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Abstract. One of the cost-e�ective methods of water puri�cation is reverse osmosis. In
the present work, the e�ect of pressure vessels with di�erent numbers of membranes in
two types of reverse osmosis system design is investigated. Simulation results showed that
pressure vessels with more membranes have lower energy consumption and higher e�ciency
in di�erent simple and hybrid designs of reverse osmosis systems. Findings showed that the
�rst design performs better in terms of energy consumption and e�ciency than the second
design. The study also showed that maximum e�ciency was achieved using the �rst design
of the hybrid two-stage brackish water reverse osmosis system. The least e�cient system
was the hybrid single-stage seawater reverse osmosis system.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, the use of membranes and membrane
processes has constantly been increasing [1]. One of
the main applications of membranes is desalination,
one of the main methods of producing freshwater
[2]. In addition, membranes are used in many �elds,
such as electrodialysis, electroosmosis processes, and
drug puri�cation [3{5]. Simulation techniques have
been used directly and indirectly in most areas of
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membrane processes [6{8]. Simulations of membrane-
based processes are useful in predicting processes and
enable fast and cheap optimization [9]. Saltwater
desalination has become an important method to
overcome the global shortage of fresh water. Thanks
to the development of water desalination methods,
fresh water supply can be increased beyond what the
hydrological cycle can provide [10]. The processes
involved in Reverse Osmosis (RO) systems are well-
developed and unparalleled in case of reliability and
energy e�ciency. Due to these reasons, they have
become the most popular method of purifying water
among other available technologies. Thus, many
researchers are putting e�orts into developing RO
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systems to make utilization of these systems as a
reliable source of supplying freshwater feasible [11,12].
Currently, Multi-Stage Flash distillation (MSF), multi-
e�ect distillation, Vapor Compression (VC), RO, and
electrodialysis (ED) are the most popular commercially
available methods of desalination [13,14]. Most popular
desalination processes rely on fossil fuels for energy [13{
17].

Ludwig [18] investigated the energy usage of
SeaWater RO (SWRO) systems and analyzed the
possibility of bettering their layout and function with
Energy Recovery Instruments (ERIs). Data revealed
that for purifying a seawater sample having a Total
Dissolved Solids (TDS) equal to 35,000 ppm, approx-
imately 3.5 W.h/m3 of energy is typically used. Park
et al. [19] theoretically analyzed low-energy SWRO
plants. Methods of improving the energy e�ciency of
RO units have been divided into two groups: direct
and indirect. An example of a direct method is diluting
the feedwater, while an example of an indirect method
is reducing the di�erence in osmotic pressure. Unlike
thermal desalination methods, the amount of TDS
in seawater predominantly a�ects SWRO desalination
systems. Feed water salinity determines the osmotic
pressure and pumps' workload. Thus, it a�ects the
amount of energy consumption in SWRO plants. Based
on prior studies, water with the highest quality can
be produced using di�erent Internally Staged Designs
(ISD) with the full ow to the second pass. The
cost of producing water using a system with permeate
splitting mechanisms is estimated to be 8% lower than
when a system with a full two-pass con�guration is
used. In addition, also by integrating permeate bypass
mechanisms, the costs of water production can be
lowered by 6% [20]. Research by Altaee et al. [21]
demonstrated that for desalinating seawater, systems
that utilize Forward Osmosis (FO) and RO have a
higher recovery rate than conventional RO systems.
Studies showed that the recovery rate does not exceed
50% by using less saline feed water due to scaling
issues. However, since the draw solution in FO systems
gets highly concentrated, these issues do not a�ect
such systems, indicating that the recovery rate in
FO-RO units can be increased beyond 50%. For
purifying feeds like seawater, which contain high levels
of TDS, high hydraulic pressures must be applied,
increasing the amount of energy desalination plants
consume. In such scenarios, lower levels of energy
consumption can be achieved by lowering the feed's
osmotic pressure.

In recent studies, researchers suggested several
osmotic pressure reduction methods. Studies by Mus-
taqimah et al. [22], where ROSA was employed, demon-
strated that applying higher feed water pressures yields
permeate water containing more TDS. Based on results
obtained using ROSA, it was found that the recovery

rate and permeate TDS are higher in two-stage systems
compared to single-stage ones. Joseph and Damodaran
[23] dynamically simulated the SWRO process using
LabVIEW to help understand the dynamics of pro-
cesses involved in SWRO plants. Simpli�ed functional-
decomposition approach modelings were employed to
perform RO desalination process simulations to un-
derstand the dynamics of the processes. Comparing
the results of dynamic simulations with transient ones
and using operational data of real-world desalination
plants, it was found that reasonably raising the feed's
temperature reduces Speci�c Energy Consumption
(SEC) for various recovery rates within RO systems.
According to investigations by Al-Obaidi et al. [24],
parameters such as feed ow rate and pressure could
be adjusted to lower the permeate in brackishwater
RO (BWRO) plants. The costs of desalinating highly
saline feeds using BWRO plants can be lowered using
Energy Recovery Devices (ERDs), as shown by Pearson
et al. [25]. Through ROSA simulations, Oh et al. [26]
validated that higher ow ux in RO plats increases
permeate quality. However, doing so increases the
overall energy consumption of RO plants. According to
comprehensive pieces of information collected by Kim
et al. [27] on factors a�ecting the energy consumption
of SWRO plants, high SEC is the main issue of RO
systems. Wilf and Klinko [28] demonstrated that
upping the amount of high-rejection membranes and
ERDs could be employed to cut the operational cost
of RO systems. Figure 1 shows the processes that are
involved in an SWRO plant.

Seawater desalination can be summarized in four
steps: Pumping seawater to the plant, pretreatment
of water, desalination in the RO system, and post-
treatment of permeate. Seawater gets pressurized and
pumped into the Pressure Vessel (PV) of the RO unit
containing several RO membranes. For increasing the
recovery rate of RO units, up to 8 RO elements are
often placed inside PVs [29{32]. Technically, PVs are
tanks, vessels, and pipelines that receive, carry, or
store uids, and their internal pressure di�ers from the
outside pressure. Unlike tanks, PVs are not limited to
atmospheric pressure [33].

As seawater moves through the PV, the desali-
nation rate gradually decreases, leading to a steady
increase in salinity, creating a highly saline solution at
the PV outlet, causing scale formation on membranes
located near membranes and consequently lowering
the recovery rate. As a result, antiscalants, chemical
softening of feed water, and membrane treatment
typically must be employed in RO plants [31,32,34{
36]. Scale removal solutions are not always cost-
e�ective. Thus, central feeding was proposed as a
substitute for conventional anti-scaling measurements
in SWRO units [37]. In central feeding, a central port
distributes feedwater evenly on both sides of the PV.
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Figure 1. Processes involved in an SWRO desalination plant. Redrawn with permission from Ref. [29]. Copyright ©
2009, Elsevier.

Table 1. Speci�cations of ow rate, ux inlet and produced water, and required membrane.

Type Inlet ux
(gfd)

Produced water
(gpm)

Membrane surface
area (ft2)

Required number
of membranes

SWRO 8.26 128.5 400 56
BWRO 16.51 55 400 12

Central feeding in SWRO plants reduces the likelihood
of scale formation on the last membrane elements, but
this design demands higher feed ow rates. Another
method for controlling scale formation and fouling is
using membranes modi�ed using nanomaterials that
prevent fouling [38]. Simulation performed by Al-
taee [32] showed that as the desalination capacity
and feed's Silt Density Index (SDI) increase, using
PVs with central feeding becomes more economical
than using other designs. Investigations by Kim and
Hong [39] showed that mixing the rejected brine of
the last membranes with the feed water and returning
it to the system improves the quality of permeate
by 15%.

Despite the abundance of research on RO systems
and the recent surge of publications, there remain
essential de�ciencies in studies of how di�erent PV
designs inuence crucial factors such as RO plants'
e�ciency and energy consumption. Thus, in this paper,
how two di�erent PVs, each containing a di�erent
number of membranes, a�ect the energy consumption
and e�ciency of di�erent RO systems is evaluated.

2. Materials and methods

In this paper, SWRO and BWRO plants having desali-
nation capacities equal to 700 m3/day and 300 m3/day,
respectively, were assumed. Di�erent hybrid and sim-
ple SWRO and BWRO systems, each having PVs with
di�erent numbers of membranes, were designed. Feeds
used for BWRO systems were assumed to have a TDS

ranging from 700 to 1450 ppm. SWRO systems were
assumed to use feeds with a TDS ranging from 21500
to 42000 ppm. Commercially available BW400ES and
BW400R were used in BWRO systems, and SW400GR
and SW400R membranes were used in SWRO systems.
For hybrid and simple single-stage BWRO systems,
3-element and 4-element PVs were used. BW400R
membranes were used in 3-element PVs, and BW400ES
membranes were used in 4-element PVs. In hybrid
and simple two-stage BWRO systems, 4-element, 2-
element, and single-element PVs were used. In SWRO
systems, 8-element and 7-element PVs were used. The
model was validated under a frame of recommended
guidelines. PVs with 4 membranes were used to save
money and energy. The membranes' speci�cations are
provided along with ow rate, inlet ux, and produced
water in Table 1.

The number of required membranes was calcu-
lated using Eq. (1), which is provided in the following:

N=
Produced water� 1440 (gpm/gpd)

Inletux (gfd)�membrane surface area (ft2)
: (1)

BWRO and SWRO unit simulations were performed
assuming a well water sample with an SDI<3 is about
to be desalinated. According to design guidelines, in
such operating conditions, the value of inlet ux must
be 16 to 20 GFD and 8 to 12 GFD for BWRO and
SWRO systems, respectively [40]. Speci�cations of the
investigated designs of simple and hybrid two-stage RO
units are given in Tables 2 and 3.
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Table 2. Investigated designs of the BWRO system.

Type of design Design 1 Design 2 No. membranes No. PVs

Hybrid single-stage * { 12 3
Hybrid single-stage { * 12 4
Simple single-stage * { 12 3
Simple single-stage { * 12 4
Hybrid two-stage * { 12 3
Hybrid two-stage { * 12 8
Simple two-stage * { 12 3
Simple two-stage { * 12 8

Table 3. Investigated designs of the SWRO system.

Type of design Design 1 Design 2 No. membranes No. PVs

Hybrid single-stage * { 56 7
Hybrid single-stage { * 56 7
Simple single-stage * { 56 7

3. Results and discussion

3.1. E�ects of di�erent designs of PVs on
energy consumption in simple and hybrid
designs of RO systems

Figure 2 shows that a rise in the amount of TDS in
feed water increases the amount of consumed energy in
simple and hybrid single-stage SWRO systems. From
Figure 2, it can be deduced that using feeds containing
high amounts of TDS increases the osmotic pressure,
ultimately increasing the pumps' workload and energy
consumption [41{43]. Figure 2 also shows that there is
not much di�erence in the amount of consumed energy
in simple and hybrid single-stage SWRO systems.

Figure 3 shows the energy consumption in simple

and hybrid two-stage BWRO systems. Based on
Figure 3, highly saline feeds, due to having higher
osmotic pressures, increase the workload of pumps
and, as a result, the system's energy consumption
[41,42,44,45]. Figure 3 also shows that among the
investigated designs, the �rst design consumes less
energy than the second design. Based on Figure 3,
the �rst design requires fewer PVs if the number of
membranes does not change. Therefore, the �rst design
is more economical than the second design.

Figure 4 demonstrates that as the TDS of the
feedwater increases, the energy consumption of sim-
ple and hybrid single-stage BWRO systems increases.
Additionally, hybrid single-stage systems consume less
energy than simple ones due to the placement of mem-

Figure 2. E�ects of feed's TDS on energy consumption in simple and hybrid single-stage SWRO systems.
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Figure 3. E�ects of feed's TDS on energy consumption in simple and hybrid two-stage BWRO systems.

Figure 4. E�ects of feed's TDS on energy consumption in simple and single-stage hybrid BWRO systems.

branes with the highest removal percentage upstream
of the PV and membranes with the highest Flux Per-
centage (FP) downstream of the PV [41,42]. Figure 4
shows that simple two-stage con�gurations consume
less energy than hybrid two-stage con�gurations.

3.2. E�ects of di�erent designs of PVs on
e�ciency in simple and hybrid designs of
RO systems

Figure 5 demonstrates that highly concentrated saline
feeds diminish the e�ectiveness of simple and hybrid
single-stage SWRO units [41,42,46]. Based on Figure 5,
it is clear that the performance of single-stage hybrid
SWRO systems is negligibly a�ected by the TDS of
the feed. The e�ciency of simple single-stage designs
in SWRO systems is higher than in BWRO systems.
The general deduction is that simple single-stage con-
�guration of SWRO systems is more e�cient than
hybrid single-stage ones. Therefore, if the number of

membranes used does not change, using a simple single-
stage design not only increases the system's e�ciency
but also reduces the number of PVs required, lowering
the construction costs of the SWRO plant.

Figure 6 demonstrates that in speci�c ranges, the
TDS of feed does not majorly impact the e�ciency
of simple and hybrid two-stage BWRO units. Simple
two-stage designs' e�ciency is higher than hybrid two-
stage ones. Consequently, simple two-stage designs are
more economical regarding construction and operating
costs in similar conditions than their hybrid two-stage
counterparts.

Figure 7 displays how the feed's TDS a�ects the
e�ciency of both simple and hybrid con�gurations of
single-stage BWRO plants. It is evident that, in spe-
ci�c ranges, increasing the TDS of the feedwater does
not impact the e�ciency of RO systems. Furthermore,
simple single-stage con�gurations seem more e�cient
than hybrid single-stage ones.
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Figure 5. E�ects of feed's TDS on e�ciency in simple and hybrid single-stage SWRO systems.

Figure 6. E�ects of feed's TDS on e�ciency in simple and hybrid two-stage BWRO systems.

Figure 7. E�ects of feed's TDS on e�ciency in simple and hybrid single-stage BWRO systems.
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Table 4. Minimum and maximum recovery ratio in investigated RO systems.

Type of design Minimum recovery
ratio

Maximum recover
ratio

Hybrid single-stage (BWRO) 25 28
Simple single-stage (BWRO) 24 25
Hybrid two-stage (BWRO) 128 158
Simple two-stage (BWRO) 64 76

Simple single-stage (SWRO) 4 5
Hybrid single-stage (SWRO) 3 4

The e�ciency of di�erent RO systems investi-
gated in this study is summarized in Table 4. The
highest e�ciency is seen in two-stage hybrid BWRO
systems. The least e�cient systems were single-stage
hybrid SWRO units.

4. Conclusion

Reverse Osmosis (RO) technology is an emerging
method of water treatment. The e�ects of di�erent
designs of PVs on the e�ciency and energy consump-
tion in simple and hybrid designs of RO units were
investigated in this paper. Simulation of simple and
hybrid single-stage systems for seawater desalination
showed that there was not much di�erence between
the amount of consumed energy in such designs of
Sea-Water RO (SWRO) systems. The results showed
that in simple and hybrid two-stage and single-stage
Brackish-Water RO (BWRO) plants, energy consump-
tion in the �rst design was much less than in the second
design. For seawater desalination, the �rst design of the
simple single-stage system has higher e�ciency than
the second design. However, the �rst design of the
hybrid single-stage system is no more e�cient than
the second design. For brackish water desalination,
simulations showed that the RO system designs with
a lower number of Pressure Vessels (PVs) and more
membranes have higher e�ciency and lower energy
consumption than designs with a high number of PVs
and a lower number of membranes. Furthermore, for
seawater desalination, simple single-stage designs with
fewer PVs and more membranes have higher e�ciency
than designs with a high number of PVs and a lower
number of membranes.
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