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Abstract 10 

The proper performance of the first-order reliability method (FORM) is main issue in structural reliability 11 

analysis that is dependent on the accuracy, efficiency, and robustness of the employed algorithm. In this 12 

paper, a new reliability analysis framework is presented to improve the performance of the first-order 13 

reliability method. The innovation of the proposed method, which is a development on the non-negative 14 

constraint method, accounts for the estimation of the step size to implement line search formulation. The 15 

non-negative constraint method is considered to generate a positive Lagrangian function, an unconstraint 16 

optimization problem, and a search direction vector. Then, the first-order Taylor approximation of the 17 

positive constraint is applied to find the trail design point. The next step is to consider this trial design 18 

point and Pade approximation of the non-negative limit state function (constraint) for appropriately 19 

computing the step size. The efficiency and robustness of the proposed algorithm shown in various 20 

benchmark numerical examples included a comparison with other first-order reliability methods. The 21 

numerical results indicate that the proposed method functions properly to pinpoint the reliability index by 22 

fast convergence rates compared to other methods. 23 
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 26 

1. Introduction 27 

Real engineering problems include various uncertainties observed in materials, geometric properties, 28 

external loads, and other items [1–3]. Structural reliability theory provides a proper methodology for 29 

analyzing engineering structures that address structural uncertainties. This theory considers uncertainties 30 

that involve the probabilistic model to evaluate safety levels [4,5]. The main task of reliability analysis is 31 

to estimate the failure probability using a multifold integral on the failure domain. Simulation schemes 32 

and several approximation algorithms are developed because analytical multi-dimensional integration and 33 

direct numerical integration are computationally expensive [6]. Generally, the simulation methods, 34 

including Monte Carlo, importance sampling and etc., are time-consuming because thousands of samples 35 

are needed to obtain an accurate final result [7–9]. In practical engineering problems, the computational 36 

cost of the simulation methods is unacceptable because too many samples are needed to obtain an 37 

accurate result. Monte Carlo, importance sampling, etc., are some types of these methods [10,11]. 38 

Furthermore, if the value of the failure probability is too small, another problem becomes apparent. In this 39 

situation, achieving the accurate failure probability is not possible [12]. Among approximation 40 

algorithms, the first-order reliability method (FORM) is widely used and recommended in reliability 41 

analysis due to its simple and efficient algorithm.  42 

HLRF algorithm is one of the first methods in the FORM category mainly proposed by Hasofer and Lind 43 

[13] for the random variables with the normal probability distribution and then extended by Rackwitz and 44 

Fiessler [14] for the non-normal random variables. HLRF finds the design point in standard normal space 45 

using an iterative process. The design point or the most probable point (MPP) is the point on the limit 46 

state surface with a minimum distance from the origin in the standard normal space and this closest 47 

distance is called the reliability index. Truncation, bifurcation, periodic oscillation, and chaotic behavior 48 

are instances of HLRF instability that may be observed in the limit state function with high nonlinearity. 49 

The limitations of HLRF account for the main reasons behind developing multiple methods for 50 

overcoming instability challenges. Liu and Kiureghian [15] proposed a modified HLRF (mHLRF) that 51 
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used a merit function in accordance with the augmented Lagrangian scheme to estimate the step size. The 52 

iHLRF is an improvement of the HLRF proposed by Zhang and Kiureghian [16] , in which the Armijo 53 

rule is implemented to find the proper step size. They used the Lagrangian of an optimization problem to 54 

construct a simple merit function that is more efficient than mHLRF. Santosh, Saraf, Ghosh et al. 55 

developed step size estimation of mHLRF using the Goldstein rule [17]. Santos, Matioli and Beck [18] 56 

further proposed the nHLRF in which the proper step size of each iteration is selected using the Wolf rule. 57 

Yang and Cheng [19] demonstrated that the bifurcation, periodic oscillation, and chaos phenomenon of 58 

FORM are independent of the curvature value and nonlinearity of the limit state functions. Additionally, 59 

Yang proposed the stability transformation method (STM) based on chaos control theory to remove the 60 

numerical instability of HLRF [20]. The number of steps required for obtaining stable results increases if 61 

the computed step size is too small in the STM algorithm. The adaptive chaos control method proposed 62 

by Roudak, Shayanfar and Karamloo is a development of STM to reduce the number of steps required for 63 

computational iteration [21]. Meng, Yang and Zhang proposed the directional stability transformation 64 

method (DSTM) based on a directional control strategy to avoid the instability of HLRF [22]. They 65 

implemented the formulation of Lyapunov exponents for the HLRF algorithm to investigate instability 66 

phenomena. FSL investigated by Gong and Yi computes the failure probability using a finite step length 67 

parameter in the direction of gradient vector of limit state function [23]. The advanced version of this 68 

method presented by Keshtegar is the CFSL that involves the conjugate search direction introduced in the 69 

reference [24]. Keshtegar and Miri used the nonlinear conjugate gradient method and Wolf condition to 70 

propose CHLRF [25]. Three-term conjugate type of HLRF is other development of FSL presented by 71 

Keshtegar and Zhu [26]. Furthermore, Pericaro, Santos, Ribeiro et al. considered the update formula of 72 

BFGS to approximate the Hessian matrix and proposed the HLRF-BFGS algorithm [27]. Zhao, Chen and 73 

Liu speeded up the convergence rate of HLRF by applying Barzilai-Borwein gradient method [28] called 74 

BB-HLRF. This method implemented the traditional steepest descent method with specific decayed step 75 

size to achieved a proper initial point for global Barzilai-Borwein gradient algorithm. 76 

Breitung attempted to eliminate the instability behavior of FORM using high-order Taylor expansion for 77 

the limit state surface. It is difficult and time-consuming for implicit limit state functions or a problem to 78 
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include several random variables because high-order derivatives are needed for computation [29]. The 79 

second-order reliability method (SORM) is a technique of this kind that relies on the second-order Taylor 80 

expansion [16].  81 

Roudak and Karamloo [30] developed a robust non-negative Lagrangian function (NNCM) in which the 82 

constraint of the optimization problem is changed. Indeed, NNCM introduces the square limit state 83 

function as a non-negative constraint. The first step of NNCM is directly utilizing the positive problem 84 

constraint to construct a positive Lagrangian function and a search direction vector. Then, the first-order 85 

Taylor approximation of the non-negative constraint function is employed to compute step sizes of the 86 

NNCM method that led to the efficient computation of reliability indexes in nonlinear problems. 87 

It is important to note that the methods mentioned above implemented the first and second-order Taylor 88 

approximation of the limit state function to compute step direction and step size in the iterative process. 89 

Therefore, it is necessary to investigate the approximation method of the limit state function. Modified 90 

and multi-step Newton iterative methods with various orders of convergence are the algorithms in 91 

mathematics used to find the roots of a nonlinear equation [31–33]. Another application is the 92 

approximation of a function at a specific point. The one-step simple Newton root-finding is the method 93 

used in first-order reliability analysis. Two-step root-finding algorithms such as Double-Newton, Chun, 94 

Porta-Pták, and Pade with order (1, 2) are the methods that reduce the computational cost by increasing 95 

the convergence rate. Although these methods have high-order convergence rate, they use only the 96 

gradient of a function and are independent of higher-order derivatives [34–39]. It is noted that the search-97 

based methods are placed in a lower class than some adaptive sampling methods such as Sequential 98 

Markov chain [40] and adaptive subset simulation [41], because these methods are invented to improve 99 

the accuracy to a high level, not to find the design point. 100 

This study presents a combination of the non-negative constraint method and Pade approximation with 101 

order (1, 2) to define a new first-order reliability method. A new optimization problem is defined and 102 

replace with traditional optimization problem in reliability analysis. The main aim of the proposed 103 

method is to present a new relation for step size estimation that is based on Pade root finding method. 104 

Therefore, the second objective of this study is to provide a development of the non-negative constraint 105 
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method for dealing with reliability problems. The difficulty of computing an appropriate penalty 106 

coefficient in iterations is eliminated by the defined optimization scheme. The proposed algorithm is 107 

particularly effective in addressing reliability problems with high nonlinearity and faster convergence 108 

than the first-order reliability method. Section two shows the step size and step direction (design point) 109 

calculation of four first-order reliability methods. Section three provides detail of the proposed algorithm 110 

for failure probability estimation. Several numerical nonlinear examples that included analytical and 111 

practical engineering problems are presented to indicate the robustness, accuracy, and efficiency of the 112 

proposed method. 113 

2. First order reliability methods 114 

There are many algorithms driven by the first-order reliability method, four of which are summarized in 115 

this section. These methods are selected to be compared with the proposed methods in numerical 116 

examples. 117 

2.1 The HLRF method 118 

HLRF investigates standard normal space to find the most probable point called MPP. MPP is a point on 119 

the limit state surface with a minimum distance from the origin. The shortest distance is the reliability 120 

index applied to evaluate failure probability. Rackwitz and Fiessler modified Hasofer and Lind method 121 

[13] by considering non-normal random variables [14]. The optimization problem used to compute the 122 

reliability index is the following optimization problem with equality constrained as shown in Eq. (1). 123 

(1)  
1

min subjected to 0
2

TU U G U   

Where U represents the response vector of all random variables (ui) in the standard normal space and 124 

G(U) is the limit state function value. HLRF implements Eq. (2) to estimate the design point in each 125 

iteration. 126 

(2) 
   

 
 1

T

k k k

k k

k

G U U G U
U G U

G U


 
 


 

2.2 The iHLRF method 127 

The iHLRF is a development version of HLRF proposed by Zhang and Kiureghian. This algorithm used 128 
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the Armijo rule to optimize the step size [16]. The iterative relation of the line search method is applied to 129 

the iHLRF as Eq. (3).  130 

(3) 1 .k k k kU U s d    

Where Uk is the response vector that included random variable values in the standard normal space and k 131 

is the step number. Parameters sk and dk are the step size value and the step direction vector, respectively. 132 

The first step of the iHLRF is to determine the step direction vector, which is defined as Eq. (4). 133 

(4) 
   

 
 

T

k k k

k k k

k

G U G U U
d G U U

G U


   


 

The next step is to determine the step size, which is computed as Eq. (5). 134 

(5) , 0.5j

ks b b   

Where j is an integer with an initial value equal to zero. If the convergence conditions failed to satisfy, a 135 

unit value is added to j. The convergence condition used for this method is defined as Eq. (6). 136 

(6)    1k km U m U   

In which m is the merit function according to Eq. (7) and k stands for iteration number. 137 

(7)    
2

0.5 .m m mm U U c G U   

Parameter c is estimated using Eq. (8) that is proposed by Zhang and Kiureghian [16]. 138 

(8) 
 

. , 2 & 10
m

m

U
c

G U
      


 

2.3 The directional stability transformation method (DSTM) 139 

On the basis of chaos control concepts, Meng, Yang and Zhan [22] proposed the directional stability 140 

transformation method to overcome the numerical instability of the HLRF method. The design point of 141 

each step is estimated using Eq. (9) in this algorithm. 142 

(9) 1 1
k

k k

k

U





   

Where parameters  and  are calculated using Eq. (10) and Eq. (11). 143 

(10) 
   

 
1

T

k k k

k

k

G U G U U

G U
 


 


 

(11)   k k k kU C f U U     

In the above relations, C is called the involuntary matrix and is considered an identity matrix. Parameter ζ 144 

is the chaos control coefficient selected in the interval [0.001, 0.1], 0.1 is suggested in the reference [22] 145 
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that implemented here. The function f(Uk) corresponds to Eq. (12).  146 

(12)  
   

 
 

T

k k k

k k

k

G U U G U
f U G U

G U

 
 


 

2.4 The conjugate finite step length method (CFSL) 147 

CFSL is proposed by Keshtegar and implements the conjugate search direction on the FSL algorithm 148 

[24]. The iterative formula to find the new design point is shown in Eq. (13). 149 

(13) 
 

1

T

k k k

k kT

k k

d U G U
U e

d e


 



 

Where dk estimated using Eq. (14). 150 

(14) 
 

  1

0

1

k

k

k k k

G U k
d

G U d k 

   
  

    
 

Parameter 
k
 can be estimated by the Eq. (15) which is conjugate descent direction. 151 

(15) 
 

 

2

1

k

k T

k k

G U

d G U





 


 

Where the parameter ek is equal to the Eq. (16). 152 

(16) 
1

1

1

,k
k k k k

k

U
e U U d

U











    

If inequality (||Uk+1-Uk||>||Uk-Uk-1||) is established in a step, δ is reduced to =/c and otherwise remains 153 

unchanged. Parameter c is an adjusting coefficient considered between 1.2 and 1.5. The suggested value 154 

by Gong and Yi is 1.5 for this coefficient [23] that is implemented here. 155 

3. The proposed method 156 

The first part of this section introduces how to determine a linearization of the limit state function using 157 

the Pade approximation with order (1, 2). The second part presents the non-negative constraint method 158 

based on the first-order Taylor approximation to solve reliability problems. Then, the proposed method is 159 

introduced that is the non-negative constraint method based on the Pade approximation. 160 

3.1 New linearization of limit state function based on (1, 2)-Order Pade approximation   161 

First-order Taylor expansion is usually replaced with initial limit sate function in reliability analysis due 162 

to its simplicity and efficiency. There are many schemes used to approximate a function to avoid its initial 163 
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complexity [42,43]. It is better to investigate the root-finding methods to facilitate the better 164 

understanding of the function approximation methods at a specific point [44]. Multi-step root-finding 165 

methods are more efficient than one-step methods such as simple Newton algorithm. One of the multi-166 

steps methods is the two-step root-finding method based on Pade approximation with order (1,2) 167 

proposed by Li, Liu and Zhang in [31], which is called Pade12 in this paper. Pade12 with a fourth-order 168 

convergence avoids the operation of high-order derivatives of a function using the approximants of the 169 

second and third derivative. The one-dimensional case is shown in Eq. (17). 170 

(17) 
 

 

   

   
 1'

,
2

k k k

k k k k k k

k k k

f u f u f z
z u u u u z

f u f u f z


 
       

 

Where z is the predictor variable used to obtain the corrected variable of the second relation of the Eq. 171 

(17) in the next step and k shows the iteration number.  It can be seen from Eq. (17) that only the first-172 

order derivative of the function is applied although this root-finding method has a fourth-order 173 

convergence. The second relation of Eq. (17) can be rewritten as Eq. (18) to achieve a new approximation 174 

of the function. 175 

(18)     
   

   
 '

10
2

k k

k k k k

k k

f u f z
f u f u u u f u

f u f z


 
     

 
 

In order to extend this method to the multivariable state, it is necessary to rewrite the Eq. (18) in form 176 

G(U)=0, where U is the vector of random variables, as shown in Eq. (19).  177 

(19)  
   

   
     10 .

2

Tk k

k k k k

k k

G U G Z
G U G U G U U U

G U G Z


 
    

 
 

Thus, a new linearization of the limit state function consisting of several variables is obtained. This new 178 

approximation merely uses the first derivative of the limit state function with respect to random variables 179 

similar to the first-order Taylor approximation. The implementation of this approximation is presented in 180 

section 3.3 to define a new step size relation in the non-negative constraint method. 181 

3.2 The non-negative constraint method based on Taylor approximation 182 

Roudak and Karamloo improved a first-order reliability method to eliminate the numerical instability of 183 

HLRF [30]. This method is the non-negative constraint method (NNCM). In the NNCM, the initial 184 

equality constraint optimization problem Eq. (1) is converted to a non-negative equality constrained 185 
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optimization problem Eq. (20). 186 

(20)  
1

min subjected to 0
2

TU U W U   

Where the W is a non-negative function equal to Eq. (21). Therefore, this method is called the non-187 

negative constraint method. 188 

  (21)    2W U G U  

The non-negative constraint is implemented to construct a non-negative Lagrangian function. This 189 

positive Lagrangian function is considered as a new unconstrained optimization problem as Eq. (22). This 190 

Equation consist of sum of the square of the objective function with the square of the constraint function 191 

multiplied by the Lagrangian coefficient based on optimization problem in Eq. (20). Then, the step 192 

direction and step size can be determined using this defined optimization problem. 193 

  (22)    
1

2

TF U U U W U   

Where λ is the penalty coefficient. Eq (1) and (20) are the same because G=0 leads to W=0 and vice versa. 194 

Also, if Eq. (22) is considered as the unconditional optimization problem, this problem is equivalent to 195 

the equality constraint optimization problem of Eq. (20) because they have the same results. Defining a 196 

proper value of the λ coefficient should be associated with challenges in a specific example. If this 197 

coefficient is considered too small or large, it leads to the inappropriate result in both cases. A small value 198 

for this coefficient or a light penalty reduces the effect of constraint terms in the optimization problem. 199 

On the other side, the great λ or a severe penalty coefficient may end the iteration process at a wrong 200 

point or the equality constraint cannot be satisfied. The function F is always positive in Eq. (22) because 201 

all terms are positive. The first term of Eq. (22) is mathematically positive, and it is assumed that the λ is 202 

chosen positive and large enough. The W function is multiplied by the large λ; therefore, when a small 203 

value is added to the W function, it causes a significant increase in the F function. To minimize the non-204 

negative F, W has to approach zero. In other words, the optimization of the F including appropriate 205 

positive λ is guaranteed by satisfying the constraint W=0 or G=0. The λ equal to 10
6
 is suggested by 206 

Roudak and Karamloo [30] to overcome the challenges discussed above. According to the selected value 207 

of λ, the reduction of the second term occurs faster than the first term. After determining the 208 

unconditional optimization problem in Eq. (22), the iterative process of the line search method is applied 209 
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as shown in Eq. (23). 210 

(23) 1k k k kU U S    

Where Sk and k are the step direction and step size, respectively. The step direction is the descent 211 

direction that is selected to be the opposite of the gradient vector of the F at the point Uk, as shown in Eq. 212 

(24). 213 

(24)  k kS F U   

Which can be rewritten in terms of W as Eq. (25). 214 

(25)  k k kS U W U       

or in terms of G, as is shown in Eq. (26). 215 

(26)    2k k k kS U G U G U       

The next step is to determine the step size using the first-order Taylor approximation of the limit state 216 

function. This approximation is shown in Eq. (27). 217 

(27)       1 1 0T

k k k k kW U W U W U U U      

Replacing Eq. (23) in the Eq. (27), one can reach Eq. (28). Not that step size is obtained using the first-218 

order Taylor approximation. The superscript is placed to show this. 219 

(28)     0Taylor T

k k k kW U W U S    

If Eq. (28) is solved with respect to the step size parameter, the value of the step size based on first-order 220 

Taylor approximation is obtained that is equal to Eq. (29). 221 

(29) 
 

 

 

   

2

2

k kTaylor

k T T

k k k k k

W U G U

W U S G U G U S
  

 
 

Determining the step size using Eq (27) is associated with the implementation of the NNCM method 222 

based on the Taylor approximation proposed by Roudak and Karamloo [30], where the value of the new 223 

design point is calculated by the line search shown in Eq. (23). In this article, this method is called 224 

NNCM-Taylor. 225 

3.3 The non-negative constraint method based on Pade approximation 226 

In this section, the main purpose is to increase the efficiency of the non-negative constraint method by 227 

providing a new relation considered to estimate step size. A new linearization of the limit state function is 228 

presented in Eq. (19) that is required for calculating the value of the limit state function at the predictor 229 

vector Zk. Eq. (19) is the vectorized of the Eq. (17). In the first relation of Eq (17), it is observed that the 230 
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Zk vector is obtained using the first-order Taylor approximation in the root-finding method. This vector is 231 

replaced with the output obtained by the non-negative constraint method based on the first-order Taylor 232 

approximation in the reliability analysis. In other words, the design point estimated for the non-negative 233 

constraint method based on the Taylor approximation is considered as the predictor vector or trail design 234 

point (Zk). Then, the step size is calculated in the non-negative constraint method based on the Pade 235 

approximation. Eq. (30) shows the proposed relation of the predictor vector Zk.  236 

(30) 
Taylor

k k k kZ U S   

If the Zk is available, the value of G(Zk) or W(Zk) is estimated. At this point, the non-negative W function 237 

can be rewritten using the Pade approximation as Eq. (31). 238 

(31)  
   

   
     1 10

2

Tk k

k k k k k

k k

W U W Z
W U W U W U U U

W U W Z
 

 
    

 
 

According to the non-negative constraint method based on Taylor approximation (NNCM-Taylor), the 239 

Eq. (23) can be replaced in the Eq (31), U
k+1

-U
k = 

k Sk
, to obtain Eq. (32). Note that at this level, the step 240 

size is based on Pade approximation, 
k
 =

k

Pade
. The superscript of step size parameter is placed to 241 

indicate this in Eq. (32). 242 

(32) 
   

   
    0

2

Tk k Pade

k k k k

k k

W U W Z
W U W U S

W U W Z


 
   

 
 

The Eq. (32) can also be defined in terms of G(Uk) that is shown in Eq. (33). 243 

(33) 
   

   
     

2 2

2

2 2
2 0

2

Tk k Pade

k k k k k

k k

G U G Z
G U G U G U S

G U G Z


 
   

 
 

Therefore, the step size based on the Pade approximation with order (1, 2) is expressed as Eq. (34). 244 

(34) 

   
   

 

 

2

k k

k

k kPade

k T

k k

W U W Z
W U

W U W Z

W U S


 
  

 



 

or in terms of G(Uk), as is shown in Eq. (35). 245 

(35) 

   
   

 
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2 2

2

2 22

2
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G U G U S


 
  

 



 

It is observed that the step direction is obtained by Eq (25) or (26), and the step size is computed by Eq 246 

(34) or (35) based on the Pade approximation. Then, the new design point can be estimated using Eq (23) 247 
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by replacing step direction and step size value. This process continues until convergence conditions are 248 

satisfied. This iterative process of updating MMP is called NNCM-Pade, the method proposed in this 249 

paper. The main feature of NNCM-Pade includes taking fewer steps compared to NNCM-Taylor to find 250 

the design point. The faster convergence rate of the proposed method is confirmed by observing the 251 

results in section four. Another point is that although both non-negative constraint methods have the same 252 

step direction, the NNCM-Pade algorithm uses the computed step direction of the NNCM-Taylor 253 

algorithm to come up with a more appropriate result in each step. In other words, the difference between 254 

the two methods refers to the step size calculation. Table 1 shows the computational steps required for 255 

implementing the proposed method. If the correlated non-normal random variables are considered for a 256 

problem, the Nataf transformation method is implemented to find the failure probability.  257 

Table 1. 258 

4. Numerical examples 259 

Several numerical examples have been taken from the literature in order to examine the functionality of 260 

the proposed method. The tables and diagrams are employed to compare the results. In each example, the 261 

final results of the proposed method and five reliability algorithms including HLRF, iHLRF, DSTM, 262 

CFSL, and NNCM-Taylor are compared. The requirements for using these methods were listed in the 263 

previous sections. The failure probability of Monte Carlo sampling (MCS) and the number of generated 264 

samples are presented in the tables to provide precise results. In order to ensure the integrity, when |k-265 

k+1|<10
6
 is met, the convergence of an algorithm is accepted. It should be noted that in all reliability 266 

algorithms, finite difference method is employed for numerically estimating gradient vector. In addition, 267 

the examples can be solved in BI software which is a computer program for doing reliability analysis that 268 

is developed by the authors of this article and can be downloaded from www.betaindexsoftware.com, 269 

where the examples can be modeled.  270 

4.1 Example 1: a highly nonlinear quartic polynomial LSF 271 

The first example considers the following highly nonlinear and quadratic polynomial performance 272 

function [45,46], Eq. (36). 273 

http://www.betaindexsoftware.com/
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(36)    
2

1 2 1 21.7 1.5 1.7 5G X X X X X      

Where both X1 and X2 have normal probability distribution with means and standard deviations of 0 and 274 

1, respectively. Table 2 lists information including the number of iterations, value of reliability index, 275 

probability of failure, number of limit state function evaluation, and the term |-MCS|. 276 

Table 2. 277 

Fig 1 shows the convergence histories of the algorithms. As can be seen in Table 2 and Fig 1, the methods 278 

including HLRF, DSTM, and CFSL fail to converge which is a sign of high nonlinearity associated with 279 

this problem. Other methods represent the stable results of reliability index. The fast convergence belongs 280 

to NNCM-Pade and NNCM-Taylor with 12 and 21 steps, respectively. The response of iHLRF is 281 

accurate, but the function evaluation of iHLRF is inefficient (1295 calls). The last row of Table 3 pertains 282 

to MCS results obtained using 10
6
 simulations. As can be observed, the terms |-MCS| of the methods are 283 

approximately 0.46 and close to each other. The corresponding = 2.87 is the best result expected from a 284 

first-order method. In other words, the difference between the final results of the Monte Carlo simulation 285 

and other methods is due to following the methods that rely on the first-order approximation. Thus, the 286 

competitive feature of the method is associated with the number of required steps to resolve the problem. 287 

Fig 1. 288 

4.2 Example 2: a highly nonlinear quadratic polynomial LSF 289 

The second example considers the following fourth-order polynomial performance function including 290 

three independent random variables with non-normal probability distributions [47], Eq. (37). 291 

(37)   4 2

1 2 50G X X X    

Table 3 shows statistical properties of random variables. 292 

Table 3. 293 

The final results are listed for different reliability algorithms in Table 4. As can be seen, except for the 294 

HLRF method, other methods have reached a stable reliability index. The responses to CFSL and DSTM 295 

methods are accurate and these algorithms have the same number of iterations and function evaluations. 296 

NNCM-Pade and NNCM-Taylor require the fewest iterations (12 and 23). Although iHLRF obtains the 297 
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proper reliability index, the computation cost (515 function evaluations) is too high. The terms |-MCS| 298 

are approximately 0.30. The corresponding = 3.56 is the best response expected from a first-order 299 

method. 300 

Table 4. 301 

The convergence histories are shown in Fig 2. The non-convergence of HLRF and convergence of other 302 

methods are demonstrated. The soft convergence of NNCM-Taylor and NNCM-Pade as well as the 303 

fluctuation convergence of iHLRF, CFSL, and DSTM are shown in the Fig 2. The fluctuation of the 304 

DSTM is less than CFSL and related to the last iterations. 305 

Fig 2. 306 

4.3 Example 3: highly nonlinear quadratic polynomial LSF with three variables 307 

Eq. (38) presents a limit state function for Example 3 [48]. 308 

(38)  
2 2

1 2
3

1.1 0.2
3.6

1.5 3

X X
G X X

    
      

   
 

All random variables are independent standard normal random variables. According to Table 5, the HLRF 309 

fails to converge. NNCM-Pade features the best performance with 11 steps and 55 function evaluations. 310 

Reliability index of MCS is obtained using 10
6
 samples. NNCM-Taylor and CFSL show proper 311 

efficiencies by 19 and 16 iterations, respectively. The corresponding = 3.70 is the best response 312 

expected from a first-order method. The terms |-MCS| are about 0.018. 313 

Table 5. 314 

Fig 3 shows the convergence histories. The chaotic behavior of HLRF can be seen in this Fig. However, 315 

other algorithms converge with different efficiencies. The HLRF method starts to oscillate between 3 316 

points after the seventh step and is not able to converge.  317 

The difference between the NNCM-Taylor and NNCM-Pade methods is related to the step size value. 318 

The larger step size of the NNCM-Pade is the key point and the results of the fast convergence of the 319 

proposed method are compared to NNCM-Taylor. The DSTM method is associated with oscillations in 320 

the initial steps, which gradually decreases when the convergence process is achieved. iHLRF which 321 

utilizes Armijo rule shows less fluctuation compared to CFSL which is implemented by finite step length. 322 
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Fig 3. 323 

4.4 Example 4: cantilever column 324 

In this example, a cantilever column is investigated as shown in Fig 4.  325 

Fig 4. 326 

The length, modulus of elasticity, and moment of inertia are L, E, and I, respectively. The horizontal and 327 

vertical loads H and P are applied to the end of the column. The column is connected to the base by a 328 

rotational spring with stiffness b [30]. The statics of the random variables is presented in Table 6.  329 

Table 6. 330 

The horizontal displacement is used to define the limit state function as Eq. (39). 331 

(39) ( ) 10G X    

Where  is the horizontal displacement shown by Eq. (40) under the applied loads. 332 

(40) 
 

 
  

 

2

2 2

3 2

2

1 tan
4

tan , ,
4

b c L a
H P HEI

L a L a a c
EI bHEI L aEI a

 
 

       
 
  

 

Table 7 compares the results of different methods. The Monte Carlo simulation is done with 2×10
6
 333 

simulations to obtain the reliability index of 4.0253. HLRF stopped functioning after the first iteration and 334 

failed to converge. The iHLRF method that uses the Armijo rule and step size reduction process has fast 335 

convergence, but 195 function evaluations are inefficient. NNCM-Pade and DSTM yield the final results 336 

by 10 and 11 steps (80 and 77 function evaluations). Then, NNCM-Taylor and CFSL have the close 337 

performance to each other.  338 

Table 7. 339 

The convergence histories are shown in Fig 5. In terms of solution steps, there are two categories of 340 

algorithms. HLRF, DSTM, and CFSL are the same in the first step, but HLRF fails to continue iteration 341 

because it has reached a critical point. However, DSTM and CFSL did not stop at this critical point. 342 

NNCM-Pade, NNCM-Taylor, and iHLRF are placed in the second category and move along the same 343 

route. This problem is solved by Generalized HL-RF, proposed by [49] leading to  = 4.1108. The 344 



16 

 

corresponding = 4.11 is the best response expected from a first-order method. The terms |-MCS| are 345 

about 0.09. 346 

Fig 5. 347 

4.5 Example 5: cantilever tube 348 

In this example, a cantilever tube beam is considered [30]. The forces F1, F2, P, and the torsion moment T 349 

are applied to this beam. Eq. (41) shows the limit state function.  350 

(41) 2 2( ) 3y x zxG X S      

Where Sy is the strength. The stresses x and zx are given by Eq. (42). 351 

(42)    1 1 2 2sin sin
,

2 4
x zx

P F F Md Td

A I I

 
 

 
    

Where the parameters are defined as Eq. (43). 352 

(43)        
2 42 4

1 1 1 2 2 2cos cos , 2 , 2
4 64

M F L F L A d d t I d d t
 

            
   

 

Table 8 shows the properties of the random variables.  353 

Table 8. 354 

Cross section, dimensions, axes, and applied load states of the cantilever tube beam are depicted in Fig 6.  355 

Fig 6. 356 

The results of this problem are presented in Table 9. Similar to previous examples, the NNCM-Pade has 357 

the minimum number of iterations to achieve a stable response compared to other methods. NNCM-358 

Taylor and DSTM also yield proper results. Compared to CFSL, despite the proximity of iteration 359 

number, iHLRF requires a higher number of function evaluation which is not desirable. 360 

Table 9. 361 

Fig 7 shows convergence histories.  HLRF oscillates between two wrong points with the periodic 362 

responses. How different methods converge is evident in this Fig. Note that the low-level change between 363 

iHLRF diagram fractures is due to the step reduction effect. In addition, the slow convergence in the 364 

CFSL method is related to the effect of the adjusting coefficient (c) in this method. The other case in Fig 365 

7 represents the two NNCM-Pade and NNCM-Taylor algorithms with similar formulations that yielded 366 

relatively similar results. 367 
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Fig 7. 368 

4.6 Example 6: a space truss structure 369 

An implicit limit state function of a space truss structure is presented in this example. There are 24 truss 370 

elements and 7 concentrated loads. P1 is applied to the central node, and θ determines the direction of P1 371 

on the X-Z plane. The other loads (P2-P7) are inserted into nodes in the Z-direction without inclination. Ai 372 

is the cross-sectional area of element i. E1, E2, and E3 are the modulus of element elasticity 1–6, 7–12, and 373 

13-24, respectively. The implicit limit state function is specified by the maximum vertical displacement 374 

() of the central node as Eq. (44) [30].  375 

(44) ( ) 0.01G X    

The statics of the random variables are presented in Table 10.  376 

Table 10. 377 

Fig 8 shows the space truss structure including the number of elements, dimensions, axes, and applied 378 

load states.  379 

Fig 8. 380 

Table 11 shows the results of different methods. The reliability index result of the Monte Carlo simulation 381 

is obtained using 10
6
 samples. The divergence is demonstrated in HLRF and iHLRF due to the high 382 

nonlinearity of the problem. Although CFSL provides the final response, the number of steps is too high. 383 

DSTM and NNCM-Taylor show appropriate performance, but NNCM-Pade has the best performance. 384 

The failure probability of the NNCM-Pade algorithm is estimated with 13 iterations which is the sign of a 385 

fast convergence rate. Except for NNCM-Pade, the results of other methods demonstrated in Table 11 can 386 

be derived from the literature [30]. 387 

Table 11. 388 

The convergence histories are shown in Fig 9.  389 

Fig 9. 390 

5. Discussion 391 

In this paper, the performance of the proposed method (NNCM-Pade), which integrates non-negative 392 
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constraint method (NNCM) and Pade approximation with order (1,2), investigated using the five 393 

nonlinear examples in ensuring both effectiveness and convergence aspects. The calculated reliability 394 

index, the number of iterations, and the function evaluations are the main items used for comparisons. 395 

The results of other reliability methods, including HLRF, iHLRF, DSTM, CFSL, and NNCM-Taylor are 396 

presented for comparison. Further, the output of the Monte Carlo simulation is evaluated as the accurate 397 

output of each example.  398 

NNCM-Pade and NNCM-Taylor are the methods that successfully cover all examples and estimate the 399 

failure probability. However, the NNCM-Pade is more efficient and robust than NNCM-Taylor. It occurs 400 

because the proposed method includes all the tools of the NNCM-Taylor, an additional step in 401 

determining the step size. Therefore, the computational effort is decreased by the proposed method. The 402 

second term of the Lagrange function, including the multiplication of the λ coefficient and the W, is a 403 

positive value that the NNCM methods have to make it zero because the minimization of the Lagrange 404 

function depends on it. Thus, achieving the limit state function close to zero is immediately observed in 405 

NNCM methods. Then, NNCM-Pade needs less iteration to compute the reliability index against NNCM-406 

Taylor because it uses the Pade approximation that leads to proper step size estimation. 407 

The accuracy of the proposed method is obtained by comparing its final response with other methods and 408 

the Monte Carlo method, where the proposed method is accurate. 409 

Accuracy, robustness, and efficiency are intended to control the methods mentioned in this article. The 410 

accuracy of the proposed method is obtained by comparing its final response with other methods and the 411 

Monte Carlo simulation, where the proposed method is accurate. The number of iterations and function 412 

evaluations could be considered as a criterion for evaluating the efficiency of the proposed method. The 413 

stable and non-oscillating final response is also a sign of robustness, which is a relative quantity. Based 414 

on these three criteria, the proposed method performs acceptably in the presented examples.  415 

The success of the NNCM-Pade in the nonlinear problems proves the robustness, accuracy, and fast 416 

convergence of this method. A few required steps are the most significant competitive features of the 417 

proposed method observed in all examples of this paper. This feature is substantial because each 418 

computational iteration in the implicit reliability problem, involving a complex and large-scale finite 419 
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element model, imposes a high computational cost on reliability analysis. As shown in tables, the 420 

sampling methods such as Monte Carlo simulation require thousands of samples. Therefore, the NNCM-421 

Pade is an appropriate choice for numerical and practical engineering problems. 422 

6. Conclusions 423 

A robust and efficient method based on the non-negative constraint method and Pade approximation for 424 

analyzing structural reliability is presented in this article. The proposed algorithm called NNCM-Pade can 425 

eliminate some of the instability issues of the HLRF algorithm and it use a new step size formulation to 426 

increase convergence ratio. The stability of the proposed method is obtained from the non-negative 427 

constraint method using the descent step direction estimation and trail design point evaluation. Then, the 428 

Pade approximation of the limit state function is considered to achieve the fast convergence by the 429 

appropriate step size calculation. The main advantage of this algorithm is that it is really simple and 430 

reduces computational efforts because the optimization programing implemented in this method is 431 

different from other algorithms. Moreover, it is a capable tool for finding the design point in reliability 432 

analysis. It is noted that when the sampling method is used to obtain a highly accurate result of the 433 

reliability analysis, the proposed method can be used to determine the better starting point. 434 

Through the application of several numerical and practical engineering examples, it is indicated that 435 

NNCM-Pade is a robust, accurate, and efficient algorithm that could be implement in reliability analysis. 436 
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Table 1. The algorithm of the non-negative constraint method based on Pade approximation 

1. Set k = 0, = 106 

2. Select a start point, Uk 

3. Evaluate step direction vector Sk from Eq. (23) or (24) at point Uk 

4. Evaluate step size value based on Taylor approximation from first or second term of Eq. (29) 

5. Evaluate predictor vector Zk from Eq. (30) 

6. Evaluate value of limit state function at point Zk  

7. Evaluate step size value based on Pade approximation from Eq. (34) 

8. Locate design point of next iteration Uk+1 by Eq. (23) in which step size of step 7 is implemented  

9. Evaluate k+1 = ||Uk+1|| 

10. If |k+1-k |<10-4:  

           k = k+1,   

          Go to step 3,  

      else:  

           Design point = Uk+1, 

                 Reliability index = k+1,  

           Probability of failure = Pf = Φ(-k+1) 

583 

Table 2. Results of various methods for Example 1 
Method  Pf Iterations G-Evaluations |-MCS| 

HLRF Not convergence ------------- ---- ---- ------- 

iHLRF 2.8749 0.002020 100 1295 0.4646 

DSTM Not convergence ------------- ---- ---- ------- 

CFSL Not convergence ------------- ---- ---- ------- 

NNCM-Taylor 2.8787 0.001996 21 66 0.4608 

NNCM-Pade 2.8787 0.001996 12 52 0.4608 

MCS 3.3395 0.000419 ---- 106 0.0000 
584 

Table 3. Probability distribution of random variable for Example 2 

Variable Distribution Mean Standard deviation 

X1 Lognormal 5.0 1.0 

X3 Gumbel 10.0 10.0 
585 

Table 4. Results of various methods for Example 2 
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Method  Pf Iterations G-Evaluations |-MCS| 

HLRF Not convergence ------------- ---- ---- ------- 

iHLRF 3.2593 0.000553 39 515 0.3019 

DSTM 3.2593 0.000553 31 93 0.3019 

CFSL 3.2593 0.000553 32 96 0.3019 

NNCM-Taylor 3.2593 0.000553 23 69 0.3019 

NNCM-Pade 3.2593 0.000553 12 48 0.3019 

MCS 3.5612 0.000184 ---- 106 0.0000 
586 

Table 5. Results of various methods for Example 3 
Method  Pf Iterations G-Evaluations |-MCS| 

HLRF Not convergence ------------- ---- ---- ------- 

iHLRF 3.7050 0.000105 36 517 0.0186 

DSTM 3.7050 0.000105 84 336 0.0186 

CFSL 3.7050 0.000105 16 64 0.0186 

NNCM-Taylor 3.7050 0.000105 19 76 0.0186 

NNCM-Pade 3.7050 0.000105 11 55 0.0186 

MCS 3.7236 0.000098 ---- 106 0.0000 
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Table 6. Probability distribution of random variable for Example 4 
Variable Distribution Mean Standard deviation 

P (kips) Lognormal 10 3 

H (kips) Lognormal 5.8 1.16 

E (ksi) Lognormal 2.9×104 0.58×104 

L (in) Lognormal 144 7.2 

I (in4) Lognormal 88.6 8.86 

b (kips.in/rad)  Lognormal 3×104 0.3×104 
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Table 7. Results of various methods for Example 4 

Method  Pf Iterations G-Evaluations |-MCS| 

HLRF Not convergence ------------- ---- ---- ------- 

iHLRF 4.1108 1.9712×10-5 12 195 0.0854 

DSTM 4.1108 1.9712×10-5 11 77 0.0855 

CFSL 4.1108 1.9712×10-5 23 161 0.0855 

NNCM-Taylor 4.1108 1.9712×10-5 17 119 0.0912 

NNCM-Pade 4.1108 1.9712×10-5 10 80 0.0859 

MCS 4.0253 2.8451×10-5 ---- 2×106 0.0000 
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Table 8. Probability distribution of random variable for Example 5 
Variable Distribution Mean Standard deviation 

t (mm) Normal 5 0.1 

d (mm) Normal 42 0.5 

L1 (mm) Normal 119.75 11.975 

L2 (mm) Normal 59.75 5.975 

F1 (N) Lognormal 3000 300 

F2 (N) Lognormal 3000 300 

P (N) Lognormal 12000 1200 

T (N.mm) Gumbel 90000 9000 

Sy (MPa) Normal 220 22 

1 (rad) Normal 0 /4 

2 (rad) Normal 0 /4 

590 
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Table 9. Results of various methods for Example 5 
Method  Pf Iterations G-Evaluations |-MCS| 

HLRF Not convergence ------------- ---- ---- ------- 

iHLRF 3.3687 0.0003775 30 972 0.4165 

DSTM 3.3687 0.0003787 22 264 0.4165 

CFSL 3.3689 0.0003773 31 372 0.4163 

NNCM-Taylor 3.3755 0.0003682 19 228 0.4097 

NNCM-Pade 3.3894 0.0003501 11 143 0.3958 

MCS 3.7852 0.0000767 ---- 2×106 0.0000 
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Table 10. Probability distribution of random variable for Example 6 
Variable Distribution Mean Standard deviation 

A1-A6 (m
2) Normal 0.013 0.0013 

A7-A12 (m
2) Normal 0.01 0.001 

A13-A24 (m
2) Normal 0.016 0.0016 

E1 (KN/ m2) Normal 240×106 24×106 

E2 (KN/ m2) Normal 220×106 22×106 

E3 (KN/ m2) Normal 205×106 20.5×106 

P1 (KN) Gumbel 12 3 

P2- P7 (KN) Gumbel 12 2.4 

 (rad) Normal 0 /6 
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Table 11. Results of various methods for Example 6 
Method  Pf Iterations G-Evaluations |-MCS| 

HLRF Not convergence ------------- ---- ---- ------- 

iHLRF Not convergence ------------- ---- ---- ------- 

DSTM 3.0706 0.000106 22 1562 0.1697 

CFSL 3.0706 0.000106 53 3763 0.1697 

NNCM-Taylor 3.0706 0.000106 20 1420 0.1697 

NNCM-Pade 3.0706 0.000106 13 950 0.1697 

MCS 3.2403 0.000597 ---- 106 0.0000 
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Fig. 1. Iteration history for Example 1 
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Fig. 2. Iteration history for Example 2 
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Fig. 3. Iteration history for Example 3 
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Fig. 4. Column of Example 4 
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Fig. 5. Iteration history for Example 4 
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Fig. 6. Cantilever tube of Example 5 
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Fig. 7. Iteration history for Example 5 
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Fig. 8. Space truss of Example 6 
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Fig. 9. Iteration history for Example 6 
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