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Abstract. SFN is a lightweight block cipher designed to be compact in hardware and
e�cient in software for constrained environments such as the Internet of Things (IoT) edge
devices. Compared to the conventional block ciphers that are either Feistel network-based
or Substitution-Permutation (SP), it has a di�erent structure and uses both the SP network
structure and Feistel network structure to encrypt. The SFN supports key lengths of 96
bits and its block length is 64 bits and includes 32 rounds. In this paper, we propose a
deterministic related-key distinguisher for 31 rounds of the SFN. We are able to use the
proposed related-key distinguisher to attack the SFN in the known-plaintext scenario with
the time complexity of 260:58 encryptions. The data/memory complexity of those attacks
are negligible. In addition, we will extend it to a practical chosen-plaintext-ciphertext key
recovery attack on full SFN with the complexity of 220. We also experimentally veri�ed
this attack. Also, in the single key mode, we present a meet-in-the-middle attack against
the full rounds for which the time complexity is 280 the SFN calculations and the memory
complexity is 220:32 bytes. The data complexity of this attack is only two known plaintexts
and their corresponding ciphertext.

1. Introduction

A Lightweight Cryptography (LWC) design could be
a cryptographic algorithm or protocol be�tting for
implementation in constrained environments including
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Radio Frequency Identi�cation (RFID) tags, contact-
less smart cards, sensors, and so on.

A lightweight block cipher could be proper for
such environments. It is worthy to note that block
ciphers play a signi�cant role in the security of com-
munications as cryptography algorithms. Hence, the
security analysis of block ciphers is of particular im-
portance. To this end, in this paper, we apply related
key and meet in the middle (MITM) attacks to analyze
the lightweight block cipher SFN [1].

The notion of related key attack functions is based
on the idea that the attacker has a prior awareness that
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(or chooses) there exists a relation between a number of
keys and thus she can access the encryption functions
under such related keys. The earliest attacks of this
kind were developed independently by Biham [2] and
Knudsen [3], and the concept of a related key attack
was delineated by Biham [2].

The meet in the middle attack is one of the
types of known-plaintext attacks [4]. The attacker
is able to know some plaintext and their ciphertexts.
Using MITM attacks it may be possible to break
ciphers, which have two or more secret keys for multiple
encryptions using the same algorithm. For example,
the 3DES cipher works in this way. The MITM attack
is �rst proposed to attack DES [5]. There are numerous
studies that pertain to MITM attacks on block ciphers,
including [6{10].

SFN was proposed by Li et al. [1]. It is a 64-bit
block cipher in which the round function uses both the
Substitution-Permutation (SP) network structure and
Feistel network structure to encrypt.

1.1. Our contribution
In this paper, we present the �rst third party analysis
of SFN block cipher, to the best of our knowledge, and
our contributions are as follows:

� We introduce a deterministic related key di�erential
distinguisher against 31 rounds of SFN;

� We also employ the proposed distinguisher to apply
a full round related key di�erential attack on SFN
to recover the main key (96 bits) in known-plaintext
mode with time complexity 260:58 and negligible
data and memory complexity;

� We employ the proposed distinguisher to apply a
full round related key di�erential attack on SFN to
recover the main key (96 bits) with time complexity
220, data complexity 217:92 and negligible memory
complexityin chosen-plaintext-ciphertext mode. We
also experimentally verify this attack;

� In single key mode, we introduce a meet in the
middle attack on SFN to recover all the 96 bits of
the main key with time complexity 280 and memory
complexity 220:32 and negligible data complexity.

1.2. Outline.
This article is organized as follows. In Section 2 we
present some notations and also a brief description
of SFN block cipher. The description of the related
key attack in the known-plaintext scenario is given
in Section 3. We present the related key attack in
the chosen-plaintext-ciphertext scenario in Section 4.
Meet in the middle attack of the cipher is described
in Section 5. Finally, the conclusion is presented in
Section 6.

2. Preliminaries

In this section, we give some notations and a brief
description of SFN block cipher which will be used in
the following parts.

2.1. Notations
� jj: The concatenation of two binary strings.

� X = (X0 � � �X15): Represents a 64 bits string. X0 is
the lowest value of its nibbles and X15 is the highest
value one.

� �X: Represents a non-zero di�erence of X.

� P i: Represents the input of the (i + 1)th round
encryption (i = 0; � � � ; 31).

� RK: Represents the front(low-value) 64 bits of the
main keys.

� CK: Represents the back(high-value) 32 bits of the
main keys for control signal keys.

� K = RKjjCK: Represents the 96-bit main key.

� Si = (Si0 � � �Si15): Represents the input of the ith
round encryption of SFN (i = 1; � � � ; 32). Si0 is the
lowest value nibble of Si. It is also possible that Si
is represented by a 4� 4 matrix:

Si =

2664 S
i
0 Si1 Si2 Si3
Si4 Si5 Si6 Si7
Si8 Si9 Si10 Si11
Si12 Si13 Si14 Si15

3775 :
� RKi = (RKi

0 � � �RKi
15): Represents the (i + 1)th

round keys (i = 0; � � � ; 31), RKi
0 is the lowest value

nibble of RKi and RKi�j represents the ith to jth
round keys.

� �RKi: Represents the di�erence of the (i + 1)th
round keys (i = 0; � � � ; 31).

� CKi: Represents the ith bit (i = 0; � � � ; 31) of CK
and CKi�j represents the ith to jth bit of CK.

� �CK: Represents the di�erence of the control
signal keys and �CKi represents the di�erence of
the ith bit (i = 0; � � � ; 31) of CK.

� RKin
F , RKout

F : Represent the input and the output
states of the Feistel Key Expansion structure of the
32nd round, respectively.

� RKin
S , RKout

S : Represent the input and the output
states of the SP Key Expansion structure of the 32nd
round, respectively.

� PF , PS : Represent the input states of the Feistel
structure and SP structure of encryption in 32nd
round, respectively.

� 0n: Represents a sequence of n bits as 0, where n is
a natural.

� Enc(P; I): The encryption of P , I is a 32-bit string
and RKjjI is as the main key.
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Figure 1. Encryption procedure of SFN cipher [1].

� Dec(C; I): The decryption of C, I is a 32-bit string
and RKjjI is as the main key.

� Enc(S(r+1); RKr�31); CKr�31; r); (r = 0; � � � ; 31):
The partial encryption of S(r+1) , the encryption
would start from round (r + 1)th with round key
RKr and round control signal bit CKr.

� Dec(C;RK(r�31); CK(r�31); r); (r = 0; � � � ; 31):
The partial decryption of C, the decryption would
end after getting Sr+1.

� GF 4
2 : The �nite �eld with 16 elements. In this �eld

sum is XOR.
� �(t): Represents the 32-bit string 0 � � � 010 � � � 0, the

only 1 is in the position of t, where t = 0; � � � ; 31,
e.g., �(31) = 0311; �(5) = 051026.

2.2. Brief description of SFN
SFN, as a unique structure, consists of an SP network
and a Feistel network [1]. Its block and the key lengths
are 64 bits and 96 bits, respectively. The 96-bit main
key is divided into the 64-bit round key as RK0 2
f0; 1g64 and 32-bit control signal key as CK 2 f0; 1g32.
The RK0 conducts AddRoundKey and KeyExpansion,
and the CK = CK0 k CK1 k � � � k CK30 k CK31
is considered to be the control signal, and each bit of
the control signal carries out one and only one round
operation. In the case of a detailed signal key, when the
bit of the control signal is 0, SFN chooses SP network
structure to perform encryption or decryption, while

the Feistel network structure conducts KeyExpansion.
However, if the bit of the signal is 1, SFN selects Feistel
network structure to carry out encryption or decryption
and the SP network structure pursues KeyExpansion
[1] (see Figure 1).

The details of the SFN round function is given in
Figure 1. The 4-bit S-boxes S1, and S2 of SFN are
de�ned as:

S1 = fC,A,D,3,E,B,F,7,8,9,1,5,0,2,4,6g
and

S2 = fB,F,3,2,A,C,9,1,6,7,8,0,E,5,D,4g;
respectively. Both of the MixRows and MixColumns
layer apply a matrix M4�4 which its 16 elements are
in GF 4

2 (its characteristic polynomial is x4 +x+1 = 0):

M =

26641 2 6 4
2 1 4 6
6 4 1 2
4 6 2 1

3775 :
In SFN the input of every rounds is represented

as a 4 � 4 matrix say Si; i 2 f0; 1; � � � ; 31g, so the
MixColumns and MixRows layer of ith round can be
represented by MSi and SiM respectively. For more
details of SFN structure we refer the readers to [1].
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Figure 2. A distinguisher on full SFN, where 0 means
064.

3. Related key with known-plaintext attack

In this section, we will discuss the security of the SFN
against the related key di�erential cryptanalysis in the
known-plaintext scenario.

3.1. First key recovery attack
Consider the two secret related key inputs to be
K0 = (RK0 k CK) and K0 = (RK0 k CK), where
�CK = CK � CK = �(31) and hence �K0 =
K0 � K0 = 064 k �(31) = 095 k 1. Hence
given C and C, respectively produced by (P 0;K0)
and (P 0;K0), the output di�erentials after 31-round
encryption are �P 31 = 064 and �K31 = (�RK31 k
�CK0 � � ��CK31) = (064 k �(31) = 095 k 1) with a
probability of 1, which is a distinguisher for 31st rounds
of the SFN. Since �CK31 = 1, refer to Figure 2, the
adversary would not be able to determine the di�erence
of ciphertexts (di�erential output). However, she gets
a distinguisher for 31st rounds of the SFN, and she is
able to do key recovery on the 32nd round of the cipher.
The procedure of the key recovery of this round is given
in Algorithm 1.

To determine the attack complexity, is dominated
by 264 guesses for RK32

F , the last round key, and related
partial decryption which costs 3 rounds of SFN. We
should also exhaustively search the 32 bits of CK that
are not involved in the �rst attack to �nd the correct
key. Therefore, the total time complexity of the �rst
attack is (264 � 3) 1

32 + 232 ' 260:58 32-round SFN
encryptions.

Algorithm 1. The �rst key recovery attack on the SFN.

4. Related-key with chosen-plaintext
-ciphertext attack

In this section we present a new attack to recover
the main key in chosen-plaintext-ciphertext scenario
with time complexity 220 and data complexity 217:92.
Let us assume the adversary can choose an arbitrary
ciphertext C and request from an oracle, say O-RK,
the corresponding plaintext with the key RKjjCK or
RKjjCK, where CK �CK is a �xed 32 bits di�erence
which its hamming weight is one. We denote the an-
swers of O-RK with the key RKjjCK by Dec(C;CK)
and with the key RKjjCK by Dec(C;CK). Also, she
or he can choose an arbitrary plaintext P and request
from the oracle O-RK the corresponding ciphertext
with the key RKjjCK or RKjjCK that we denote them
by Enc(P;CK) and Enc(P;CK), respectively. In the
attack, we will �nd the bit of CK31 �rst and then we
recover the 64 bits of RK31 and after that, we look
for CK30 and RK30, then we �nd CK29 and RK29

and so on. Finally we get CK0 and RK0. Remember
K = RK k CK = RK0 k CK0 k � � � k CK31, so the
key K has been recovered.

Suppose P is an arbitrary plaintext and the
adversary is given Enc(P;CK) and Enc(P;CK)
where CK � CK = 0x00000001. Enc(P;CK) and
Enc(P;CK) and then based on the with relation
between them we would try to recover the RK31.
Unfortunately, it worked very slowly and because of
that we decided to apply a new approach. In our
method, we denote Enc(P;CK) by C0 and C1, when
the bit of CK31 is 0 or 1, respectively. It is obvious
that there are so many relations between C0 and C1,
and for using of them, we look at C0 as a new plaintext,
RK31 as a new main key, C1 as a new corresponding
ciphertext and at whole of them as a new scheme
which we call it �32 (Figure 3). We found a multi-
outputs di�erential characteristic for this new scheme
(see Figure 4). By using this di�erential characteristic
and some other similar characteristics, we found CK31
�rst, RK31, other control signal bits, and round keys
then. For more details refer to Subsection 4.2.
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Figure 3. The new scheme �32 from C0 to C1 for the SFN cipher, where the C0 and C1 are the ciphertext when CK31 is
0 or 1, respectively. At �32 two 64 bits subkeys K0 and K1 are made from the round key RK31 with Feistel and SP
network, respectively.

Figure 4. A multi-output characteristic (because the stars can vary) for the new scheme �32 from C0 to C1. The values of
di�erences of input nibbles 0, 4 and 12 can vary simultaneously. In fact the nibble0, nibble4 and nibble12 of input
di�erences must choose from a proper set. It is while its 8 low-value output nibbles di�erences do not vary and stay zero.
Also, the positions of 16 input nibbles can rotate to the right (from LSB to MSB) by 1, 2 or 3 nibbles, e.g., there exist a
similar characteristics with input di�erence 0x0060000000B00020 and the same previous output.
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2664� � � �� � � �
0 0 0 0
0 0 0 0

3775 = M �
26640 0 0 0
x 0 0 0
y 0 0 0
z 0 0 0

3775 �M = M �
26640 0 0 0
x 2x 6x 4x
y 2y 6y 4y
z 2z 6z 4z

3775
=

26642x+ 6y + 4z 2(2x+ 6y + 4z) 6(2x+ 6y + 4z) 4(2x+ 6y + 4z)
x+ 4y + 6z 2(x+ 4y + 6z) 6(x+ 4y + 6z) 4(x+ 4y + 6z)
4x+ y + 2z 2(4x+ y + 2z) 6(4x+ y + 2z) 4(4x+ y + 2z)
6x+ 2y + z 2(6x+ 2y + z) 6(6x+ 2y + z) 4(6x+ 2y + z)

3775 (1)

Box I

Table 1. The �fteen solution for x, y and z: Every column is a solution. The blue column is the values for the
characteristic of Figure 4.

x 1 2 3 4 5 6 7 8 9 A B C D E F
y 7 E 9 F 8 1 6 D A 3 4 2 5 C B
z 8 3 B 6 E 5 D C 4 F 7 A 2 9 1

4.1. The structure of �32
As we explained before, we denoted the new scheme by
�32 that C0 is its plaintext, RK31 is its main key and
C1 is its ciphertext. Two 64 bits subkeys K0 and K1
are made from its main key RK31 (Figure 3). K0 and
K1 are made with Feistel and SP network structure,
respectively. They are the �rst and last round key at
�32. The new scheme uses RK31 for second round key
after K0, and half of it (i.e., the 32 lowest value bits)
before K1 as third round key. We found a di�erential
trail with the probability 2�22 for �32. There was an
interesting situation at this trail: The 8 lowest nibbles
of the output of the trail were zero. It led us to choose
a multi-output di�erential characteristic instead of a
single-output for our purpose: We allowed the 8 highest
nibbles of the output to be every di�erences. The
value of the probability of this multi-output di�erence
characteristic was 2�6 which was very greater than
2�22 (Figure 4). On the other hand, because of being
zero the values of the 8 lowest nibble of the output
di�erences of the characteristic, we decided to consider
the structure of MixColumns and MixRows layer to �nd
an algebraic reason for it. After considering these two
linear parts of �32, we found an interesting fact: There
existed a lot of similar multi-output characteristics for
�32, which the probabilities of them were at most
2�6 and at least 2�9. We explain these di�erential
characteristics in more detail in the following.

4.1.1. The di�erential characteristics for the �32
As we explained before, we found a multi-output trail
of �32 which its probability was 2�6 (see Figure 4). As
you can see in it, the di�erences before MixRows and
after MixColumns are S2 = (000030009000B000) and
S4 = (FD49EF2D00000000), respectively. We de�ne
a 4� 4 matrix M and denote the ith di�erential state
with a 4� 4 matrix Si, so in the trail of Figure 4:

S2 =

2664 0 0 0 0
3 0 0 0
9 0 0 0
B 0 0 0

3775 ; S4 =

2664F D 4 9
E F 2 D
0 0 0 0
0 0 0 0

3775 ;

M =

26641 2 6 4
2 1 4 6
6 4 1 2
4 6 2 1

3775 :
It is easily seen the 8 high-value nibbles of S4 are zero.
The MixRows and MixColumns layer at ith round are
a multiplication of the above matrix M to the state
matrix, from the right and left side respectively, so:

S3 = S2M ) S4 = MS3 ) S4 = MS2M:

After this observation we suppose instead of 3; 9; B in
the �rst column of S2 we put x; y; z and �nd them such
that all of the elements of the third and fourth row of
S4 to be zero, are shown in Box I, where the sign \*"
can be every di�erence. These equations are equivalent
with two below equations in GF 4

2 :

4x + y + 2z = 0 ; 6x + 2y + z = 0 ,
y = 7x ; z = 8x ; x 2 GF 4

2 : (2)

So there exist 15 nonzero solution for triple (x; y; z)
when x varies from 1 to F. As it is seen the three
nonzero input di�erences x, y and z at S2 in the
characteristic of Figure 4 are in the fourth column of
the Table 1. In fact, there are a lot of other similar
characteristics that their di�erences S2 in them are like
(0000x000y000z000) and the nonzero di�erences x, y
and z can be chosen from every column of the Table 1.
On the other hand in a characteristic of this kind, if
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S0 = (i000j0000000k000) then the di�erential nibbles
i; j and k are corresponded to y; z and x (Figure 5),
i.e., they must be such that they can become y, z and
x after passing the S1-box, by positive probabilities. So
if in a characteristic of this kind S2 is �xed then S0 can
varies.

If S2 = (000030009000B000) and S0 =
(i000j0000000k000), then by considering the DDT of
S1-box, the di�erential nibbles i; j and k can vary
while i 2 f2; 3; 5; 8; 9; B;Cg; j 2 f4; 7; 8; 9; B;D; Fg
and k 2 f4; 6; 7; 8; 9; D; Fg. The reason is: e.g. i must
be a di�erence that has a positive probability for going
to 9 after passing S1-box. So by using ninth column
of the DDT of S1-box (Table 2) i has to be in the set
f2; 3; 5; 8; 9; B;Cg.

The almost same situation exists for j or k. With
a similar way if in a characteristic of this kind the values
of i, j or k at S0 are �xed then the values of x, y and z
at S2 can vary. Suppose S0 = (3000700000004000) and
S2 = (0000x000y000z000) then the nonzero di�erence
x, y or z must be one of di�erences which the di�erences
4,3 or 7 can go to them after passing the S1-box with
positive probability respectively. So from the DDT of
S1-box x 2 f1; 2; 3; 4; 5; 8; Bg, y 2 f4; 6; 7; 8; 9; D; Fg
and z 2 f3; 5; 6; B;D;Eg. But by considering these
three sets and the Table 1, we conclude there exist

Figure 5. The �rst three state of a similar multi-outputs
di�erential characteristic to the trail of Figure 4 for �32.

only three cases for x, y and z, i.e., (x; y; z) 2
f(3; 9; B); (4; F; 6); (5; 8; E)g. The other values for x,
y and z can not occur, e.g., x does not be 1: if x = 1
then by Table 1, the di�erences y and z must be 7 and
8 respectively (the value of the second and third row
of the �rst column of Table 1), but in the set of values
for z, there is not the value 8, so it is not possible that
x = 1.

It may be possible that there exists only one
solution for S2 when the S0 is �xed, e.g., if S0 =
(2000B00000006000) then there is only one case for
x, y and z, i.e. (x; y; z) = (3; 9; B), therefore S2 must
be (000030009000B000). In this case the probability of
the characteristic is equal to the multiplication of three
probabilities PrS1(2! 9)� PrS1(B ! B)� PrS1(6!
3) = 4

16 � 4
16 � 4

16 = 2�6. By these method we collected
some characteristics of this kind and their probabilities,
they can be seen in Table 3. On the other hand, if in
Equality (1) we change all the elements of the column
1 and elements of columns 2, 3 or 4 of the middle
matrix with each other, then two Eqs. (2) stay the
same without any changes. We explain the reasons
for the case of column 2, the two other columns are
the same. For column 2 Relations (1) is changed as it
can be seen in Eq. (3) in Box II, these equality show
the two previous Eq. (2) are still valid. With these
properties it is straightforward that one can conclude in
a multi-outputs trail of this kind, it is possible to rotate
the input di�erence nibbles of S0 by 1; 2 or 3 nibbles
from the low-value nibbles to the high-value ones (see
Table 4). At this table, the numbers in the fourth
column show the number of nibbles for the rotation
at the input of characteristics. It should be noted we
considered the most left bit as the LSB.

Remark 1: We built a Mixed Integer Linear Program-
ming (MILP) [11,12], model for �32 and by using it, we
looked for a characteristic from C1 to C0 such that its
input di�erential to be S0 = (2000B00000006000) and
at its output di�erential the 8 low-value nibbles to be
zero. After that we found that there is not any such
characteristic from C1 to C0 whit positive probability.

2664� � � �� � � �
0 0 0 0
0 0 0 0

3775M �
26640 0 0 0

0 x 0 0
0 y 0 0
0 z 0 0

3775 �M = M �
2664 0 0 0 0

2x x 4x 6x
2y y 4y 6y
2z z 4z 6z

3775
=

26642(2x+ 6y + 4z) 2x+ 6y + 4z 4(2x+ 6y + 4z) 6(2x+ 6y + 4z)
2(x+ 4y + 6z) x+ 4y + 6z 4(x+ 4y + 6z) 6(x+ 4y + 6z)
2(4x+ y + 2z) 4x+ y + 2z 4(4x+ y + 2z) 6(4x+ y + 2z)
2(6x+ 2y + z) 6x+ 2y + z 4(6x+ 2y + z) 6(6x+ 2y + z)

3775 (3)

Box II
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Table 2. Di�erential Distribution Table (DDT) of the S1-box.

x=y 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 4 0 2 2 2 0 2 0 0 0 0 0 2 0
2 0 4 0 0 4 0 0 0 0 4 0 0 4 0 0 0
3 0 0 0 0 2 0 4 2 2 2 0 0 0 2 0 2
4 0 2 4 2 2 2 0 0 2 0 0 2 0 0 0 0
5 0 2 0 0 2 0 0 4 0 2 4 0 2 0 0 0
6 0 2 0 4 0 0 0 2 2 0 0 0 2 2 0 2
7 0 0 0 2 0 4 2 0 0 0 0 2 0 4 2 0
8 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0
9 0 0 4 2 0 2 0 0 2 2 0 2 2 0 0 0
A 0 0 0 0 0 4 0 0 0 0 4 0 0 4 0 4
B 0 0 0 0 2 0 0 2 2 2 0 4 0 2 0 2
C 0 0 4 0 0 2 2 0 2 2 0 0 2 0 2 0
D 0 0 0 2 0 0 2 4 0 0 4 2 0 0 2 0
E 0 2 0 0 0 0 0 2 2 0 0 0 2 2 4 2
F 0 0 0 2 0 0 2 0 0 0 4 2 0 0 2 4

Table 3. Some multi-output characteristics for �32, where PS and PT respectively denote the probability of a single trail
and the sum of the probabilities of all trails as a total probability.

No. S0 S2 #S2 PS PT
1 (2000B00000006000) (000030009000B000) 1 2�6 2�6

2 (3000400000007000) (000030009000B000) 1 2�9 2�9

3 (3000400000004000) (000030009000B000) 2 2�9
2�8

(0000100070008000) 2�9

4 (2000B00000004000) (000030009000B000) 2 2�9
2�8

(000040007000B000) 2�9

5 (3000700000004000)
(000030009000B000)

3
2�9

2�7:41(00004000F0006000) 2�9

(000050008000E000) 2�9

By using this property we �nd the control signal bits
of CK, for more details refer to Subsection 4.2.

4.2. Second key recovery procedure
In this section, we show that by decryption di�erent
ciphertext and encrypting the results again under
related keys, the 96 bits of the main secret key can
be extracted with the time complexity of 220 and data
complexity 217:92. In the attack the adversary has
access to an oracle, say O-RL, and for an arbitrary
plaintext P or for an arbitrary ciphertext C she or he
can receive from the oracle:
1. The ciphertext Enc(P;Ck).
2. The ciphertext Enc(P;Ck), while the hamming

weight of Ck � Ck is 1.
3. The plaintext Dec(C;Ck).
4. The plaintext Dec(C;Ck), while the hamming

weight of Ck � Ck is 1.
To the best of our knowledge this kind of attack,

in related key mode, which applies chosen-plaintext

Algorithm 2. Recovering the main key of the SFN.

and ciphertext simultaneously is introduced for the �rst
time, so we call it \chosen-plaintext-ciphertext" related
key attack. Algorithm 2 is for recovering the main key
of the SFN and it has some steps as follows:
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Table 4. It is possible to rotate the input di�erences S0 at the multi-output characteristics for �32 by 1; 2 or 3 nibbles
from the low-value nibbles to the high-value ones. At �rst column, numbers 10 to 13, � � � , 50 to 53 show the characteristic
number 1, � � � , 5 of Table 3 and their rotations with 1; 2 or 3 nibbles at their inputs respectively.

No. S0 S2 # nibbles PS PT
10 (2000B00000006000) (000030009000B000) 0 2�6 2�6

11 (02000B0000000600) (0000030009000B00) 1 2�6 2�6

12 (002000B000000060) (00000030009000B0) 2 2�6 2�6

13 (0002000B00000006) (000000030009000B) 3 2�6 2�6

20 (3000400000007000) (000030009000B000) 0 2�9 2�9

21 (0300040000000700) (0000030009000B00) 1 2�9 2�9

22 (0030004000000070) (00000030009000B0) 2 2�9 2�9

23 (0003000400000007) (000000030009000B) 3 2�9 2�9

� � � � � � � � � � � � � � � � � �

50 (3000700000004000)
(000030009000B000)

0
2�9

2�7:4150(00004000F0006000) 2�9

(000050008000E000) 2�9

51 (0300070000000400)
(0000030009000B00)

1
2�9

2�7:4150(000004000F000600) 2�9

(0000050008000E00) 2�9

52 (0030007000000040)
(00000030009000B0)

2
2�9

2�7:4150(0000004000F00060) 2�9

(00000050008000E0) 2�9

53 (0003000700000004)
(000000030009000B)

3
2�9

2�7:4150(00000004000F0006) 2�9

(000000050008000E) 2�9

Algorithm 3. Recovering the control signal bit CK31.

� Recovering the control signal bit CK31 by Algo-
rithm 3.

� Recovering the round key K0 by running four times
Algorithm 4 and one time Algorithm 5. In this step,
Algorithm 6 is called inside Algorithm 4.

� Recovering the control signal bit CKl and after that
the round key RKl, by running Algorithm 7, 31
times for l 2 f30; � � � ; 0g respectively.

Then it returns the K = RK0 k CK0 k � � � k CK31 as
the main key of the SFN cipher. An overview of the
second key recovery attack on SFN as schematically is
shown in Figure 6.

Extracting the CK31 (Algorithm 3)
Suppose S0 is the input di�erence of characteris-
tic No. 1 in Table 3. For i = 1; � � � ; n where
n is a natural number greater than 64, choose a
random ciphertext C(i) and put C 0(i) = C(i) �
S0 and quarry from the oracle O-RK to produce
Dec(C(i); CK) and Dec(C 0(i); CK), and then we
quarry for C(i) = Enc

�
Dec(C(i); CK),CK � �(31)

�
and C 0(i) = Enc

�
Dec(C 0; CK); CK � �(31)

�
and

de�ne �(i) = C(i) � C 0(i). The probability of
characteristic No. 1 is 2�6, so we expected that the
values of the 8 low-value nibbles of �(i) to be zero
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Algorithm 4. Recovering three nibbles of K0 in �32.

Algorithm 5. Recovering four nibbles of RK31, exhaustive
search.

(suitable case) in at least n=64 � 1 times out of these
n cases. If for one i the �(i) satis�es the condition,
then conclude CK31 = 0, the reason for this conclusion
is the Remark 1, and otherwise conclude CK31 = 1.
For n = 900 the probability of the case in which

Algorithm 6. Updating three sets CTRr for r 2 f0; 1; 2g.

Algorithm 7. Recovering the control signal bit CKl for a
l in the set f0; :::; 30g.
CK31 = 0 and there is not any suitable case for i,
so the program returns an incorrect value for CK31,
is equal to (1 � 2�6)900 ' 7 � 10�7. It is obvious by
choosing larger n, we can make the previous probability
smaller and smaller. Therefore we expect the program
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Figure 6. Framework of the second key recovery attack
of SFN cipher.

to return the correct value for CK31 when we choose
a value su�ciently large for n. We examined it for ten
million random cases when we had chosen n = 900: the
program returned the correct value in all cases, so we
choose this value for n in the program.

Extracting three nibbles of the RK31 (Algorithms 4
and 6)
We want to explain Algorithm 4 and a little about
Algorithm 6 which is called by it, here. Suppose
K0 = ((K0)0 � � � (K0)15) and j 2 f0; 1; 2; 3g. Inputs
of Algorithm 4 are a value j and the signal bit CK31
and its output is nibbles (K0)j ; (K0)j+4; (K0)j+12. In
\3" we de�ne a0 = j, a1 = j + 4, a2 = j + 12: The
indexes of nibbles of K0 which we want to recover
them, and b0 = 8, b1 = 12, b2 = 4: Which the
nibble with index ai � j in the di�erential S0 after
swapping and passing from S1-box goes to the nibble
with index bi in the di�erential S2 (Figure 5). Also we
introduce for r 2 f0; 1; 2g, the sets Jr which we want
to choose the values of (K0)ar from their elements. At
the �rst in \1" we put Jr = GF 4

2 and step by step
they are updated (in \4.(b)*(2)") and become smaller
until all of them have only one element. Then if the
conditions are satis�ed in \(c)", we choose and return
the unique element of Jr as the nibble (K0)ar in \(c)*".
We introduce and initialize three 16 elements vectors
CTR0; CTR1; CTR2 in \1". Algorithm 6 updates
three vectors CTR0, CTR1, CTR2 and Algorithm 4
calls it several times (in \4.(a)"). For k 2 f0; 1; � � � ; 15g
the element CTRr[k] counts how many times the value
k satis�es the conditions for (K0)ar : in \3.(g)" at
Algorithm 6 when k satis�es the conditions, the value
of CTRr[k] is added one unit.

Also we de�ne three sets MSr such that the
set MSr has all k which the value of CTRr[k] is
the maximum value between all 16 elements of vector
CTRr (in \4.(b)*(1)"). These three sets are initialized

to � at the �rst (in \1."), and they are applied for
updating the sets Jr: for r 2 f0; 1; 2g we update the
sets Jr by intersecting them by MSr (in \4.(b)*(2)").

For m = 1 after updating the sets Jr, if each one
of them have one element, the program return their
unique element as the nibbles (K0)ar in \4.(c)*", if not
it tries m = 2. After that if some of the sets Jr have
more than one elements, the program adds one unit
to Rep and repeats the previous steps again. If for
all values of m and Rep the program can not �nd the
three nibbles of K0, then it print: \The three nibbles of
K0 can not be found with these values of parameters:
The number of m or the value of Rep, or both of them
should be increased" and then return the value of 
ag.
In our experiments with m 2 f1; 2g the maximum value
for Rep was 12 and by notice the maximum value of
Rep in the program, i.e., 30, this case will not occur in
real experiments.

Extracting the bits of CKl (Algorithm 7)
In Algorithm 7 we denote a ciphertext which encrypted
l rounds at the SFN by C(l), so the plaintext is
equal to C(0) and the complete ciphertext which
encrypted 32 rounds is equal to C(32), that usually
we denote it by C. Suppose l is a �xed value in
the set f0; 1; � � � ; 30g and given the values of CKj ,
RKj for every j = l + 1; � � � ; 31. For recovering CKl
the same as Algorithm 3, suppose S0 is the input
di�erential of characteristic No.1 in Table 3: S0 is
initialized at \1.". In \2." de�ne CK = CK � �(l)
and in \3.(a)" for i = 1; � � � ; n, where n = 900, choose
a random 64 bits string C(l+1)(i) and at \3.(b)" put
C 0(l+1)(i) = C(l+1)(i) � S0. Consider both of C(l+1)(i)
and C 0(l+1)(i) as ciphertexts which encrypted l + 1
rounds with the signal string CK. In \3.(c)" by
using the control signal bits CKi and round keys
RKi for i � l + 1, encrypt C(l+1)(i) and C 0(l+1)(i) for
31 � l rounds encryption more, to reach the complete
ciphertexts C(32)(i) = C(i) and C 0(32)(i) = C 0(i).
In \3.(d),3.(e)" request from the oracle O-RK
to give the Dec(C(i); CK); Dec(C 0(i); CK) and
Enc

�
Dec(C(i); CK); CK

�
; Enc

�
Dec(C 0(i); CK); CK

�
which we denote them by C(i); C 0(i) respectively.
In \3.(f)" by using the control signal bits CKi and
round keys RKi for i � l + 1, decrypt C(i); C 0(i) for
31� l rounds, to reach two l+ 1 encrypted ciphertexts
C(l+1)(i) and C 0(l+1)(i). In \3.(g)" de�ne �(l+1)(i)
and in \3.(h)" if 8 low-value nibbles of �(l+1)(i) are
zero, then put CK(l) = 0 and return it as the signal
bit CKl, and otherwise go to next i. If there is not
any i which for it the condition at \3.(h)" satis�es,
then return CK(l) which is initialized at \1." to 1, as
the signal bit CKl. For the probability of correctness
of obtained CKl refer to Remark 1 is not any such
characteristic and extracting the CK31 at 4.2.
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Extracting the main key (Algorithm 2)
For recovering the main key of the SFN cipher, one
can apply the Algorithm 2. First in \1." by calling
Algorithm 3 recover the signal bit CK31. Then in
\2." assume the number j, as the number for nibbles
rotation at the input of the characteristics of Table 3,
and by calling 4 times Algorithm 4, recover the nibbles
with indexes f0; 1; 2; 3; 4; 5; 6; 7; 12; 13; 14; 15g and after
that in \3." by calling Algorithm 5, by exhaustive
search, recover the nibbles with indexes f8; 9; 10; 11g
of the key K0 at the new scheme �32. By knowing the
value of K0 and with notice to the structure of the new
scheme �32, in \4." with Feistel structure in backward
direction, get the value of round key RK31. Then at
\5." for l 2 f30; � � � ; 0g, in 31 steps and at each step,
by calling the Algorithm 7 and recovering the signal
bit CKl, with Feistel or SP structure in backward
direction (if CKl is equal to 0 or 1 respectively), recover
the round key RKl. Finally in \6." return the value
RK0 k CK0 k � � � k CK31 as the secret key of the SFN
block cipher.

Complexity of the second recovery attack
Suppose we consider the maximum time of encryption
or decryption for a 64 bits plaintext or ciphertext, as
a unit of time. Hear we want to compute an upper
bound of the computational time complexity in the
term of this unit for the second key recovery attack
or related key with chosen-plaintext-ciphertext attack
for recovering the 96 bits main key of the SFN block
cipher. For this purpose we should compute the time
for running Algorithm 2. First we compute the time
complexity for Algorithms 3,4,5,7 and then we compute
the time complexity of Algorithm 2 which calls these
algorithm inside itself. In each case we also compute
the data complexity:

1. The time for running Algorithm 3 is dominated by
the rows \3.(c)" and \3.(d)". At each row there
are one decryption and one encryption, so the time
complexity of this algorithm is upper bonded to
2 � 2 � n = 2 � 2 � 900 = 3600 � 211:82. At
this algorithm in \3.(a)" a ciphertext is chosen
randomly and it is repeated almost 900 times, so its
data complexity is upper bounded to 900�1 = 29:82

ciphertexts.

2. First we compute the time complexity of Algo-
rithm 6 which is called inside of Algorithm 4. The
run-time of Algorithm 6 is dominated by the rows
\3.(d)" and \3.(e)", and at each row there are
one encryption and one decryption. These two
row are done 900 times, so its run-time as same
as Algorithm 3, is upper bounded to 211:82. The
data complexity of Algorithm 6 is similar to the
Algorithm 3 and is upper bounded to 29:82. The
run-time at Algorithm 4 is dominated by the row

\4.(a)". This row is done at most 2n = 2� 30 = 60
times, therefore its run-time is upper bounded to
60 � 211:82 � 217:73. The data complexity of
Algorithm 4 is related to calling Algorithm 6, and
this algorithm is called at most 2 � 30 = 60, by
considering the data complexity of the Algorithm 6,
we can conclude the data complexity of Algorithm
4 is upper bounded to 60� 29:82 � 215:73.

3. The run-time of Algorithm 5 is related to rows
\4.", \5.(b)" and \5.(c)". At \4." there are one
decryption and one encryption. The run-time for
each row of two rows \5.(b)" and \5.(c)" is less
than 1

32 of the run-time for one round of the SFN
cipher, so the total run-time for Algorithm 5 can be
computed as follows: 2+216�(2� 1

32 ) � 212:01. The
data complexity of Algorithm 5 is one ciphertext
which is chosen randomly at \1.".

4. The rows \3.(c)",\3.(d)",\3.(e)" and \3.(f)" are the
main role at the run-time of Algorithm 7. The
run-times of rows \3.(c)" or \3.(f)" are less than
one encryption or decryption respectively which
both are less than one unit. The run-time of rows
\3.(d)" or \3.(e)" are 2 units. These 4 rows are
done at most 900 times, so the time complexity of
Algorithm 7 is upper bounded to 900 � (1 + 2 +
2 + 1) � 900 � 6 � 212:40. The data complexity of
Algorithm 7 is dominated by \3.(a)". This row is
done 900 times at most, so the data complexity of
this algorithm is equal to 900� 1 = 900 � 29:82.

5. The run-time of Algorithm 2 is related to two
sources:�rst, calling other algorithms at row \1."
one time (Algorithm 2), at row \2." 4 times (Al-
gorithm 4), at row \3." one time (Algorithm 5), at
row \5.(a)" 31 times (Algorithm 6) which the run-
time of all these algorithms have been computed
before, and second the computing rounds key at
\4." one time,\5.(b)" 31 times, which their run-
time are less than one round decryption or 1

32 unit
of time. Therefore the total time complexity of
Algorithm 2 is upper bounded to 211:82+4�217:73+
212:01 + 31 � 212:40 + 1

32 + 31 � 1
32 � 220. The

data complexity of Algorithm 2 by noticing the data
complexities of other algorithm which it calls them
is as follows: 29:82+4�215:73+1+31�29:82 � 217:92:

4.3. Experimental results
By noticing the small time complexity of the
second key recovery attack on the SFN block
cipher, i.e., 220, a practical experiment was possible.
So we decided to make a program to check it
experimentally. Algorithms 3, 4, 5 and 7 are the
main role at Algorithm 2. Algorithm 7 is almost
similar to Algorithm 3 and Algorithm 5 is an
exhaustive search, so we made a program by C++
language (https://github.com/MajidMNiknam/
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SFN-cipher/commit/8688ecaaed83e49633d94217
6c40c22154b879ac) for checking experimentally
Algorithms 3 and 4: First program for recovering
the signal bit CK31 and the second one for
recovering the nibbles f0; 1; � � � ; 7; 12; 13; 14; 15g
of the round key K0 at new scheme �32. Our
program can �nd both of CK31 and nibbles (K0)k
for k 2 f0; 1; � � � ; 7; 12; 13; 14; 15g separately and
it is based on Algorithms 3, 6 and 4. It has been
checked 10 billion times for recovering the signal
bit CK31 and the nibbles f(K0)0; (K0)4; (K0)12g,f(K0)1; (K0)5; (K0)13g, f(K0)2; (K0)6; (K0)14g, and
than f(K0)3; (K0)7; (K0)15g, and it always returned
the correct values for them. The program ran on
a laptop with below speci�cations in less than one
second:
Intel(R) Core(TM) i7-6500U CPU,@ 2.50GHz
2.59 GHz, RAM 8.00 GB (7.87 GB usable), 64-bit
operating system, x64-based processor.

The program works as follows: First, the signal
bit CK31 and the 64 bits round key RK31 are chosen
randomly. By the value of RK31, the keys K0, and
K1 of �32 are made, and their value could be used
only by oracle O-RK. The program recovers the signal
bit CK31 �rst, and after that the value of three nibbles
(K0)j ; (K0)j+4; (K0)j+12 where j 2 f0; 1; 2; 3g is �xed .
In the algorithm the number \Rep", as in Algorithm 4,
is used for repetition, also at each repetition when
the algorithm wants to choose a random ciphertext,
for more randomness, \Rep" is used as a coe�cient
of the number which is generated by \rand" function
of C++. The other notations are the same as ones at
Algorithms 3 and 4.

The result related to recovering three nibbles
(K0)0, (K0)4, (K0)12 for 4 random cases one to four are
shown at Table 5. The �rst column shows the number
of characteristic at Table 3. The second column
to seventh one show the sets J0;MS0, J1;MS1 and
J2;MS2 respectively. The penultimate column shows
the number of random ciphertexts used for recovering
the nibbles, and the numbers of pairs with speci�ed
input/output di�erentials between them. The blue
color are the recovered nibbles of K0 at last row, while
they are red at the K0 in �rst row and other places in
every recovering. In each row, for r 2 f0; 1; 2g the set
Jr is equal to intersection of the set MSr at the same
row with the set Jr at the previous row. When the
number of elements in the set Jr becomes 1, then its
element is (K0)ar which ar is 0, 4 or 12.

At this experiment for recovering the three nib-
bles (K0)0, (K0)4, (K0)12, the number of random
ciphertexts that were used: in case one was equal to
3(2 � 900) = 5400 (Rep=3), in case two to four was
equal to 2 � 900 = 1800 (Rep=1). Also for 10 billion
repetitions for recovering these nibbles, the average
and its maximum number of random ciphertexts that

were used were equal to 2314:76 and 19800 in case one,
2173:90 and 12600 in case two, 2174:50 and 14400 in
case three, 4045:47 and 21600 in case four, respectively.
So the experimental data complexity of this algorithm
on average was 211:98 and its maximum was 214:4, while
the theoretical data complexity for this algorithm has
been computed before 215:73.

5. Meet in the middle attack

In MITM attack, the cipher is divided into two parts
and the main idea is that the subkeys of key bits in
both parts of the cipher can be guessed independently.
In 2010, Bogdanov et al., introduced a new variant of
MITM attack (3-subset MITM attack) on block ciphers
[6]. Instead of considering two subsets of key bits, they
considered three subsets as A1 that shows the key bits
used only in the �rst part, A2 that shows the key bits
used only in the second part, and A0 that shows the
key bits used in two parts of the cipher.

Following the SFN's description, given the 96-bit
main key K = RKjCK, the fraction RK 2 f0; 1g64 is
used to generate the round keys, and CK 2 f0; 1g32

is used as the control signal to determine whether in
each round key-expansion/round-function the Feistel
structure is used or the SP one. Notice that each
bit of the control signal is used in one and only one
round of the SFN, hence, this block cipher will be an
appropriate candidate for the 3-subset MITM attack.
Therefore, inspired by [6], suppose A1 = CK0�15,
A2 = CK16�31, and A0 = RK, are the three subsets
of key bits used in SFN structures. The procedure
of the key recovery of the SFN in the 3-subset meet
in the middle attack is given in Algorithm 8. Now,
if the adversary guesses are correct then the internal
values should match, i.e., P 16 = P 016. These happen
for the correct guess of keys with the probability of 1
while for the wrong guess of keys the matching proba-

Algorithm 8. The 3-subset MITM attack of the SFN.
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Table 5. The experimental results for recovering CK31, and three nibbles with indexes 0; 4 and 12 of K0 at �32 for 4
random keys: one to four. The blue color are the recovered nibbles of K0 at last row in every case, while they are red at
the K0 in �rst row and other places.

One CK31 = 1 K0 = 0x18be 6784 a484 ef55 RK31 = 0x0029 4823 18be 6784
No. of ch. J0 = GF 4

2 MS0 J1 = GF 4
2 MS1 J2 = GF 4

2 MS2 # pair Rep
1 f5; 7; c; eg f5; 7; c; eg f4; 6; d; fg f4; 6; d; fg f8; a; c; eg f8; a; c; eg 900; (18) 1
2 f5; 7; c; eg GF 4

2 f4; 6; d; fg GF 4
2 f8; a; c; eg GF 4

2 900; (0)
1 f5; 7; c; eg f5; 7; c; eg f4; 6; d; fg f4; 6; d; fg f8; a; c; eg f8; a; c; eg 900; (16) 2
2 f5; 7; c; eg GF 4

2 f4; 6; d; fg GF 4
2 f8; a; c; eg GF 4

2 900; (0)
1 f5; 7; c; eg f5; 7; c; eg f4; 6; d; fg f4; 6; d; fg f8; a; c; eg f8; a; c; eg 900; (13) 3
2 f5g f5; 6g f4g f0; 4g feg f9; eg 900; (5)

Two CK31 = 0 K0 = 0x42da 718d dcc0 40b9 RK31 = 0x02a4 3024 42da 718d
No. J0 = GF 4

2 MS0 J1 = GF 4
2 MS1 J2 = GF 4

2 MS2 # pair Rep
1 f0; 2; 9; bg f0; 2; 9; bg f0; 2; 9; bg f0; 2; 9; bg f8; a; c; eg f8; a; c; eg 900; (15) 1
2 f9g f9; ag f0g f0; 4g fag fa; dg 900; (2)

Three CK31 = 1 K0 = 0x284c 4948 c30c 6a77 RK31 = 0x43c7 76fa 284c 4948
No. J0 = GF 4

2 MS0 J1 = GF 4
2 MS1 J2 = GF 4

2 MS2 # pair Rep
1 f5; 7; c; eg f5; 7; c; eg f5; 7; c; eg f5; 7; c; eg f8; a; c; eg f8; a; c; eg 900; (14) 1
2 f7g f4; 7g fcg f8; cg fcg fb; cg 900; (2)

Four CK31 = 0 K0 = 0x67d4 0097 6ea0 d1d5 RK31 = 0x1db3 707f 67d4 0097
No. J0 = GF 4

2 MS0 J1 = GF 4
2 MS1 J2 = GF 4

2 MS2 # pair Rep
1 f5; 7; c; eg f5; 7; c; eg f0; 2; 9; bg f0; 2; 9; bg f0; 2; 4; 6g f0; 2; 4; 6g 900; (11) 1
2 f5g f5; 6g f0g f0; 4g f4g f3; 4g 900; (2)

bility would be 2�jP 16j. Therefore, with a probability
of about 2�jP 16j this match would result in a false
positive, but overall the number of key candidates
is reduced to about 2jKj � 2�jP 16j = 296�64 = 232

after applying Algorithm 8. Thus, the number of key
candidates is small enough that it has no e�ect on
attack complexity. However, by considering another
known plaintext/ciphertext (P 0; C 0) the number of key
candidates can be reduced to about 232 � 2�64 = 2�32

and thus the target key will be obtained.
Following the previous discussion, considering the

cost of the decryption round the same as the cost of the
encryption round, the time complexity of the provided
attack would be equal to:

2jA0j(1
2

(2jA1j + 2jA2j))| {z }
Algorithm 8

+ ((2jKj�jP 16j) + (2jKj�jP 16j � 2jC0j) + � � � )| {z }
Key testing

=264(
1
2

(216 + 216)) + 232 + 2�32 ' 280;

calls to the SFN. Therefore, in total, we need only
two known plaintext/ciphertext pairs (one for applying

Algorithm 8 and one for the key testing step). which
is at most 216 � (80 + 80) bits, 220:32 bytes.

6. Conclusion

This paper investigates the security level on the SFN
against the related key attack. The encryption of
the SFN involves an Substitution-Permutation (SP)
network structure and a Feistel network structure. The
SFN �xes a 64-bit block with a 96-bit key. We have
proposed an attack, in the known-plaintext scenario,
taking advantage of the related key distinguisher. With
this attack, we have shown that FSN provides at most
260:58 encryptions security. We also proposed a chosen-
plaintext-ciphertext related key attack on the SFN with
the complexity of 220. In addition, in the single key
mode, we presented a meet in the middle attack for
which the time complexity was 280 and the memory
complexity was 220:32 bytes. The attack complexity
should be compared with the complexity of exhaustive
key search which is 296.
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