  A constant 

  Density 
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  kinematic viscosity  

  nanoparticle volume fraction 

     Stream function 

1 2Δ , Δ  Dimensionless resistance of permeability, 

first and second order, respectively,    

1

1
,   Δ

a K

 
   
 

 

Subscript 

, c T  
Concentration and thermal expansions, 

respectively 

, p f  Nanoparticle and base fluid, respectively 

, w   Conditions at wall and infinity, respectively 

Superscript 

'  
Differentiation with respect to 

   , , for F R S or      , , for f    
 

 

 
 

1. Introduction: 

Heat transfer is key to several industrial processes 

encompassing solar thermal applications, nuclear power 

generation, electronic equipment cooling, manufacture of 

chemical feedstocks, as well as a wide array of state-of-the art 

sensitive installations custom-made for the military 

establishments. The use of various types of solar thermal 

collectors is accompanied by optical, thermal, and 

thermodynamic analysis to evaluate their performance. Some of 

these applications constitute thermal treatment in integrated 

collector storage, direct and indirect air systems, space heating 

and cooling, refrigeration, and heat transfer in industrial 

processes [1]. Since the major energy losses from solar systems 

constitute convective heat transfer, radiation emission and 

reflection, heat transfer analysis are essential for the design and 

optimization of solar thermal energy systems for electricity 

generation, chemical fuel production and energy processing [2]. 

The main focus, in the field of nuclear power generation 

revolves around ensuring safety. This involves analyzing 

blueprints and obtaining authorization for nuclear power plants 

all while considering safety assessments carried out through 

dedicated computational codes that deal with heat and mass 

transfer. Additionally due to the fission reactions or residual 

heat within the core of a nuclear power plant specialized 

thermal exchange systems are necessary to dissipate heat and 

manage mass. These systems play a role in designing nuclear 

systems [3]. A significant issue in heat transfer with advances 

in micro- and nano-fabrication capabilities has been heat 

removal in devices such as computer chips, laser diodes, and 

electronic components [4]. Heat management issues are facing 

critical challenges with rapid increase in heat flux and 

continuous miniaturization of electronic devices. Common 

electronic cooling methods are classified into direct and 

indirect methods, direct cooling includes jet impingement and 

spray cooling, air cooling, droplet humidification and 

immersion cooling. The most popular methos of indirect 

cooling are the use of thermoelectric, microchannel, vapor 

chamber, heat pipe and "Pulse Code Modulation (PCM)" [5].  

First, we discuss the stagnation flow and heat transfer and 

solution methods. In general situations, the flow in a stagnation 

point region is only dependent on transverse y-coordinates, so 

the similarity solution method is the most common in 

stagnation flow research. since the method facilitates ease of 

implementation and is devoid of any major computational 

overhead.  Weidman and Mahalingam [6] investigated the flow 

and heat transfer in a stagnation flow, at the same time, the 

fluid is viscous, and its coordinates have damped oscillatory 

motion. Temperature profiles, velocity profiles, and stress 

tensors in stagnation flow for different values of Prandtl 

numbers and velocity ratios are presented for different 

transpiration of the flat plate [7]. In the case of bounding the 

flow pattern from both sides, non-axisymmetric stagnation flow 

may occur in the presence of any physical limitation [8]. In 

two-dimensional and cylindrical unsteady stagnation flow, 

while the substrate plate moves towards the flow, the effect of 

the plate velocity variations on the thickness of velocity and 

thermal boundary layers is more than that of the acceleration, 

so maximum plate velocity produces minimum boundary layer 

thickness. Its acceleration effect plays a secondary role [9, 10]. 

Heat transfer and fluid freezing in stagnation flow are the most 

significant natural phenomena and have many industrial 

applications. Stephen's solidification problem for viscous fluid 

in stagnation flow is solved by Rangel and Bian [11]. 

Investigating the freezing of the incompressible fluid in 

Cartesian two-dimensional and three-dimensional axisymmetric 

stagnation flow shows that Stephen number is ineffective in the 

final ice thickness. However, it is effective in freezing time, and 

by increasing the Prandel number by ten times, the final 

thickness of the ice is approximately halved. Also, when the 

process reaches steady-state condition, there is a significant 

difference between the thickness of the ice in the Cartesian 

two-dimensional and axisymmetric three-dimensional 

coordinate systems [12, 13]. In calculating air vapor freezing 

theory in a two-dimensional stagnation flow, the cell size next 

to the substrate plate controls the onset time of condensation, 

contrary to physical experiments. Here, it was found that the 

maximum time before freezing begins for the size of both 0.1 

and 0.2 mm are the same, at about the 5℃ air temperature [14]. 

Yih [15] also studied the heat effect in two-dimensional flow 

under Magnetohydrodynamics convective heat transfer in 

https://plg8.gigalib.net/en_us/report/52808795/similarity?f=1?dn=61d1c5fb7768df44fb3905f2378612f85d13e46418552e3588d6820ff191264e47bb36c0e7dccfcc3ce8c82561104f91b2dd501ea712485e34bf8d77baebd7ef&node=37&source=18879402&dsc=1&id=333
https://plg8.gigalib.net/en_us/report/52808795/similarity?f=1?source=2064453377&dn=fe1e3f92c43d3fac0a557fc5971cb92bcdc5c06a1d433a950ff636ae02600d52fa8f27699638e6b2e5d5307311a71138056e31147a908e3bbdaf5e07001957d9&node=3783&dsc=1&id=488
https://plg8.gigalib.net/en_us/report/52808795/similarity?f=1?id=290&dn=c2a93aa2d6b85b4415914062f495cd377360ce2905a3aaf62000f9fd4198c76435fed8dc1995e8900225d84e8184159cc07e9e643f2b613cf901a9e1275fe299&node=37&source=528043032&dsc=1
https://plg8.gigalib.net/en_us/report/52808795/similarity?f=1?id=290&dn=c2a93aa2d6b85b4415914062f495cd377360ce2905a3aaf62000f9fd4198c76435fed8dc1995e8900225d84e8184159cc07e9e643f2b613cf901a9e1275fe299&node=37&source=528043032&dsc=1
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stagnant flow. In his numerical study, the plate was permeable, 

and its heat was assumed to be linear. He used a Keller box 

method to solve the problem and concluded that the auxiliary 

(opposite) buoyancy force increases (decreases) the local 

Nusselt number and the local friction coefficient. Also, he 

showed that the local Nusselt number is nearly constant for 

very small or significant permeability.  

Adding nanoparticles to the fluid increases the heat transfer. 

Recently, research on the effect of nanofluid on heat transfer 

enhancement has expanded. The multiplicity of applications 

has caused great diversity in the field of research; even, the 

research methods are very diverse. Heat transfer with ultrahigh-

performance is one of the vital needs of many industrial 

technologies. Whereas, inherently low thermal conductivity is a 

primary limitation in development energy-efficient heat transfer 

fluids. Nanofluids with their enormous potential provide 

enhanced ultrahigh-performance heat transfer. Innovative 

engineering efforts have shown that incorporating amounts 

(less than 1% by volume) of nanoparticles into host fluids can 

greatly enhance their thermal properties. For instance certain 

nanofluids exhibit characteristics such as increased thermal 

conductivity at low nanoparticle concentrations, thermal 

conductivity that depends heavily on temperature and particle 

size a non linear relationship between thermal conductivity and 

concentration and a notable threefold increase in critical heat 

flux at an extremely low particle concentration of around 10 

parts, per million (ppm) [16]. Note that a nanoparticle 

suspension is considered as a triple phase system including the 

fluid media (liquid phase), the nanoparticles (solid phase), and 

the interfacial phase, which significantly affects the properties 

of the system due to the extremely high surface area of 

nanofluid relative to its volume [17]. Another significant 

research area in fluid dynamics is the thermal performance for 

unsteady boundary layer flow of nanofluids in the presence of 

suction/injection. This flow situation is broadly used in space 

sciences and aerodynamics as well [18]. Enhanced 

thermophysical properties of nanofluids is the primely reason 

for increasing attention. These properties include their ability to 

contribute into a wide range of thermal applications ranging 

from harvesting solar energy to produce renewable energy to 

increasing the efficiency of heat exchangers used in industrial 

[19]. So, Nanofluids are attracting a great deal of interest with 

respect to particularly their heat transfer properties. 

Now we follow the discussion of mixed convective flow 

with or without nanofluid in the presence or absence of a 

porous medium when the velocity of the fluid in contact with 

the plate is low enough and the plate is hot. In the direction of 

gravity acceleration, the effects of stagnation flow and natural 

convection cause the fluid to move. Cheng [20] investigated the 

problem of free and forced hybrid convection on wedges in a 

saturated porous medium. He found that Gr/Re is a parameter 

governing the mixed convection on the wedges in the porous 

medium. His research focused on two modes of constant 

temperature and constant heat transfer of the sloping plate, and 

the temperature and velocity profiles for different values of 

Gr/Re were presented. As the value of Gr/Re approaches the 

limits of infinity and zero, it has been shown to aid the flows 

that the heat transfer velocity is asymptotically close to the free 

or forced convection values. Nazar et al. [21] considered a 

vertical flat plate in a porous medium. They investigated the 

flow of the convective boundary layer in the stagnation flow of 

a saturated nanofluid. In their study, the flow instability was 

due to the formation of impulsive motion and a sudden increase 

in plate temperature. They showed that we have solutions for a 

limited range  , for opposing flow  0   or assisting flow

 0  , where  is the mixed convection parameter. Following 

the previous study, Merrill et al. [22] used numerical evidence 

to find the second solution for 1   . They also prove that if 

2.9136    for the boundary value problem, there is no 

solution. Also, in the continuation of the research, Ishaq et al. 

[23] proved that there are dual solutions with opposite flows for 

the assisting flow. Subhashini et al. [24] developed a mixed 

convection nanofluids flow near the stagnation point region 

over an exponentially shrinking/stretching sheet using the local 

similarity method.  

If the flow also depends on the longitudinal x-coordinates, 

another solution method can be used to solve the problem, such 

as the non-similar solution method. Note that the non-similar 

solution method is suitable for the small variations in a second 

independent variable, such as the variations in the longitudinal 

x-coordinates studied in the work.  

Notice, in the case of suction/blowing, or if the heat transfer 

rate depends on the longitudinal x-coordinate, the effects of the 

longitudinal x-coordinate must be taken into account [25]. 

More precisely, if the lateral mass flux has temperature 

variations as 
wT T Ax 

  , and the suction/blowing velocity 

is given by ~ n

wv ax , then the similarity solutions are admitted, 

if  1

2
n

 
 .(where the plate's temperature, the far-field 

temperature, and the coordinate along the plane are ,wT T
, and 

x , respectively.) [26, 27]. Therefore, in general, in the case of 

suction/blowing, or if the temperature of the lateral mass flux 

depends on the longitudinal coordinates x along the bed 

surface, the accuracy of the similarity solution should be 

evaluated, or a non-similar method should be used to solve the 

problem. Jafarimoghaddam [28] has focused on a permeable 
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linearly stretching/shrinking wall in stagnation flow immersed 

in nanofluids. He has concluded that the influence of important 

parameters in classical nanofluid modeling is ambiguous. He 

also has found that the lower branch of dual solutions (for 

example, up and down) is not supposed to be in actual physics. 

Roşca et al. [29] have investigated a steady mixed convection 

stagnation flow of a hybrid nanofluid. They have also applied 

the similarity solution method using second-order slip velocity. 

Ferdows et al. [30] have investigated the steady two-

dimensional free convection flow of a saturated nanofluid on a 

flat plate in a porous medium, where the flow is laminar and 

incompressible. Also, the effects of thermal and mass transfer 

have been considered in their study. They also have solved the 

problem using the similarity solution method. They have 

presented the effects of the pertinent dimensionless parameters 

on the problem. Prasad et al. [31] have presented a similar 

solution of the laminar mixed convection flow around a heated 

surface in a two-dimensional stagnation point region. Duwairi 

et al. [32] have used a numerical solution to investigate the 

effects of the oscillating plate temperature on the transient 

mixed convection heat transfer of a porous medium saturated 

by a vertical porous surface.  Ishake et al. [33] have presented a 

similar solution of the flow through a porous medium bounded 

by a vertical surface in the steady stagnation point. 

Srinivasacharya and Surender [34] have studied the effects of 

thermal and mass stratification on the flow of the natural 

convection boundary layer on a vertical plate embedded in a 

porous medium saturated with a nanofluid. Abdullah et al. [35] 

have studied the non-similar solution of unsteady convection 

nanofluid mixing of a hot vertical plane in stagnant flow, in 

which time is chosen as the non-similar variable. Therefore, the 

changes in the longitudinal axis are not taken into account. 

However, when the temperature depends on the longitudinal 

coordinate x-axis, the x-axis should be selected as the non-

similar variable. Ferdows and Alzahrani [36] have investigated 

a steady two-dimensional free convective flow of a nanofluid 

on a flat plate saturated in a porous medium, where the flow is 

laminar and incompressible. The effects of thermal and mass 

convection are taken into account in their study. They also 

solved the problem using the similarity solution method and 

presented the effects of the pertinent dimensionless parameters 

on the problem. Waini et al. [37] have investigated a stagnation 

hybrid nanofluid flow on a stretching/shrinking cylinder. They 

used the similarity solution to find the increase in heat transfer 

rate and skin friction coefficients in the presence of nanofluid. 

Recently, Khan et al. [38] have considered a convective 

stagnation flow mixed with the presence of radiation on a 

yawed cylinder. Their solution method was the non-similar and 

used nanofluid as the working fluid. They have shown the 

effect of volume fraction of hybrid nanoparticles, mixed 

convection, and radiation in their research. Note that a Nusselt 

number for mixed convection gives a higher heat transfer 

coefficient than the forced convection in a specified range of 

Rayleigh and Reynolds numbers, which is one of the 

advantages of combined convection [39].  

Rashad et al. [40] have investigated mixed convection flow 

micropolar nanofluid. They have considered the opposing and 

assisting convective flows of Titania and Alumina 

nanoparticles by a non-similar solution using the Rung-Kutta 

method. They have shown that Biot number, material 

properties, mixed convection, and nanoparticle volume fraction 

affect heat transfer. However, they have not used the 

longitudinal x-axis as the secondary non-similar variable. 

Hossein et al. [41] have considered mixed convection of a 

CuO-water nanofluid in a trapezoidal enclosure, and a rotating 

cylinder in the enclosure with special boundary conditions in 

which the lower space of the enclosure has a porous medium. 

They have found that increasing the volume fraction, Rayleigh 

and Darcy numbers, the angular velocity of the cylinder and the 

inner radius increases the average Nusselt number. Among the 

applications of this method in the solution of heat or mass 

transfer problems are a two-dimensional G-jitter hybrid 

convective flow of a nanofluid by Uddin et al. [42], and 

Magnetohydrodynamics transport of a non-Newtonian 

nanofluid on a circular cylinder by Prasad et al. [43]. Another 

research on nanofluid, in an enclosure of mixed convective heat 

transfer has been done by Farhani and Abdulsaheb [44]; 

however, they have considered a square enclosure with Al2O3–

water nanofluid and have used Galerkin finite element method. 

Increasing the value of Rayleigh number, Darcy number, and 

solid volume fractions increase the average Nusselt Number, 

flow, and temperature gradient intensity. Recently, Nabwey et 

al.[45] considered a mixed convection flow nanofluid 

containing gyrotactic microorganisms with effects of 

Suction/injection by using a mathematical model on a vertical 

surface in a porous medium. They have shown that increasing 

the Peclet number increases the motile microorganism number. 

Also, the growth of the thermophoresis parameter provides 

conditions for injection, where the opposite behavior occurs in 

the case of suction. 

In this article, we are concerned about the mixed convection 

heat transfer and fluid flow of a nanofluid in a saturated porous 

medium in a stagnation point region. At the same time, the 

longitudinal coordinate (the x-axis) effects are considered. In 

the previous publications that use the non-similarity solution 

method, the secondary non-similar variable is not the 

longitudinal x-axis; accordingly, the variations of the 

parameters on the longitudinal x-axis are ignored, but is this 
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assumption valid? In the present paper, we consider the reality 

of the assumption. Non-similar solution method is obtained to 

solve the governing equations, with longitudinal coordinate x-

axis as the secondary non-similar variable. The effects of 

thermophoresis motion, Brownian motion, buoyancy force, 

more importantly, the effects of variations along the x-axis of 

longitudinal coordinate have been investigated. Again, in 

general, it is essential to note that in the presence of 

suction/blowing, or if the lateral mass flux temperature depends 

on the x-coordinates along with the substrate plate, the 

similarity solution method lacks the necessary precision and is 

not admitted. 

 
2. Problem Statement and Formulation: 

 

A schematic representation of the problem is shown in 

Figure 1. A horizontal fluid flow vertically moves towards a 

semi-infinite flat plate embedded (immersed) in a saturated 

porous medium. The mixed convection flow is dominant 

because the buoyancy force is not negligible. In the equilibrium 

state, consider that the plate surface is maintained at a constant 

nanoparticle fraction 
w and constant temperature 

wT . In 

contrast, the upper section of the y-axis is in 
whT , and the lower 

section is in 
wcT . The nanoparticle fraction and temperature in 

the far-field are   and T
, respectively. The buoyancy effect 

assists the upper and the lower sections of the flow because 
whT

is higher thanT
, and 

wcT is low.  

Notice that the problem is solved only in the buoyancy 

assisting regions (the heated region in Fig.1). 

 

In these conditions, the governing equations, including the 

conservation of mass, momentum, variations of pressure, 

energy, and nanoparticle volume fraction, for steady mixed 

convection, can be expressed as follows, respectively:   

 

(1) 0
u v

x y

 
 

 
 

 

(2) 

2

2

1 1

f

u u p u
u v u

x y x y K




 

    
     

    

 

    2Γ
1 1P

T

f

u T T g
K


   


  

  
        

  

 

(3) 
21 Γ

f

U Up
U U

x x K K



 
 

 


   

 
 

 

 (4) 

2

2m

T T T
u v

x y y


  
 

  
 

 

 

2

P T
B

f

C DT T
D

C y y T y

 


 

    
   

     

 

(5) 

2 2

2 2

T
B

D T
u v D

x y y T y

  
 



    
    

    
 

where   is porosity, K  is permeability, Γ  is empirical 

constant, 
T  is the volumetric thermal coefficient, 

TD  and 
BD  

are Thermophoresis and Brownian diffusion coefficients, 

respectively. A variety of potential pressures are also expressed 

in Eq. 3. Equation 4 is obtained by assuming that the pressure 

changes along the thickness of the viscous layer are negligible. 

Based on this, the pressure changes inside the viscous layer can 

be considered only along the longitudinal axis. The Bernoulli 

equation can be used for pressure variations outside the viscous 

layer.  

Also, boundary conditions can be expressed as follows: 
 

 (6) 
0 0,      y yu u U a x      

0 0 00,     ,       y y w y wv T T        

Equations can be transported to two non-dimensional 

coordinate systems by appropriate non-similarity variables,  
 

 (7) 

a
x


  ,  

a
y


  

 

Where ,    [23] are the non-dimensional variables in the 

directions of the x and y-axis, respectively, a is the strain, and 

 is the viscosity of the fluid. The velocities in the directions 

 and   in the new coordinate system can be shown by the 

function  and the above non-similar variables as follows, 

which satisfy the continuity equation: 

 

 (8) 

 ,
  '  u a f

 
   

3/2  'f d      

1/2 3/2 f
v a f  



 
   

 
 

Where ( ,  )f f    and the derivative relative to   is 

displayed with ('). Non-dimensional temperature and 

nanoparticle volume fraction also can be expressed as below:  
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 (9)    , ,      ,
w w

T T

T T

 
     

 
 

 

 
 

 
 

 

Equations 2,4 and 5 are transformed by using 7-10 in 

equations:  

 

(10) 

   2

1 21 Δ 1f f ff f


  


           

   
2

2 2

2

ξ
Δ ξ 1 2 'f f F f F F


         

 

(11)  2 2Pr Pr   Pr   Pr ξB Tf N N f R F               

 

 

(12)  2Sc Sc
'T

B

N
f f S F

N
     

 
       

Where Pr



 , 

B

Sc
D


  are the Prandtl and Schmidt 

Numbers, respectively (Pr 10)Sc   and other parameters are 

presented in the following table:  

 

1

1

a K


   

first order dimensionless, 

resistance of permeability 

2 1Δ Δ   
second order 

dimensionless, resistance 

of permeability 

 

 1
P

f

C

C





  An arbitrary coefficients 

2

g

a a





 1 P
w

f


 




 
   
 

 

An arbitrary coefficients 

1   wT
T

T TD
N

T







1 1T TN N  

𝑁𝑇: Thermophoresis 

parameter 

 1
B

B w

D
N  


   

1 1B BN N  

𝑁𝐵: Brownian motion 

parameter 

 
2 2

x

x

g T TGr

Re a x


 
   The mixed convection 

parameter 

Due to the close weak correlation between the x dimension 

and the temperature, the similarity solution has an error [14], so 

the non-similarity solution is used in the present paper. For this 

purpose, the derivatives of the functions , ,f    for   are called 

F, R, S, respectively: 

 

(13) 
,     ,   

f
F R S

 

  

  
  
  

 

The equation obtained from the derivative of equations 10 

to 12 with respect to   is the effect of the longitudinal 

dimension of that equation. Here, second-order derivatives 

relative to   are omitted due to their small size: 

 

(14) 

   2

1

1
1 Δ 1F f ff f F


           

     
 24 3f F Ff fF F F F


 


           

     2

2 22Δ 1 f f F S R          

 

(15) 

Pr Pr PrR f F fR           

         Pr 2PrB TN R S N R          

         Pr 2 2f R F FR R F          

 

(16) 

 
Sc T

B

N
S f F fS R

N
   


         

       
 

Sc
2 2f S F F S S F   


      

The boundary conditions for solving the above differential 

equation system are: 
 

(17) 

0 00,    0,       1 f f f    
     

0 1 ,       0      

0 1 ,       0      

 

(18) 

0 00,    0,       1 F F F    
     

0 1 ,       0R R     

0 1 ,       0S S     
 

Here, six boundary conditions at the beginning of the 

boundary are unknown, so we have to use the shooting method 

0 0 0 0 0 0)(  ,   '  ,   ' ,    ,    '   ,    'f F R S           
   . 
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3. Numerical Solution Method: 

We use the 45 Runge–Kutta method with the shooting approach 

to solving the ordinary differential equations. In this method, 

first, the answer is obtained with two accuracies of fourth and 

fifth order, and they are compared with each other. If the 

accuracy of these two is more than the desired accuracy, the 

answer is accepted. Otherwise, the mesh sizes become smaller, 

and this operation continues until the desired accuracy is 

achieved. Fourteen first-order differential equations with six 

initial guesses must be solved simultaneously to obtain the 

answers. We have chosen the minimum accuracy of the answers 

to be 0.00001. Note that the above equations are nonlinear, and 

therefore, the initial guess for finding the answer faces certain 

complexities. Since forming Jacobin equations which based on 

Newton's method is first-order accuracy, finding the initial 

guess by this method has minimal application, so it has only 

been used to increase the accuracy from 0.001 onwards. 

Remember that Runge-Kutta-Fehlberg Method (or RKF45) is a 

method of order O(h4) with an error estimator of order O(h5). 

The prepared code in this article is very complex and uses 

several consecutive methods to find the answers. First, by 

removing equations 14 to 16 and non-similar variables, the 

answers to the similarity problem are obtained. The answers are 

the initial guesses for the primary problem. It is clear that in 

this case, we get the answers much faster. Then, at each step, by 

adding a minimal amount of non-similar effects and their 

equations, for example, 1%, we gradually approach the 

solutions of the non-similar problem. The code automatically 

increases the convergence step by at least 0.001. Then the 

accuracy of the answers increases to 0.00001 by forming 

Jacobin equations based on Newton's method. Also, the code 

intelligently detects inverse changes leading to divergent 

answers and corrects them with appropriate changes. 

4. Validation: 

We have compared between similarity and non-similarity 

solutions for validation. In general, the solution of similarity 

and non-similarity will not have the same answers to this 

problem when the temperature has a variable value relative to 
 -axis; We are only allowed to use the solution of non-

similarity; however, the similarity solution is acceptable only 

for particular points of the longitudinal axis. We have used 

these particular points for validation and, even more 

importantly, for the accuracy of the non-similarity solution. 

 
In Figure (2), we show the similarity and non-similarity 

solutions of the changes f  , which represent the velocity 

variations in the x-direction, for the case where   and   have a 

constant value on the longitudinal axis  , , 1wall wall   .  As can 

be seen, with a point close to the stagnation point,  = 0, the 

difference between the two similarity and non-similarity 

solutions increases. The non-similarity solution graph of  = 1 

approximately matches the similarity solution one, and the error 

is less than 2%, which indicates the maximum error of the non-

similarity solution. Note that the error is due to a difference 

between the derivatives relative to   and the zero in the 

momentum equation (Eq. 14) at  =1. Furthermore, the 

maximum difference between the answers to the non-similarity 

solution at the points  =0.25 and  =1 is about 9%, so the 

maximum non-similarity error between points close to the point 

of stagnation and far away from it cannot be more than 7%. 

Also, since the more the non-similarity diagrams coincide with 

the tendency towards =1, we conclude that expansion with a 

first-order approximation is suitable for these points. It can be 

concluded that the first-order expansion  =0.5 and more is 

specific accurate enough. In contrast, with a further decrease in

 , for higher accuracy, higher-order expansion may be 

required, which is beyond the scope of this paper. 

 

In Figure 3, we show the similarity and non-similarity solutions 

of the f   curve in the case of  ξ n    , n = 1. Interestingly, 

the f  profile answers of the non-similarity solution are much 

closer to that of the similarity solution in the previous case, 

where the values of   and   were constant on the longitudinal 

axis ; So the profiles for 0.5   are almost the same. The 

maximum difference between the two curves is less than 4%. 

Note that part of the 4% error is due to first-order expansion in 

problem-solving. Also, if   was not explicitly present in the 

equations, we were allowed to use the similarity solution, 

which means that the similarity solution had to be answered 

with sufficient accuracy [18]. Again, if the lateral mass flux has 

temperature variations as wT T Ax 

  , and the 

suction/blowing velocity is given by ~ n

wv a x , then the 

similarity solutions are admitted, if  1

2
n

 
   [17,18]. Here, 

the validation of temperature equations is done the same way 

that the validation of motion equations. 

 

Temperature profile changes for constant wall temperature  

wall Constant   are shown in Figure 4. According to what was 

seen in Figure 2, the difference between similarity and non-

similarity diagrams is expected to be significant in small . 

Gradually approaching  = 1, this difference is minimized, 

which can be seen in Figure 4. 
 

Here, since the temperature changes follow the equation 

wall  , we expect to have to use the non-similarity solution 

[17]. As shown in Figure 5, the similarity and non-similarity 

curves at  = 0.75,1 have been matched with reasonable 

accuracy, more than 99%, which indicates the accuracy of the 
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similarity solution at points far from the point of stagnation in 

heat transfer. 

 

5. Results and Discussion  

In this section, we present the results and discuss them. Here, 

the effect of the Brownian motion, thermophoresis motion, 

buoyancy force, and the effect of the study point position along 

the longitudinal x-axis, which is assumed to be negligible in the 

similarity solution are investigated. First, complete problem-

solving results are provided for all unknown variables (Figures 

6 and 7): 

As can be seen in Figure 7, the velocity derivative respect 

to x (or  ) in the direction of the  -axis tends to have a 

unique value. The unique value is proportional to potential 

velocity. Derivatives of other variables tend to be zero relative 

to x . 

 
In Figure 8, we can see that the effect of 

BN changes in 

shear velocity and stress on the wall is negligible. 
In Figure 9, with increasing

BN , the slope of temperature 

change in the region close to the wall 0    increases, and this 

will increase the heat transfer in this region because this slope 

has a direct effect on the Nusselt number.  

 

 
As shown in Figure 10, the mass transfer of nanoparticles to 

the outside of the boundary layer decreases with increasing the

BN ; however, the intensity of the changes gradually becomes 

minimal. Note that the difference between 0.1BN   and 

0.2BN   curves is high; however, with increasing 
BN  to 0.4, 

these differences are minimal. 
In Figure 11, as 

BN  increases, the slope of the change 

curve becomes smooth in the middle distances between the wall 

and the end of the boundary layer, as in small amounts of 
BN , 

this curve changes abruptly, but with increasing 
BN , these 

sudden changes gradually decrease, and the curve becomes 

smooth. 

 
 

In Figure 12, more Brownian motions near the wall, which 

is due to the greater mass of nanoparticles near the wall and 

causes severe temperature changes in this region. However, by 

gradually moving away from the wall, the nanoparticle mass 

decreases. As a result, the gravitational forces decrease, and the 

slope of temperature changes decreases. In other words, with 

increasing 
BN , the slope of velocity changes near the wall 

becomes steeper. Increasing velocities near the wall, the 

convective heat transfer increases. In contrast, the thickness of 

the velocity boundary layer changes slightly. 

 

As shown in Figure 13, contrary to 
BN , the effect of 

TN  on 

the curves 𝑓′ and 𝑓" is negligible. 
 
 

In Figure 14, we show temperature curves for 
TN changes. 

As the 
TN  increases, the temperature gradient increases to half 

the thickness of the thermal boundary layer and then decreases 

again. Contrary to
BN , which had a decreasing trend for larger 

BN  values, the difference in the curve remains almost constant. 

With increasing the 
TN  number from 0.05 to 0.10, the 

differences in the temperature curves are almost the same as 

that of the 
TN  number from 0.20 to 0.25. 

In Figure 15, at distances away from the wall, with 

increasing 
TN , we see sudden changes in the nanoparticles 

mass. Mass transfer of nanoparticles along the boundary layer 

thickness and the slope of the changes at 0.05TN   is smooth 

and without sharp changes. As 
TN  increases, the slope of the 

curves gradually becomes steeper so that the inflection point of 

the curve is around 0.7  .  

 Increasing 
TN  to 0.25, the slope of the curves is reversed 

and takes negative values. At the same time, the changes of the 

curves with increasing 
TN  are continuously increasing. It is 

noteworthy that the trend changes   near the wall with 

increasing 
TN  inversely that it is far away. Hence, the slope of 

the curve decreases with increasing 
TN  and then increases in 

the middle along the wall to the edge of the boundary layer. 

 

In Figure 16, the slope changes of    and   curves versus 

distance from the wall,  , are shown for various 
TN . The slope 

of the curve   increases with increasing the 
TN  number in the 

regions close to the wall to the middle of the boundary layer. 

From this point to the edge of the boundary layer, with 

increasing
TN , the slope of the   curve decreases and then 

increases. Contrary, the slope of the    curve for each 
TN  is 

almost constant. 

 

In Figure 17, the changes in temperature, nanoparticle 

mass transfer, and velocity curves along the plane for 
TN  

changes from 0.05 to 0.25 are shown. We can see a slight 

difference in the f   curves compared to the more considerable 

difference in the   and  curves. As a result, 
TN  change has a 

negligible effect on 𝑢 velocity.  

 
We can see in Figure 18, that as the ratio of the buoyancy 

force to Reynolds square increases, the flow velocity is 

severely affected. Therefore, the effect of   on changes in 

velocity and shear stress on the wall is more significant than 

BN  or 
TN . 



 

 

 9  

 
In Figure 19, with a change in  , the rate of temperature 

gradient and the heat transfer changes slightly, and this trend 

gradually decreases with increasing  . At the same time, the 

shear stress on the wall and the velocity inside the boundary 

layer are strongly affected. However, these velocity changes 

cause a slight change in temperature or nanoparticle mass 

transfer. 

As shown in Figure 20, the changes  , as well as the 

changes in its slope for   changes, are minimal. 

 
 

As shown in Figure 21, the effect   on the slope curves of 

temperature and nanoparticle mass is much less than that of 

BN  and
TN . 

 

In Figure 22, we show the number of significant changes in 

f   compared to small changes in   and   with an increasing 

value of  . 

 

Here, in Figures 23 and 24, assuming that the values of   

and   are constant on the wall. The changes of , ,f f   , and   

variables at different values   versus the thickness of the 

boundary layer are shown. As can be seen, the variables are 

very sensitive to the change of  . Of course, we expected such 

changes since convective heat transfer plays a significant role 

in the problem (  = 1). The changes are intensified by 

increasing   in small  . In Figure 23, the overall shape of u  

velocity and shear stress profiles tend to be that of forced 

convection. The boundary layer thickness decreases from about 

4.0 to 1.9 with increasing  . As shown in Figure 24, the 

thickness of the thermal and the nanoparticle mass boundary 

layers increase from about 1.3 to 3.6 and 1.6 to 4.0, 

respectively.  

 
Figure 25 shows the changes of the   and   in the case 

they are changing on the longitudinal axis , ,a a      ,  

1a  . As expected, when θ decreases with decreasing  , the 

effect of natural convection heat transfer increases; however, 

the f   profile becomes more similar to that of natural 

convection. In sum, the 
TN  change is due to a change in 

  /T T T  , so it directly increases the slope intensity of the 

temperature curve, and this changes the balance between the 

thermophoresis and frictional forces (Eq. 19). Here, in addition 

to changes in temperature curves, we also see a change in mass 

nanoparticle transfer. This change is so severe that it creates a 

point of deflection in the curve of mass nanoparticle transfer.  

Also, the fluid velocity, which is affected by the buoyancy 

force, is expected to change significantly as the temperature 

changes. However, contrary to expectations, these changes are 

negligible (Eq. 19). 

(19) 

 
   

2 2

2 2 Γ

2

u U
u U u U

x k k



 

 
   


 

     
2

2
1 1

p

T

f

u
T T g

y


    


  

  
        

   

 

On the other hand, increasing the buoyancy force relative to 

the inertial force,  , has a direct effect on the f   and f   

curves while affecting   and   slightly. In contrast, the change 

in nanoparticle mass transfer affects all variables ,f f   and  , 

while the change   is significant.  

6. Conclusion: 

In the present paper, we concern with the mixed convection 

heat transfer and fluid flow of a nanofluid in a saturated porous 

medium in a stagnation point region. At the same time, the 

longitudinal coordinate (the x-axis) effects are taken into 

account. In previous papers in the literature, the longitudinal 

coordinate effects are assumed to be negligible. Whereas, in the 

presence of suction/blowing, or if the temperature of the lateral 

mass flux depends on the x-coordinate along the substrate plate, 

the similar assumption of profile in the x-coordinate along is 

not accepted. The non-similar solution of a saturated nanofluid 

flow, heat, and mass transfer under dual effects of stagnation 

flow and natural convection heat transfer in a porous medium is 

presented in this paper. The dimensionless x-axis coordinate 
is considered as the secondary non-similar variable, so the 

effects of forced convection, where the plate temperature 

depends on the longitudinal x-axis, can be appropriately 

investigated. We use the 45 Runge–Kutta methods with the 

shooting approach to solving differential equations. The effects 

of changes in the variables of thermal motion, Brownian 

motion, and buoyancy forces have been studied by considering 

the longitudinal effects of the x-axis, which is the innovation of 

the article. 

 The results show that: 

1- The similarity solution has not sufficient accuracy in this 

problem. 

2-  In solving the equations of motion, we show that the 

minimum accuracy for the first-order non-similar 

solution in regions  <0.25, very close to the stagnation 

point, is 96%, while in regions greater than 0.5   it 

increases to 98%. 

3-  The effect of 
TN changes in longitudinal velocity, and 

shear stress are almost negligible. 

4-  
BN  changes also have little effect on them. 



 

 

 10  

5- Increasing the natural convection has a significant effect 

on the longitudinal velocity profile, particularly in 

reducing the thickness of the velocity boundary layer.  

6- Increasing   also significantly reduces shear stress on 

the wall. 

7- However, increasing   does not increase heat transfer 

since the forced convection reduces.  

8- Increasing the thermophoresis and Brownian motion 

increases the heat transfer within the thermal boundary 

layer, but the higher the amount, the less the effect.  

9- As the point of stagnation approaches, regardless of 

whether the temperature and the number of nanoparticles 

on the bottom plate are constant or variable, the rate of 

change in the longitudinal velocity, shear stress, 

temperature profile, and mass distribution profile of the 

nanoparticle is severely affected. Interestingly, the 

thickness of the velocity boundary layer decreases 

rapidly, up to 38%, as it moves away from the point of 

stagnation.  

10- Also, the shear stress becomes negative at some points 

close to the point of stagnation, which is a sign of 

backflow in the presence of convective heat transfer in 

stagnation flow. 
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Fig. 1 Figure 1: schematic diagram of the problem (S.P.: Stagnation Point) 

Fig. 2 Figure 2: u velocity variations along  , 

, ,    1B TN N  , 0.25,  0.33,  0.5,  0.75,  1.0  , 1wall wall    

Fig. 3 Figure 3: u velocity variations along  , 

, ,    1B TN N  , 0.25,  0.5,  0.75,  1.0   , 1n

wall wall      

Fig. 4 Figure 4: temperature variations versus  , 

, ,    1B TN N  , 0.25,  0.33, 0.5,  0.75,  1.0   , .wall wall Const    

Fig. 5 Figure 5: temperature variations versus  , 

, ,    1B TN N  , 0.25,  0.33, 0.5,  0.75,  1.0   , 1n
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Fig. 6 Figure 6: All variables and their derivatives respect to  , 

, ,   , 1B TN N     

Fig. 7 Figure 7: All variables and their derivatives respect to ,  

, ,   , 1B TN N     

Fig. 8 Figure 8: Velocity u , and shear stress variations along, 

,   , 1TN    , 0.1,0.2,0.3,0.4BN   

Fig. 9 Figure 9: Temperature and its derivative variations along   

,   , 1TN    , 0.1,0.2,0.3,0.4BN   

Fig. 10 Figure 10: Nanoparticle mass and its derivative variations along  , 

,   , 1TN    , 0.1,0.2,0.3,0.4BN   

Fig. 11 Figure 11: Derivatives of the temperature and Nanoparticle mass along  , 

,   , 1TN    , 0.1,0.2,0.3,0.4BN   

Fig. 12 Figure 12: Temperature, Nanoparticle mass, and u velocity variations along  , 

,   , 1TN    , 0.1,0.2,0.3,0.4BN   

Fig. 13 Figure 13: u velocity and shear stress variations along  , 

,   , 1BN    , 0.05, 0.1, 0.15, 0.2, 0.25 TN   
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Fig. 14 Figure 14: Temperature and its derivative variations along  , 

,   , 1BN    , 0.05, 0.1, 0.15, 0.2, 0.25 TN   

Fig. 15 Figure 15: Nanoparticle mass and its derivative variations along  , 

,   , 1BN    , 0.05, 0.1, 0.15, 0.2, 0.25 TN   

Fig. 16 Figure 16: Derivatives of Nanoparticle mass and Temperature variations along  , 

,   , 1BN    , 0.05, 0.1, 0.15, 0.2, 0.25 TN   

Fig. 17 Figure 17: Temperature, Nanoparticle mass, and u  velocity variations along  , 

,   , 1BN    , 0.05, 0.1, 0.15, 0.2, 0.25 TN   

Fig. 18 Figure 18: u velocity and shear stress variations along  , 

,  , 1, 1, 2, 3B TN N     

Fig. 19 Figure 19: Temperature and its derivative variations along  , 

,  , 1, 1, 2, 3B TN N     

Fig. 20 Figure 20: Nanoparticle mass and its derivative variations along  , 

,  , 1, 1, 2, 3B TN N     

Fig. 21 Figure 21: Derivatives of Nanoparticle mass and temperature variations along  , 

,  , 1, 1, 2, 3B TN N     

Fig. 22 Figure 22: Temperature, Nanoparticle mass, and u velocity variations along  , 

,  , 1, 1, 2, 3B TN N     

Fig. 23 Figure 23: u velocity and shear stress variations along  , 

, ,    1B TN N  , 1.0, 0.33, 0.25, 0.17, 0.1   , .wall wall Const    

Fig. 24 Figure 24: Temperature and nanoparticle variations versus  , 

, ,    1B TN N  , 1.0, 0.33, 0.25, 0.17, 0.1   , .wall wall Const    

Fig. 25 Figure 25: temperature,  , and nanoparticle,  , variations versus  , 

, ,    1B TN N  , 1.0,  0.75,  0.50, 0.25, 0.2    , ,        
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Figure 1: schematic diagram of the problem (S.P.: Stagnation Point) 

 

 

 

 

 

 
Figure 2: u velocity variations along  , 

 , ,    1B TN N  , 0.25,  0.33,  0.5,  0.75,  1.0  , 1wall wall     
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Figure 3: u velocity variations along  , 

 , ,    1B TN N  , 0.25,  0.5,  0.75,  1.0   , 1n

wall wall      

 

 
Figure 4: temperature variations versus  , 

, ,    1B TN N  , 0.25,  0.33, 0.5,  0.75,  1.0   , 
wall wall Constant    
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Figure 5: temperature variations versus  , 

, ,    1B TN N  , 0.25,  0.33, 0.5,  0.75,  1.0   , 1n

wall wall      

 

 
Figure 6: All variables and their derivatives respect to  , 

, ,   , 1B TN N     
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Figure 7: All variables and their derivatives respect to ,  

, ,   , 1B TN N     

 

 
Figure 8: Velocity u , and shear stress variations along, 

,   , 1TN    , 0.1,0.2,0.3,0.4BN   
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Figure 9: Temperature and its derivative variations along   

,   , 1TN    , 0.1,0.2,0.3,0.4BN   

 

 
Figure 10: Nanoparticle mass and its derivative variations along  , 

,   , 1TN    , 0.1,0.2,0.3,0.4BN   
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Figure 11: Derivatives of the temperature and Nanoparticle mass along  , 

,   , 1TN    , 0.1,0.2,0.3,0.4BN   

 

 
Figure 12: Temperature, Nanoparticle mass, and u velocity variations along  , 

,   , 1TN    , 0.1,0.2,0.3,0.4BN   
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Figure 13: u velocity and shear stress variations along  , 

,   , 1BN    , 0.05, 0.1, 0.15, 0.2, 0.25 TN   

 

 
Figure 14: Temperature and its derivative variations along  ,  

,   , 1BN    , 0.05, 0.1, 0.15, 0.2, 0.25 TN   
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Figure 15: Nanoparticle mass and its derivative variations along  , 

,   , 1BN    , 0.05, 0.1, 0.15, 0.2, 0.25 TN   

 

 

 
Figure 16: Derivatives of Nanoparticle mass and Temperature variations along  , 

,   , 1BN    , 0.05, 0.1, 0.15, 0.2, 0.25 TN   
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Figure 17: Temperature, Nanoparticle mass, and u  velocity variations along  , 

,   , 1BN    , 0.05, 0.1, 0.15, 0.2, 0.25 TN   

 

 

 
Figure 18: u velocity and shear stress variations along  , 

,  , 1, 1, 2, 3B TN N     
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Figure 19: Temperature and its derivative variations along  , 

,  , 1, 1, 2, 3B TN N     

 

 
Figure 20: Nanoparticle mass and its derivative variations along  , 

,  , 1, 1, 2, 3B TN N     
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Figure 21: Derivatives of Nanoparticle mass and temperature variations along  , 

,  , 1, 1, 2, 3B TN N     

 

 
Figure 22: Temperature, Nanoparticle mass, and u velocity variations along  , 

,  , 1, 1, 2, 3B TN N     
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Figure 23: u velocity and shear stress variations along  , 

, ,    1B TN N  , 1.0, 0.33, 0.25, 0.17, 0.1   , 
wall wall Constant    

 

 

 
Figure 24: Temperature and nanoparticle variations versus  , 

, ,    1B TN N  , 1.0, 0.33, 0.25, 0.17, 0.1   , 
wall wall Constant    

 

 



 

 

 27  

 
Figure 25: temperature,  , and nanoparticle,  , variations versus  , 

, ,    1B TN N  , 1.0,  0.75,  0.50, 0.25, 0.2    , ,        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


