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Abstract 

Chronic Obstructive Pulmonary Disease (COPD) is a common respiratory disease characterized by chronic 

inflammation of the lung airways and destruction of lung tissue that leads to airflow limitation. Asthma and Chronic 

Obstructive Pulmonary Disease are the two most common respiratory diseases that together cause approximately 

180,000 deaths worldwide every year. Moreover, the death rate of COPD is eight times higher than the death rate of 

asthma. COPD is the third leading cause of death worldwide. Time-frequency transform has been used to diagnose 

and evaluate the severity of this disease using recorded signals, which are dynamic and non-static. In this research, 

the S transform is used as a tool to extract features from the lung signal. S transform has a higher frequency 

resolution than wavelet transforms at low frequencies, and at high frequencies, it has a lower frequency resolution 

but a higher time resolution. After feature extraction using S transform, mathematical statistics were applied to 

reduce feature dimensions. The results indicate that with K-fold validation for K-Nearest Neighbors (KNN) 

classification, the accuracy, precision, and sensitivity values are 98.39%, 97.45%, and 93.88%, respectively. For 

Support Vector Machine (SVM), the results are 95.23%, 92.59%, and 83.33%, respectively. 

Keywords: Classification, COPD, Lung Sound, S Transform, Time-Frequency Features 

INTRODUCTION 

Chronic obstructive pulmonary disease, abbreviated as COPD, is a disease that is both preventable and treatable. 

People with this disease usually struggle to breath more than healthy people, which causes shortness of breath. At 

the beginning of the disease, a person may experience symptoms such as shortness of breath during exercise. As the 

disease progresses, breathing, especially exhalation, becomes increasingly difficult [1]. Symptoms of COPD include 

shortness of breath, cough, and phlegm production. However, some patients may experience more severe symptoms 

such as frequent respiratory infections, chest pain, and fatigue. This disease is currently one of the leading causes of 

death in the world, and it is expected that the number of deaths will increase in the coming years [2]. The increasing 

severity of chronic obstructive pulmonary disease indicates worsening symptoms and significant adverse outcomes 

for patients. Exacerbations of this disease cause increased airway and systemic inflammation and physiological 

changes [3].  

The increase in disease severity and airway inflammation is often caused by infections. Viral infections are a major 

cause of this disease, although bacterial infections and environmental factors such as air pollution, geographical 

conditions, and ambient temperature can also contribute to chronic obstructive pulmonary disease [4]. Chronic 

obstructive pulmonary disease affects more than 250 million people worldwide and has significant economic costs 

[5]. In early childhood, severe viral and bacterial lung infections have been associated with reduced lung function 

and increased respiratory symptoms in adulthood, contributing to COPD development [6]. Sound can be produced 

from a person's lungs during the breathing mechanism. These sounds are classified into two categories: natural 

breathing sounds and adventitious sounds. Normal breath sounds are produced with no lung problem, but wheezing 

and crackling sounds are usually associated with lung pathology [7]. This article presents a review of clinical 

auscultation as a diagnostic tool for lung diseases and the recent advances that have made it possible to obtain more 

objective observations compared to the past. Quantitative lung sounds are related to clinical, physiological, and 

radiological information. Accurate diagnosis of lung sounds and their correlation with clinical findings can be a 

powerful tool in diagnosing lung diseases [8].  

This study involves the use of lung sounds to diagnose and classify chronic obstructive pulmonary disease (COPD) 

through machine learning techniques with high accuracy. This method can be an effective tool to assist doctors and 

specialists in the field of health. Machine learning (ML) is a suitable approach for disease prediction, decision-

making, and diagnosis that does not require human intervention. This technique is rapidly growing in the medical 

industry, from disease diagnosis to medical imaging [9]. COPD is treated with lifestyle changes such as smoking 

cessation and breathing techniques, prescription medications such as bronchodilators and corticosteroids, 

supplemental oxygen therapy, and pulmonary therapy. For more severe cases, surgery is sometimes an option. 

Figure 1 shows a representation of the lung cycle for COPD patients. 
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This study aims to diagnose COPD and its severity by extracting appropriate features in the time-frequency domain 

resulting from S transform. The S transform has a higher frequency resolution at low frequencies and a lower 

frequency resolution at high frequencies but a higher time resolution. After extracting the feature using S transform, 

mathematical statistics have been applied to reduce the dimensions of the feature. The rest of the paper is organized 

as follows: Section II describes the literature reviews. Section III discusses the methods and materials. Section IV 

describes the results; after that, section V concludes. 

Related works 

In recent years, several clinical studies have explored the potential use of artificial intelligence in medicine. 

Examples include the assessment of changes in pulmonary function and their impact on the quality of life, the 

number of treatments performed on patients, the rate of hospitalization, mortality due to the disease, and patient 

satisfaction. In this context, special attention has been given to patients with COPD. 

In 2020, Moll et al. used a random forest algorithm with 30 clinical features as input to predict disease progression 

in patients with COPD. The most informative features were then used in a Cox regression analysis to predict 

mortality. It should be noted that this method was compared to other statistical and machine-learning models. The 

models were trained on individuals with moderate-to-severe COPD from a subset of individuals in the COPD 

Genetic Epidemiology (COPDGene) study and their predictive performance was evaluated on the remainder of 

individuals with moderate-to-severe COPD in COPDGene and the Longitudinal COPD Assessment to identify 

surrogate endpoints for predictive testing. The Machine Learning Mortality Prediction COPD (MLMP-COPD) 

model resulted in a C index of ≥ 0.7 in COPDGene [10]. 

Levy et al. have presented their research on the possibility of automatic COPD diagnosis using continuous oximetry 

data analysis. Levy and colleagues hypothesize that patients apply specific COPD patterns or dynamics to their 

oximetry sets that, using given information, may act on these conditions. In this study, 350 patients were studied, 

were trained with the help of a random forest classifier and using the extracted features, and were evaluated using 

nested cross-validation. A total of 8 COPD subjects out of 70 were misclassified. No severe cases were detected. 

[11]. 

Spathis and colleagues investigated clinical decision support systems in diagnosing and treating chronic obstructive 

pulmonary disease. The results of the machine in this study showed that in the case of chronic obstructive 

pulmonary disease, the Random Forest classifier outperforms other techniques with an accuracy of 97.7%. At the 

same time, the most prominent features for diagnosis include smoking, forced expiratory volume, age, and vitals. 

Classification is mandatory [12]. 

Kandaswamy et al. have described in an article that since the sound signals of the lungs are not constant, the 

conventional frequency analysis method is not very successful in diagnostic classification. This article deals with a 

new method of analyzing lung sound signals using wavelet transform and classification using artificial neural 

network (ANN). Lung sound signals were analyzed into frequency sub-bands using wavelet transform, and a set of 

statistical features were extracted from the sub-bands to show the distribution of wavelet coefficients. An artificial 

neural network-based system, trained using a flexible backpropagation algorithm, was implemented to classify lung 

sounds into one of six categories: normal, wheeze, crackle, squawk, stridor, or rhonchus [13]. 

In the study by Chung. et al., a retrospective cohort study was used, which included 595. Checking the plan 

manually on a group to diagnose asthma based on PAC. Then, in the next step, half of the data, i.e., 298 data, were 

used as training data, and the rest of the samples were used as test data using the NLP-PAC algorithm. The data 

distribution was 160 men and 268 white women, and the average age was 2.3 years. Description, specificity, 

positive predictive value, and negative predictive value for the NP algorithm in predicting asthma status were 92%, 

96%, 89%, and 97%, respectively [14]. 

Using machine-based algorithms by Lu et al., Such as regression, simple business decision-making, and the 

perceptron algorithm, were used to predict the onset of severe asthma in 2010 patients. However, the model based 

on logistic regression achieved 90% discovery and 83% specificity [15]. 
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Prosperi et al. compared linear and non-linear models for predicting eczema and asthma. The method proposed in 

this study also follows this path and replaces eczema with chronic lung disease COPD. They suggested that more 

complex modeling is the appropriate solution to better understand the mechanisms of illness and personal health 

care. They argued that in addition to performance, the system must be interpreted in terms of complexity. The 

experiments considered the mentioned opinions and provided the ability to interpret them by ranking the features. In 

this study, several factors were found to overlap in the diagnosis of asthma and COPD. There was a higher level of 

sensitivity and specificity for non-linear models compared to other methods, particularly for asthma and wheezing, 

with an area under the receiver operating characteristic curve of 84%, 76%, and 64%, respectively [16]. 

In Liu et al.'s paper, automatic seizure detection is essential for diagnosing epilepsy and reducing the extensive 

workload of reviewing continuous EEGs. This work proposes a new approach, combining Stockwell transform (S-

Transform) with deep Convolutional Neural Networks (CNN), to detect the onset of seizures in long-term 

intracranial EEG recordings. The sensitivity obtained is 97.01%, and the accuracy is 98.12% [17]. 

In the article by Melekoğlu et al., for faster diagnosis of COPD and easier prevention of the disease, the use of Photo 

Plethysmography signal (PPG) was applicable. This study aims to determine whether COPD can be diagnosed with 

PPG. Two groups of healthy and sick signals were investigated. Each group of signals was first cleaned with a 

numerical filter method of 0.1-20 Hz. Then 25 cases of feature extraction were performed in time domains. 

According to the results, the highest performance values were obtained with 2 seconds data group and 99% 

sensitivity, 99% specificity, and 98.99% accuracy  [18]. 

Palaniappan et al. have described an article related to the analysis of lung sounds. At the beginning of the features, 

identifying the distinctive features of a decision plays a major role in the classification of lung sounds. The features 

can be extracted from the signals in the time, frequency, and time-frequency domains. The feature techniques 

commonly used in computer-based lung sound analysis are the regression model, Mel frequency coefficient, energy, 

entropy, generative features, and wavelet. The use of wavelet-based features in Kandasamy et al.'s work has been the 

basis for 100% classification accuracy for the training set using ANN [19]. 

Khan et al. objectively analyzed lung sound signals associated with COPD. Specifically, Empirical Mode 

Decomposition (EMD), a data-adaptive signal decomposition technique suitable for analyzing non-stationary 

signals, was employed to decompose non-stationary lung acoustic signals. Applying EMD to the lung sound signal 

results in intrinsic mode functions (IMFs) that are symmetric and band-limited. Analytical IMFs were then 

calculated through the Hilbert transform, which represents the instantaneous frequency content of each IMF. The 

Hilbert transform signal is analytic and has a complex representation including real and imaginary parts. Then, the 

Central Tendency Measure (CTM) was introduced to quantify the circular shape of the IMF analysis chart. The 

result was considered as a useful feature for the diagnosis of normal lung sound signal with ALS. The simulation 

results show that the analytical CTM IMFs have a strong ability to discriminate between normal and ALS lung 

sound signals [20]. 

In this study, we aimed to diagnose and evaluate the severity of chronic obstructive pulmonary disease based on the 

characteristics of the time and frequency of S transform applied to the pulmonary sound signal, which has not been 

widely studied for COPD diagnosis. 

Material and Methods 

The general block diagram of the research is presented in Figure 2. According to this block diagram, first, the 

necessary filters are applied to the lung sound signal, then the primary features are extracted using the proposed of 

combine the Discrete Cosine Transform and Discrete Orthogonal Stockwell Transform (DCT-DOST) algorithm, and 

finally, the features are reduced through mathematical statistics. Then, class label classification is applied to KNN 

and SVM classifiers. 
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DATABASE 

In this study, two stethoscopes were used to collect data through a clinical method. A Computerized Medical 

Instrumentation (CMI) database has been created with lung and heart sounds from patients with different stages of 

COPD, respiratory disorders, such as asthma and chronic bronchitis, and healthy breathing recordings from various 

individuals. Voluntary acceptance was assessed through a voluntary form with minimal information. Patients aged 

38 to 68 years are selected from different occupational groups, socio-economic statuses, and male and female 

genders for the analysis of disorders. The studied population consists of 13 female and 64 male. The distribution of 

diseases according to gender is shown in Table 1.  

During the study, healthy subjects and those with asthma were excluded from the testing group, and only individuals 

with COPD were examined. As a result, the publicly available database only contained information on subjects with 

COPD, while the database for asthmatic and healthy cases was excluded. 

The 16-channel database is acquired with lung and heart auscultatory sounds collected from 8 basic foci on both 

sides of every subject. Simultaneous recordings from 2 channels for the left and right body regions were made for 

the TR@ respiratory database. However, parallel recording of 2-channel hearing aid sounds can cause deviations in 

milliseconds. The coordinator needs a distinct point to separate the start of two adjacent recordings. In this study, the 

patient was asked to cough for the first 5 seconds before starting to breathe to provide a clear separation between 

recordings. Coughing during auscultation can cause an unexpected increase in the sound signal. Peaks in specific 

areas of sound can be automatically detected using the built-in CMI and marked with an annotation bar. 

Khan et al. also discuss the advantages of electronic stethoscopes over traditional stethoscopes, such as the ability to 

record and analyze sounds, and the potential for telemedicine applications [21]. 

Despite the specifications of the digital stethoscope, which reduces 85% of ambient noise, artificial sounds such as 

room acoustics, contact noise from the doctor, and high-frequency movement can cause friction between the skin 

and the diaphragm, leading to unwanted noise. To remove any offset, lung sounds were filtered using a high-pass 

filter at 7.5 Hz (Butterworth first-order DC filter). In addition, a low-pass filter at 10 kHz (Butterworth 8th-order 

filter) was used to reduce aliasing and high-frequency noise during the analysis [22].  

PRE-PROCESSING 

In general, filtering is a necessary step before processing to remove noise and signal interference. In this database, 

filtering was done to remove unwanted noise and friction between the stethoscope's diaphragm and the skin. In this 

section, a secondary filter will be used to remove signal interference. The filter used in this research is a Butterworth 

filter. 

In this database, the heart and lung signals can interfere with each other due to overlapping frequency ranges. The 

optimal frequency range of the lung signal is approximately 150 Hz to 2000 Hz, while the main frequency range of 

the heart signal is below 150 Hz [23]. To separate the two signals, a 4th-order Butterworth band-pass filter was used 

with a lower cut-off frequency of 150 Hz and an upper cut-off frequency of 1950 Hz. 

The reason for using a 4th-order Butterworth filter is that increasing the order of the filter not only increases its 

sharpness but also causes a greater delay when applied. This results in increased computational requirements. 

Therefore, lower orders of the Butterworth filter are preferred, provided that the filter's cut-off frequency is 

appropriate. In this study, a suitable cut-off frequency has been obtained using a 4th-order filter, and therefore there 

is no need to increase the order of the filter. 

Due to the small number of subjects studied, each signal was divided into 3 segments to artificially increase the 

dataset, while maintaining the same label. This increased the number of samples from 59328 to 19776 per segment, 

and the number of sample increased from 42 to 126. 
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Stockwell Transform 

The lung signal is a dynamic and non-static signal. As a result, time-frequency transform is suitable for them. The 

transform studied in this research is the modified S transform. In the following, S transform and its modifications 

will be introduced. 

The S transform retains the good properties of both the short-time Fourier transform (STFT) and wavelet transform. 

The S transform can be considered a wavelet transform that is phase-corrected, and from another point of view, it 

can be seen as a special mode of the STFT that uses a Gaussian window with a variable length. The length of this 

Gaussian function depends on the variance of the function, becoming wider as the variance increases and narrower 

as the variance decreases. 

The S transform is defined by determining the local spectrum at a specific time point (t=τ) in a time series (x(t)). 

This is achieved by multiplying x(t) with a Gaussian window, centered at t=τ, and then taking the Fourier transform 

of the resulting product. 

2( , , ) ( ) ( , )






 
j fS t f x g t e d       

In the original S transform, a scaled Gaussian window called 𝑔(𝑡 − 𝜏, 𝜎) is used, with its midpoint at τ = t. For any 

given time, point t and frequency f, the S transform can be considered a collection of localized Fourier coefficients. 

These coefficients are obtained by analyzing only the part of the primary function that lies within a few cycles on 

either side of τ = t. As the frequency f increases, the relevant range of τ becomes Morse localized around t due to the 

scaled narrowing of the Gaussian window 𝑔(𝑡 − 𝜏, 𝜎). 

For this purpose, variance is considered as a function of frequency. The variable length of the window makes the 

resolution variable with the frequency. The scaled Gaussian window 𝑔(𝑡 − 𝜏, 𝜎) where the middle point of this 

window is located at the point τ=t, is in the form of equation 2:  
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By choosing the variance as  𝜎 =
1

|𝑓|
, the Gaussian window is calculated as equation 3. In equation 4, the Fourier 

transform of this Gaussian window is presented in terms of the variable τ. 
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When the Fourier transform of it is taken with respect to τ, which is also a Gaussian function, the resulting function 

is obtained. 

 
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Finally, S transform of ℎ(𝑡) signal can be expressed as equation 5: 

(2) 

(3) 

(4) 

(1) 



7 

 

   

 2 2

2
2,

2

 
 
   


 

τ t f

j πftf
ST τ f h t e e dt

π
 

As the frequency increases, the length of the Gaussian window decreases and leads to an increase in the length of the 

window in the frequency domain. Thus, in the S transform, the frequency resolution is better at low frequencies and 

the frequency resolution is lower at high frequencies, but the time resolution is increased. This transform has a 

weaker performance in detecting high frequencies than lower frequencies. To solve this issue, amendments have 

been proposed, which can be mentioned as a change [24,25]. 

Discrete Orthonormal Stockwell Transform (DOST) 

They provide an efficient method for computing the discrete canonical Stockwell transform, DOST. DOST is a 

modified version of S transform that solves many memory and computing issues, because Sin and Cos functions 

have been used [26]. In DOST, the input signal is displayed periodically. And while reducing the coefficients, it 

loses its shape. 

For how to combine the transforms to obtain the DOST transform, we follow the path of Wang and Orchard. The 

following basis vector defined by Stockwell is a sum of the Fourier basis vector that is time-shifted and phase-

corrected.  

 
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τ

/2
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v β  iπτ
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f v β

e π π
D k exp i kf exp i τf

N ββ
 

In this context, f represents the frequency, while t and τ are both variables that correspond to time or space and 𝑣 is 

the center of the sub block in the overall matrix. DOST is an orthogonal transform and each coefficient is obtained 

by the inner product of the signal vector with a basis vector. At last, observe that the ultimate summation is an 

inverse Fourier transform applied to a sub band of the Fourier change of the signal. Finally, βk, τk, Ωk are the 

bandwidth, time index, and bandwidth of the base vector, respectively. 
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S k β e F Fh k  

The Discrete Orthonormal Stockwell Transform (DOST) is a variation of the general Fourier-family transform, but 

instead of a truncated Gaussian window, it uses a rectangular window. In (10), a fast algorithm for the DOST is 

introduced, which can be modified to produce the conjugate-symmetric DOST as noted in (10). Another way to 

analyze the DOST is to view it in the context of matrices. It can be expressed as a matrix product. And finally, 

DOST can be considered in the framework of matrices: 

(5) 

(6) 

(7) 

(8) 
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The DOST transform is separable, so higher dimensional transforms can be performed by applying the transform on 

each axis one after the other. 

The discrete cosine transform is a real-valued transform, which makes it more suitable for compression 

and filtering. The connection of DCT-DOST with Fourier transform makes it compatible with DOST 

algorithm. A DCT-based DOST (DCT-DOST) may be defined simply by replacing the DFT in Eqs. (9) 

with DCT: 

 1
1


  K

i   niDCT DOST DCT  DCT  

Due to the advantages that DCT transform has when compressing the initial coefficients and also its coefficients are 

real, these two transforms have been combined and DCT-DOST transform (Discrete Orthogonal Stockwell 

Transform using Discrete Cosine Transform) is presented. In DCT transform, it can maintain the shape of the 

input signal while reducing the coefficients [27]. 

1
1( )
  k

i ni
DCT DOST DCT  DCT  

Finally, due to the higher calculation speed and the truth of the coefficients, S transform corrections (DCT-DOST) 

have been used.  

FEATURE EXTRACTION 

After applying the necessary filters and obtaining the raw signal, the desired transform is applied to the signal. In 

this research, the DCT-DOST transform was used, which was applied to the lung sound signals, and the resulting 

coefficients were obtained as shown in Figure 3. 

 In DCT-DOST transform, the number of coefficients is equal to the number of signal samples. the number of DCT-

DOST transform, coefficients are equal to the number of samples and its value is 19776. 

The number of features is 19776. To reduce the dimensionality of the feature space, mathematical parameters such 

as mean, mode, max, min, kurtosis, skewness, standard deviation, variance, range, rms, median, and mode were 

used. This reduced the number of features to 14, as shown in Figure 4, which illustrates the general process of 

feature selection. 

 

 

 

 

 

(9) 

(10) 

(11) 

(12) 
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Results 

The validation method used in this study is K-fold, and we will discuss their properties below. The following 

results of validation using KNN and SVM methods are observed and evaluated. 

Classification means labeling areas based on similar characteristics of signals. The purpose of this research is to 

implement KNN and SVM algorithm in order to compare the accuracy of feature classification. In this article, due to 

the strong features extracted from DCT-DOST, a classifier with high speed and less amount of mathematical 

calculations is used, which is the main point of the article. 

KNN calculates the distance between a test data point and each training data point using a distance metric such as 

Euclidean or Manhattan distance. It then selects the k closest neighbors and assigns the test data point to the 

majority class or mean of their respective labels. The choice of distance metric can have a significant impact on the 

performance of the algorithm. 

SVM stands for Support Vector Machine, a powerful machine learning algorithm used for classification or 

regression tasks. SVMs use a kernel function to transform the input data into a high-dimensional feature space, 

where a linear decision boundary can be used to separate the classes. The choice of kernel function can have a 

significant impact on the performance of the algorithm. 

In KNN classification, which had better results compared to SVM, Hamming, Euclidean, Chebychev, correlation 

and Minkowski distances and the number of neighborhoods from 1 to 10 were used with trial and error. As the 

results show, the percentage of results decreased with the increase in the number of neighborhoods. 

In the K-fold method, there is a single parameter called k, which refers to the number of groups into which a given 

data sample is to be divided. As a result, this method is often referred to as K-fold validation. The goal of K-fold 

validation is to achieve a model with optimal parameter values. Model parameters are estimated using training data, 

while model error estimation is calculated based on validation data. After designing and building a model or 

algorithm, one of the most important steps is to evaluate its performance, accuracy, and correctness. In this study, the 

criteria of sensitivity, specificity, precision and accuracy have been used to evaluate the classification and distinguish 

the classes, which are briefly:  




  

True Psitive True Negative
Accuracy

True Positive False Negative False Positive True Negative
 




True Positive
Sensitivity

True positive False negative
 




True Negative
Specificity

True Negative False Positive
 




True Positive
precision

True Positive False Positive
 

True Positive (TP): A test result that correctly indicates the presence of a condition or specificity. 

True Negative (TN): A test result that correctly indicates the absence of a condition or specificity. 

False Positive (FP): A test result which wrongly indicates that a particular condition or attribute is present. 

False Negative (FN): A test result which wrongly indicates that a particular condition or attribute is absent 

In the KNN classifier, the best number of neighbors and distance, as well as in the SVM classifier, the best kernel 

and number of neighbors were obtained experimentally using K-fold evaluation methods. 

(13) 

(14) 

(15) 

(16) 
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As shown in Figure 5, the percentages obtained from the KNN classification with 5 different distances and the 

number of neighbors are from 1 to 5. As Figure 5 shows, the results decrease with the increase in the number of 

neighbors. As a result, in all distances, the number of neighbors 1 shows the best result. 

 

The results shown in figure 5, with the data used in this study, using the KNN classification, from neighborhood 

number 1 to neighborhood number 5, the results decrease respectively, and in all distances, the best result is for the 

Euclidean distance with neighborhood number 1. 

Figure 6 shows the confusion matrix of the KNN classifier. Due to 10 repetitions, the confusion matrix exhibits 

slight changes, which are represented by the standard deviation (STD). 

Table 2 displays the results of SVM classification performed using three different kernels: Linear, Polynomial and 

Radial Basis Function (RBF). 

Table 2 indicates that the polynomial kernel achieved the highest performance, while the linear kernel obtained the 

lowest performance. 

Figure 7 illustrates that the KNN classifier with Euclidean distance and neighborhood 1 achieved better results than 

the SVM classifier with the polynomial kernel 

This research aims to diagnose and evaluate Chronic Obstructive Pulmonary Disease from the lung signal with 5 

different severities from COPD0 to COPD4 using time-frequency transform of S transform. Several tests and 

methods have been done to improve the general and partial results to achieve the best classification accuracy. At 

first, after equalizing the length of the lung signal and performing the required pre-processing, including filtering the 

interference on the signal, S transform was applied to the data to extract features. 

Due to a large number of signal samples and the same number of coefficients obtained from the samples, feature 

dimension reduction has been used using mathematical statistics, reducing the number of coefficients from 19776 to 

14 features. Now, to diagnose and evaluate the different severity of this disease, the features have been applied to 

KNN and SVM classification, which was done in KNN using the K-fold validation method. 

The main goal of this study is to use S transform to extract features from lung sound signals for COPD diagnosis. 

Using the KNN classifier with different distances and the number of neighbors from 1 to 10 and the SVM classifier 

with different kernels, the best results were obtained by trial and error, which shows the superiority of the KNN 

classifier compared to SVM. By using the KNN classifier, good results were obtained in the accuracy, sensitivity 

and precision evaluation criteria. 

According to the investigations carried out in the KNN classifier with K-fold validation with k=10 and the number 

of neighbors 1 and the Euclidean distance with 97.45% accuracy, 98.39% accuracy, and 93.88% sensitivity, the best 

results among others have evaluation methods. Table 3 shows the proposed algorithm performed in this study with 

other performed methods. 

Conclusion 

In this study, real coefficients and primary features were extracted using Time-frequency S transform and its 

modification based on DCT-DOST transform. By applying the statistical features to the primary features, a very 

significant reduction in the dimensions of the features to 14 features was achieved. The results of the 5-class 

classification show the effective space of features in the classification of COPD disease severity. 
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LIST OF TABLES: 

Table 1 

Diseases Records 
Gender 

Male Female 

Asthma 6 4 2 

COPD 0 5 4 1 

COPD 1 5 4 1 

COPD 2 7 7 - 

COPD 3 7 6 1 

COPD 4 17 13 4 

Healthy 30 26 4 

Total 77 64 13 
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Table 3 

Authors Signal Type Channel Method Classifier Spe (%) Sen (%) Acc (%) 

Morillo et al. [28] Tracheal Sound 1 STFT NN 81.80 72.00 77.60 

Altan et al. [29] Lung Sound 12 3D-SODP DBN 93.65 93.34 95.84 

Kim et al. [30] Lung sound - VGG16 SVM 85.70 82.30 82.40 

Purpose Method Lung Sound 12 DCT-DOCT KNN 98.39 93.88 97.45 

 

Kernel SEN (%) SPE (%) ACC (%) PRE (%) 

Polynomial 83.33 95.23 92.59 83.33 

Linear 67.46 89.23 83.82 67.46 

RBF 76.98 93.04 89.31 76.98 


