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Abstract

We present an inventory model to determine the optimal selling price and cycle time for
two mutually complementary commodities that are subject to deterioration. Each commod-
ity’s demand is influenced by its own selling price, the selling price of the complementary
product, and the passage of time. Numerical examples and sensitivity analysis results are
presented to demonstrate the usefulness of the inventory model. We conducted sensitiv-
ity analysis on the impacts of the changes in key parameters of the model on the decision
variables and the objective (profitability) of the inventory system. We observed that as
the deterioration rate of either item increases, the model proposes shorter replenishment
cycle length, which reduces the profit. Our model’s novelty is the inclusion of mutual (two-
way) complementarity in the Economic Order Quantity (EOQ) model, where both items
are deteriorating and have time-dependent demands.

Keywords— Inventory management; Economic Order Quantity; Complementary items;
Deteriorating items; Time-dependent demand.

1 Introduction

The classic Economic Order Quantity (EOQ) model of Harris [1] made many simplifying as-
sumptions, three of which include, the independence of items managed from each other, that the
items do not deteriorate, and that the demand is constant over time. While these assumptions
simplify the modelling procedure and enhance the tractability of the solution, many systems
behave differently in reality.

The model presented in this paper is important because of its pervasiveness in many business
environments where the assumptions of the classic EOQ model breakdown, like the retail chain
for consumables such as food items and electronics, where the level of sale attainable by the
seller is heavily influenced by the volume driven by the business in the low margin environment
with short product life span, continuous decline in product value, changing demand levels,
multi-way influence of products on each other’s demands, and price sensitivity of demand.

Retailers in such environments may adopt a strategy whereby some products that are termed
loss-leaders have their prices discounted to bring many customers to their store, but due to the
impact of these loss-leaders on the demand for other products, the customers buy more of some
other products that bring in sufficient sale and revenue to offset the discount on the loss leader
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and generate more profit for the store. Operators of a such retail chain would be interested in
answering several questions such as:

What should be the optimal selling price for the items to maximise the profit?
What should be the optimal replenishment cycle length for which profit is maximised?
What is the corresponding optimal order quantity for each item managed?

The model formulated in this study addresses these questions in the context of two deteriorating
items which are mutual complements of each other, with shared ordering cost through joint
purchase from a common supplier or supply chain milk run. Moreover, the items have both
time and price dependent demands. The solution of the model assists the retailers of such items
in their decision-making on replenishment planning and pricing policies.

Complementary items are items that are sold or consumed together to realise some full utility by
customers, hence, these items are said to experience joint demand [2]. Karaöz et al. [3] suggest
that though the complementarity of items can be implicitly assumed to be part of a constant
term or another parameter, it is important to explicitly define the complementary of the items
in the model to understand its effect on the pricing and profitability. This vital suggestion
is pursued in this research and is an especially important consideration in the ever-growing
technology industry that is known for producing and supplying complementary items such as
printers and ink cartridges, computer hardware and software, cell phones and sim cards, etc.
as complementary duals.

1.1 Purpose

The goal of this paper is to develop and propose an inventory model that seeks to find optimal
selling price and cycle time that maximize profit for mutually complementary products, where
the two complementary products have a common ordering cost and are deteriorating in nature.

1.2 Model’s Applicability

In today’s market, demand for some items is seldom constant. There are business decisions that
may influence the demand for an item such as placement and display of the item on the shelf,
promotions, time passage, selling price, and interrelationship of an item with other items such
as substitutable and complementary relationships. In this paper selling price, time progression,
and complementarity of items are factored into the model so that an inventory policy for man-
aging inventory characterised by these aspects is developed.

Furthermore, in several markets, the inventory level of items does not deplete as a result of
demand only. The inventory level of certain items may also be reduced due to deterioration or
decay. The deterioration of inventory items has caught the attention of many inventory man-
agers and researchers. As a result, deterioration has been incorporated into inventory models
by researchers such as Ghare and Schrader [4], Kumar et al. [5], and Aliyu and Sani [6] to name
a few. Deterioration of items is also incorporated into the model developed in this paper.

Moreover, many items are not independently replenished, hence, their shipment cost may be
shared. This is due to the novel design of logistics processes like transport milk runs, cross
docking and supply mixing amongst others. Such initiatives reduce the overall ordering cost,
consequently changing the balance between ordering and holding costs, and hence, the optimal
order quantity and replenishment interval. These are real situations, especially in the retail envi-
ronment, and the model presented in this paper addresses all these challenges and opportunities
together in an integrated manner.
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2 Literature Review

This section presents a brief review of the pertinent literature starting from models of depen-
dent demand, which includes price dependence, stock level dependence and time dependence
of demand, after which deteriorating inventory systems are considered, and finally, models of
shared fixed costs. There are, of course, many models that fit into more than one of these
categories, for instance models that have both price dependence and product deterioration. We
would present such models based on the characteristics we consider quite prominent in this
particular article.

The classic lot sizing model assumes that the demand for a product is constant, which may not
always be the case. The reality is that the demand for a product may be time-dependent [7],
inventory-dependent or price-dependent [8]. EOQ models with price-dependent demand often
involve complementary price dependent items and substitute items, with researchers such as
Edalatpour and Mirzapour [9], Rajesh and Vinod [10] and Taleizadeh et al. [11] to name a few,
have incorporated such price dependencies in their models. Maity and Maiti [12] developed
an optimal production inventory policy for complementary and substitute products that are
subject to deterioration, with the demand that is stock-dependent. Karaöz et al. [3] presented
a finite single-item EOQ model for a product with a demand that is sensitive to time, its selling
price, and the prices of the complementary and substitute products. Under Vendor Managed
Inventory (VMI), Hemmati et al. [13] presented an inventory model for complementary items
with stock-dependent demand. Their paper suggested an integrated two-stage model, which
considers one supplier who is the manufacturer of the two complementary items, and one buyer
who stocks the items in the warehouse to satisfy demand. Mokhtari [2] presented an EOQ model
for joint complementary and substitutable items with the objective of minimizing the inventory
cost. Edalatpour and Mirzapour [9] investigated a simultaneous pricing model for substitute
and complementary products under nonlinear holding cost. Their model was aimed at finding
optimal values of replenishment cycle time and the products’ selling prices when demand is
given by a price-sensitive function. Taleizadeh et al. [11] developed an economic lot-sizing in-
ventory model for complementary and substitutable products that are deteriorating in nature.
The model investigates the best pricing and inventory strategy for the items. Under asymmetric
substitution, Rajesh and Vinod [10] analysed the impact of substitution cost and joint replen-
ishment on inventory decisions under joint substitutable and complementary items. The model
was aimed at determining optimal values for order quantity, total cost, and case based extreme
rates of substitution. Under spectral risk measure, Yanhai and Jinwen [14] presented an EOQ
model for establishing an optimal ordering policy for complementary components considering
partial backordering and emergency replenishment. Poormoaied [15] developed an economic
lot-sizing inventory model to investigate inventory decisions under periodic review for two com-
plementary products with joint Poisson arrival. The researcher explored the influence of the
interrelated demand phenomenon on optimal base stock levels as well as on the period length
of the review policy.

Deteriorating products inventory management is another area that has enjoyed significant re-
search. It is very common to assume that a product depletes through its demand or sales
only, but in practice, a product may also deplete through decay or deterioration. Deterioration
is often encountered in inventory items such as electronic components e.g., cell batteries and
printed circuit boards, or food items. Ghare and Schrader [4] produced a classic work on this
phenomenon. Their seminal model was built on the premise of constant demand and expo-
nentially deteriorating items. Since the introduction of their model, the topic of deterioration
has received attention from many other researchers. Kumar et al. [5] studied an inventory
model for a deteriorating item under trade credit. They formulated an inventory model that
is subject to the conditions in which the demand is selling price-dependent, and the holding
cost is parabolic time varying. Shukla et al. [7] developed an economic lot-sizing model for

3



deteriorating items with exponential demand rates and permissible shortages which are par-
tially backlogged. Considering a single warehouse system, Tripathi and Mishra [16] presented
an EOQ model for deteriorating items with a demand that is stock dependent. In their model,
shortages are allowed and are fully backlogged. Chang et al. [17] dealt with an inventory model
which has stock and price dependent demand for items that are deteriorating and are subject
to limited shelf space. Jaggi and Mittal [18] developed an economic lot-sizing inventory model
for deteriorating items subject to imperfect quality. Maragatham and Palani [19] formulated
an inventory model for deteriorating items with a demand rate that is a function of the selling
price, holding and ordering cost as well as the passage of time, where the deterioration rate in
the model is also a function of time. Mishra [20] established and EOQ model for two deterio-
rating items that are substitutable. The model considers stockouts where partial substitution
occurs when one of the items is out of stock, and moreover, the demand for items was considered
deterministic and constant. Aliyu and Sani [6] investigated a pricing model for deteriorating
items under generalised exponentially increasing demand with constant holding cost and con-
stant deterioration rate. Amiri et al. [21] developed an inventory model for deteriorating items
using Evidence Reasoning Algorithm (ERA) and imprecise inventory costs. The model was
used to determine the optimal profit and the number of replenishment cycles together with the
order quantity in each cycle. Mashud [22] considered an EOQ model for deteriorating items
with different types of demand and fully backlogged shortages. Rajesh and Vinod [23] inves-
tigated the impact of deterioration and the cost of replacement on the best inventory choices
for a system of two substitutable goods, where one item is made up of two complementary
components. Al-Salami et al. [24] presented a study where an efficient Genetic Algorithm (GA)
based inventory control model was created to reach optimal cost and reorder levels of food-
related deteriorating products. Feng et al. [25] developed and inventory model for perishable
goods where demand curve is dependent on unit price, display stock and the expiry date. Adak
and Mahapatra [26] analyzed the reliability’s impact on an inventory system that incorporates
stochastic deterioration, variable demand and holding costs. For an overview of the more recent
studies on deteriorating inventory, Perez and Torres [27] conducted a comprehensive review of
deteriorating items, where a structural content analysis of 317 selected peer-reviewed research
articles that were published from 2001 to 2018 was performed.

There are not much paper that have presented models where products share their fixed inven-
tory costs (i.e. ordering and/or set up costs), but two such models have been reported here.
Adetunji et al. [28] developed an EOQ model for returned multi-type containers with shared
ordering cost. This problem involves the repositioning of containers from ports having surplus
containers to ports in need of containers, or temporary storage in container depots. It assumed
that many containers may be moved by a single mode of transport (like rail), and also shared
storage at the port, hence, the need to manage not only the number of containers present in
the ports, but also the mix of these containers. They showed that a significant cost saving
benefit may be realized due to the sharing of the substantial fixed cost of such repositioning
problem, and the conditions under which such savings may be attained. Adetunji et al. [29] also
presented a case where there are multiple containers sharing repair facility, the storage space
for these containers is limited, and there is the need to balance both the level and the mix of
containers made available for shipping and showed the benefit of the shared cost of the repair
centre under the space constraint.

In concluding this literature review section and highlighting the contribution of this paper, Ta-
ble 1 gives a summary of reviewed research papers covering the related topics. The first and
second columns on the table show that while most research work on complementary items has
been conducted jointly with substitute items, there are, however, opportunities to explore the
implications of other characteristics of the system in addition to complementariness of the items.
As such, this paper will focus on complementary products, specifically mutual complements. As
seen in the table, there is no work that has been produced on mutually complementary items.
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This study, in particular, will focus on mutually complementary items that are both subject to
deterioration, where replenishment costs can be shared, as has been noted by other researchers
like Edalatpour and Mirzapour [9] that in the recent market, most customers prefer buying
their day-to-day items all at once and from the same place. This behaviour has been referred
to as holus-bolus buying i.e., buying all at once. This behaviour has sparked further interest
of many researchers in this area, and hence, the increase in research work on joint or bundle
pricing, which may also readily incorporate a shared ordering or replenishment cost.

Contextualising the work presented here relative to the reviewed research works, the model
presented in this paper can be said to be an extension of the Karaöz et al. [3] model, and
some other models where different operating characteristics of the inventory environment are
considered in each such model. The unique combination of the environment of this particular
problem in comparison to the other models are presented in Table 1.

(Insert Table 1)

The rest of the paper is organised as follows. Section 3 covers the model definition, together
with notations and assumptions adopted in the model. Section 4 presents model development.
Section 5 presents numerical and sensitivity analysis, and finally, the conclusion is presented in
Section 6.

3 Problem definition

Complementary products are goods that are sold together, and most researchers, for example,
Chen and Nalebuf [30] and Karaöz et al. [3] have formulated their model such that one of the
products is considered a primary product and the other as its complement. In such cases, it
means one product is considered more essential to the joint use but not vice versa. In this paper,
however, an inventory model, and hence policy, is developed for complementary products that
are equally essential to the joint use with each other. In such a case, the consumer values the
complementarity of both products, that is, if a customer purchases product A they will also
likely purchase product B and vice versa. Typically, there is often no alternative to replace
either product in joint use. The inventory model proposed in this paper seeks optimal values
of the selling prices and the cycle length that maximise profit for the mutually complementary
products. The products are also subject to deterioration, and the demand is considered to
be an exponential function of some key parameters including the product’s selling price, the
complement product’s selling price, and the passage of time. Moreover, the products may be
jointly ordered (e.g. through joint shipment), and the ordering cost of the products is defined
by a fixed and some variable components.

3.1 Notations

The notations and decision variables used in developing the inventory model are presented in
Table 2.
(Insert Table 2)

3.2 Assumptions

The following are the main assumptions made in formulating the mathematical model:

• The demand for each of the mutually complementary products, that is, products 1 and
2, is dependent on the product’s selling price and the selling price of the complementary
product.

• Demand for each of the products exponentially decreases with time.
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• Each product’s holding cost is linear and independent of the other’s.

• The products can be jointly ordered with the ordering cost consisting of a shared fixed
portion and a portion that is proportional to the number of products jointly ordered.

• The lead time of the two products can be synchronized by ordering the relevant quantities
and such that they both run out and attain the zero-inventory property at the same time.

• Shortages are not allowed for the two products.

• The deterioration rate for each product is defined by a constant exponential function.

4 Model development

This study considers an inventory policy where two deteriorating complementary products are
jointly ordered and delivered to the retailer with order quantities , at unit cost for the prod-
uct, and the batch ordering cost, per order. The system maintains a zero-inventory property,
meaning the previous batch runs out when the new batch is just arriving. Therefore, for every
cycle, products 1 and 2 start with the quantities and respectively. The quantity ordered for
each product gradually decreases due to demand and deterioration to zero at the end of the
cycle at time . The inventory level for the items during the cycle is graphically represented in
Figure 1.

(Insert Figure 1)

The demand functions for the products are denoted by the following equations:

D1 = A1e
−a1P1−b1P2−β1t (1)

and
D2 = A2e

−a2P1−b2P2−β2t (2)

The change in inventory level for products 1 and 2 at any given time t is governed by the
following differential equations

dI1(t)

dt
+ θ1I1(t) = −A1e

−a1P1−b1P2−β1t 0 ≤ t ≤ T (3)

dI2(t)

dt
+ θ2I2(t) = −A2e

−a2P1−b2P2−β2t 0 ≤ t ≤ T (4)

The boundary conditions are given by the following equations

I1(0) = Q1, I2(0) = Q2 and I1(T ) = 0, I2(T ) = 0 (5)

To derive equations for the instantaneous inventory levels, I1(t) and I2(t), for products 1 and
2, consider (3), for product 1, the equation is of the form

dI1(t)

dt
+ f(t)y = g(t) with integrating factor I.F = eace10

∫
f(t) = eθ1t (6)

the general solution is

I1(t)e
θ1t = −A1e

−a1P1−b1P2

∫
et(θ1−β1)dt (7)

Integrating Equation (7) to get the inventory level function for product 1, results in

I1(t)e
θ1t = −A1e

−a1P1−b1P2

θ1 − β1
et(θ1−β1) + C (8)
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Using boundary condition I1(T ) = 0 to solve for C in Equation (8) and simplifying the equation
results in the inventory level function for product 1, which is

I1(t) =
A1e

−a1P1−b1P2−β1t

θ1 − β1

[
e(θ1−β1)(T−t) − 1

]
(9)

Similarly, inventory level function I2(t) can be obtained for product 2 as

I2(t) =
A2e

−a2P1−b2P2−β2t

θ2 − β2

[
e(θ2−β2)(T−t) − 1

]
(10)

Substituting the initial conditions from Equations (5) into (9) and (10) respectively results in
the following maximum inventory level functions for products 1 and 2:

I1(0) = Q1 =
A1e

−a1P1−b1P2

θ1 − β1

[
e(θ1−β1)T − 1

]
(11)

I2(0) = Q2 =
A2e

−a2P1−b2P2

θ2 − β2

[
e(θ2−β2)T − 1

]
(12)

For simplicity let

E = A1e
−a1P1−b1P2 and F = A2e

−a2P1−b2P2 (13)

Holding cost (HC)
The total holding cost per cycle is given by the following function

HC = HC1 +HC2 = h1

∫ T

0
I1(t)dt+ h2

∫ T

0
I2(t)dt

= h1
Ee(θ1−β1)T )

θ1 − β1

[
1− e−θ1T

θ1

]
− h1

E

θ1 − β1

[
1− e−β1T

β1

]
+

h2
Fe(θ2−β2)T )

θ2 − β2

[
1− e−θ2T

θ2

]
− h2

F

θ2 − β2

[
1− e−β2T

β2

] (14)

Ordering cost (OC)
The model assumes one order is placed per cycle. The total ordering cost for the two items
consists of the shared ordering cost given by the following equation:

OC = k0 +

m∑
n=1

kn, where m = 2 in this case without any loss of generality (15)

Revenue (TR) and Purchase cost (PC)
Revenue for each product is obtained by multiplying the order quantity for the specific product
by its selling price, QnPn, while, the purchase cost is similarly obtained by multiplying the unit
purchase price with the order quantity, Qncn.

Profit (TP )
Profit per unit time is obtained by dividing the total profit by cycle length, T , which is given
by the following function:
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TP =
TR− PC − [HC +OC]

T
=

[
(P1 − c1)

A1e
−a1P1−b1P2

θ1 − β1

[
e(θ1−β1)T − 1

]
+

(P2 − c2)
A2e

−a2P1−b2P2

θ2 − β2

[
e(θ2−β2)T − 1

]
−

(
h1

Ee(θ1−β1)T

θ1 − β1

[
1− e−θ1T

θ1

]
−h1

E

θ1 − β1

[
1− e−β1T

β1

]
+

h2
Fe(θ2−β2)T )

θ2 − β2

[
1− e−θ2T

θ2

]
− h2

F

θ2 − β2

[
1− e−β2T

β2

]
+ k0 +

n∑
i=1

ki)/T

(16)

Cycle length
The optimal cycle time is derived in this section, but first is the linearisation of the exponential
terms contained in Equation (16) by using Maclaurin’s expansion for ex where for simplicity
x = (θ1 − β1)T which leads to:

e(θ1−β1)T =

∞∑
m=0

(θ1 − β1)
mTm

m!

= 1 +
(θ1 − β1)

1T 1

1!
+

(θ1 − β1)
2T 2

2!
+

(θ1 − β1)
3T 3

3!
≈ 1 + (θ1 − β1)T

(17)

All the other exponential terms are approximated as in Equation (17). Substituting these
approximations into Equation (16), results in:

TP = [(P1 − c1)
E

θ1 − β1
[1 + (θ1 − β1)T − 1] + (P2 − c2)

F

θ2 − β2
[1 + (θ2 − β2)T − 1]−

(h1
E(1 + (E(1 + (θ1 − β1)T )

θ1 − β1
[
1− (1− θ1T )

θ1
]− h1

E

θ1 − β1
[
1− (1− β1T )

β1
]+

h2
F (1 + (F (1 + (θ2 − β2)T )

θ2 − β2
[
1− (1− θ2T )

θ2
]− h2

F

θ2 − β2
[
1− (1− βT )

β2
]+

k0 +

n∑
i=1

ki)]/T

(18)

Simplifying Equation (18) results in:

TP =
[(P1 − c1)ET + (P2 − c2)FT − (h1ET 2 + h2FT 2 + k0 +

∑n
i=1 ki)]

T
(19)

Using the product differentiation rule to find TP
′
= (fg)

′
= fg

′
+f

′
gand then equating TP

′
= 0

the following is obtained.

TP
′
= (P1 − c1)ET−1 + (P2 − c2)FT−1 − (2h1ET + 2h2FT )T−1 − (P1 − c1)ET−1

− (P2 − c2)FT−1 −

(
−h1ET 0 − h2FT 0 − k0T

−2 −
n∑

i=1

kiT
−2

)
= 0

(20)
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Solving Equation (20) for T to find the optimum T yields:

T =

√
k0 +

∑n
i=1 ki

h1E + h2F
where E and F have been defined in Equation (11) for simplicity (21)

Proof of optimality
To show that the unit profit function TP is concave, we prove that the Hessian matrix for the
profit function Equation (19) is negative (semi)definite.

The Hessian matrix for TP is given byH (P1, P2, T ) =


d2TP
dP1

2
d2TP
dP1dP2

d2TP
dP1dT

d2TP
dP2dP1

d2TP
dP2

2
d2TP
dP2dT

d2TP
dTdP1

d2TP
dTdP2

d2TP
dT 2

 (22)

Second derivatives
Consider Equation (22), the second derivatives of the Hessian matrix are obtained using the
profit function given by Equation (19), therefore.

d2TP

dP1
2 = (P1 − c1) a1

2A1e
−a1P1−b1P2 − 2a1A1e

−a1P1−b1P2+

a2
2 (P2 − c2)A2e

−a2P1−b2P2 − T ×
[
h1a1

2A1e
−a1P1−b1P2 + h2a2

2A2e
−a2P1−b2P2

] (23)

d2TP

dP2
2 = (P2 − c2) b2

2A2e
−a2P1−b2P2 − 2b2A2e

−a2P1−b2P2+

b1
2 (P1 − c1)A1e

−a1P1−b1P2 − T
[
h1b1

2A1e
−a1P1−b1P2 + h2b2

2A2e
−a2P1−b2P2

] (24)

d2TP

dP2dP1
=
[
(P1 − c1) (a1b1)A1e

−a1P1−b1P2 − b1A1e
−a1P1−b1P2

]
−
[
−a2b2 (P2 − c2)A2e

−a2P1−b2P2 + a2A2e
−a2P1−b2P2

]
− T

[
h1a1b1A1e

−a1P1−b1P2 + h2a2b2A2e
−a2P1−b2P2

] (25)

Equations (23), (24), and (25) are simplified by factorising like terms and substituting the
relevant terms with (13), to obtain.

d2TP

dP1
2 = (P1 − c1) a

2
1E − 2a1E + a22 (P2 − c2)F − T

[
h1a

2
1E + h2a

2
2F
]

= a1E [P1 − c1a1 − 2− Th1a1] + a22F [P2 − c2 − Th2]

(26)

d2TP

dP2
2 = (P2 − c2) b2

2 F − 2b2F + b1
2 (P1 − c1)E − T

[
h1b1

2E + h2b2
2F
]

= b1
2E [(P1 − c1)− Th1] + b2F [(P2 − c2) b2 − 2− Th2b2]

(27)
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d2TP

dP2dP1
= [(P1 − c1) (a1b1)E − b1E]− [−a2b2 (P2 − c2)F + a2F ]−

T [h1a1b1E + h2a2b2F ]

= b1E [(P1 − c1) a1 − 1− Th1a1] + a2F [(P2 − c2) b2 − 1− Th2b2]

(28)

To further simplifying Equations (26) to (28). Let,

ε = (P2 − c2)− Th2 (29)

ω = (P1 − c1)− Th1 (30)

Now
d2TP

dP1
2 = a1E (a1ω − 2) + a2

2Fε (31)

d2TP

dP2
2 = b1

2Eω + b2F (b2ε− 2) (32)

d2TP

dP2dP1
= b1E(a1ω − 1) + a2F (b2ε− 1) (33)

For the derivatives of the profit function with respect to T , the first derivative of TP with
respect to T is denoted by

dTP

dT
= −h1E − h2F + T−2

(
k0 +

n∑
i=1

ki

)
(34)

The 2nd derivatives are:

d2TP

dT 2
= −2T−3

(
k0 +

n∑
i=1

ki

)
(35)

d2TP

dTdP1
= h1a1E + h2a2F (36)

d2TP

dTdP2
= h1b1E + h2b2F (37)

Now, to prove that TP is negative (semi)definite. The determinants need to satisfy the following
condition |H (P1)| < 0, | H (P2)| > 0 and |H(T )| < 0 where

|H (P1)| =
d2TP

dP1
2 , | H (P2)| =

[
d2TP
dP1

2
d2TP
dP1dP2

d2TP
dP2dP1

d2TP
dP2

2

]
, |H(T )| =

∣∣∣∣∣∣∣
d2TP
dP1

2
d2TP
dP1dP2

d2TP
dP1dT

d2TP
dP2dP1

d2TP
dP2

2
d2TP
dP2dT

d2TP
dTdP1

d2TP
dTdP2

d2TP
dT 2

∣∣∣∣∣∣∣ (38)

To derive the conditions for |H (P1)| < 0. Substitute Equation (26) in the relevant determinants
in Equation (38)

|H (P1)| =
d2TP

dP1
2 = (P1 − c1) a1

2 E + a2
2 (P2 − c2)F − T

[
h1a1

2E + h2a2
2F
]
− 2a1E (39)
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It is known that P1 > c1 and P2 > c2. Therefore when (P1 + P2)− (c1 + c2) ≤ T (h1 + h2) then
the condition |H (P1)| < 0 holds.

To derive the conditions for | H (P2)| > 0.

The determinant is given by | H (P2)| =
(
d2TP
dP1

2 ∗ d2TP
dP2

2

)
−
(

d2TP
dP2dP1

)2
. Equations (31) to (33)

are progressively substituted into| H (P2)|. Now, the first term is:(
d2TP

dP1
2 ∗ d2TP

dP2
2

)
=
[
a1E (ωa1 − 2) + a2

2Fε
]
×
[
b1

2Eω + b2F (εb2 − 2)
]

= a1b1
2E2ω (ωa1 − 2) + a1b2FE (ωa1 − 2) (εb2 − 2) + a2

2b1
2
EFεω+

a2
2b2F

2ε (εb2 − 2)

(40)

The second term

(
d2TP

dP2dP1

)2

= (b1E (a1ω − 1) + a2F (b2ε− 1))2

= b1
2E2(ωa1 − 1)2 + a2b1EF (εb2 − 1) (ωa1 − 1) + a22F

2(εb2 − 1)2
(41)

Therefore, considering Equations (40) and (41) it can be deduced that |H (P2)| > 0 when ω < 0
and ε < 0. To derive the conditions for | H(T )| < 0, the matrix is expanded along a row and
the determinant is given by

|H(T )| =
d2TP

dP1
2

(
d2TP

dP2
2 • d2TP

dT 2
− d2TP

dTdP2
• d2TP

dP2dT

)
−

d2TP

dP1dP2

(
d2TP

dP2dP1
• d2TP

dT 2
− d2TP

dP2dT
• d2TP

dTdP1

)
+(

d2TP

dP1dT

)(
d2TP

dP2dP1
• d2TP

dTdP2
− d2TP

dP2
2 • d2TP

dTdP1

) (42)

The three terms are, thus:

d2TP

dP1
2

(
d2TP

dP2
2 • d2TP

dT 2
− d2TP

dTdP2
• d2TP

dP2dT

)
=
[
a1E (a1ω − 2) + a2

2Fε
]
•[[

b1
2Eω + b2F (b2ε− 2)

]
×−2T−3

(
k0 +

n∑
i=1

ki

)
− (h1b1E + h2b2F )2

] (43)

d2TP

dP1dP2

(
d2TP

dP2dP1
• d2TP

dT 2
− d2TP

dP2dT
• d2TP

dTdP1

)
= − [b1E (a1ω − 1) + a2F (b2ε− 1)] •

[[b1E (a1ω − 1) + a2F (b2ε− 1)]×

− 2T−3

(
k0 +

n∑
i=1

ki

)
− (h1b1E + h2b2F ) (h1a1E + h2a2F )

(44)

d2TP

dP1dT

(
d2TP

dP2dP1
• d2TP

dTdP2
− d2TP

dP2
2 • d2TP

dTdP1

)
= [h1a1E + h2a2F ] • [(b1E (a1ω − 1)+

a2F (b2ε− 1) (h1b1E + h2b2F )−
(
b1

2Eω + b2F (b2ε− 2)
)
(h1a1E + h2a2F )]

(45)
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Combining all terms finally yields:

|H(T )| =
[
a1E (ωa1 − 2) + a2

2Fε
]
•[

−
[
b1

2Eω + b2F (εb2 − 2)
]
• 2T−3

(
k0 +

n∑
i=1

ki

)
− (h1b1E + h2b2F )2

]

+ (b1E (ωa1 − 1) + a2F (εb2 − 1) )2 × 2T−3

(
k0 +

n∑
i=1

ki

)
+

2× [h1a1E + h2a2F ] • [(b1E (ωa1 − 1) + a2F (εb2 − 1)) (h1b1E + h2b2F )]−(
b1

2Eω + b2F (εb2 − 2)
)
(h1a1E + h2a2F )2 < 0

(46)

Therefore |H(T )| < 0 when, ε < 0 and ω < 0.

5 Numerical results

The numerical example and sensitivity analysis of the model developed are discussed next.

5.1 Numerical examples

Consider a retail environment for two deteriorating items that are mutual complements with
the parameter values shown in Table 3. The solution to this problem is provided, and the
sensitivity analysis of the results considering changes in some of the important input values is
performed next.

(Insert Table 3)

Firstly, a test of the optimality condition was done, and it can be seen that the profit function
is negative (semi)definite since the following conditions are satisfied: ε = (P2 − c2) − Th2 =
(34.1− 20.00)−3.05×5.00 = −1.14 < 0 and ω = (P1 − c1)−Th1 = (40.12− 24)−3.05×6.00 =
−2.21 < 0.

Next, the problem was solved by substituting the parameter values in Table 3 into the appro-
priate equations in the model. This was done by implementing the relevant model equations in
Excel which yields the results presented in Table 4. Finally, the sensitivity analysis is performed
to test the robustness of the model.

(Insert Table 4)

5.2 Sensitivity analysis

Sensitivity analysis was performed by changing the values of each of the parameters an, bn’βn,
θn, hn, and cn in the model one at a time while keeping values of the other parameters constant
as given in Table 3. The changes in the values of each parameter were made in steps of 25
percent decrease and increase from the original values (as given in the table). The impact of
the changes on the three decision variables (prices, P1 and P2, and the replenishment cycle, T )
and the key system outputs (revenue TP and order quantities, Q1 and Q1) were tabulated for
each change in the parameter value.

The changes in the deterioration rate of product 2 were, however, performed in an asymmetric
manner such that optimality conditions are adhered to, using the range of values between -25%
and 75% of the change in the parameter. The effect of changes in parameter values for a1 is
shown in Table 5. All other parameters were tested similarly, however, these were not shown
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in tables but presented together on the same graph so that the sensitivities of the key system
properties to these changes can be compared in relative terms. The changes in each of the
parameter values were plotted against the profit function and the cycle length, as presented in
Figures 2 and 3 respectively.

(Insert Table 5)

Profit Graph
The graph in Figure 2 shows a combined summary of previous tables, the graph shows the effect
of parameter changes on profit.

(Insert Figure 2)

Cycle Time graph
The graph in Figure 3 shows the effect of percentage change in parameters on cycle time.

(Insert Figure 3)

The following are the observations from the sensitivity analysis:
As the price coefficient for product 1, a1, increases, the selling price, P1, of product 1 decreases
while product 2’s selling price, P2, increases. The cycle length T increases slightly. The unit
profit decreases as seen in Figure 2. Similarly, when a2 increases, the selling price P1 for product
1 increases slightly while the selling price P2 for product 2 decreases marginally. The cycle length
increases slightly, and the unit profit decreases as seen in Figures 2 and 3. When b1 increases,
the selling price for product 1, P1, decreases while the selling price for product 2, P2, increases
marginally. The cycle length also increases slightly while the unit profit decreases as seen in
Figures 2 and 3. An increase in b2 results in an increase in the selling price of P1 and a decrease
in P2. The cycle length increases while the unit profit decreases drastically as apparent from
Figures 2 and 3.

When the selling price coefficients an, bn increase, there is a decrease in TP as seen from the
graphs in Figure 2, while on the other hand, the cycle length decreases as seen in Figure 3. P1

decrease with an increase in βn for the products. Whereas P2 decreases with an increase in β1,
P2 on the other hand, increases with an increase in β2. Moreover, an increase in unit holding
cost, hn or purchasing cost cn of the products, results in reduced profit. This is an indication
that the retailer should always try to find ways to keep costs low to maximises profit. The
model, however, tries to push up the prices for products 1 and 2 in trying to counteract the
cost increase.

Finally, from Figure 2, it can be seen that the profit function is more sensitive to higher values
of A1 and A2. As such, from a management perspective this indicates that having higher values
of base demand results in higher profit, inventory managers should take note of this as it is
favorable to the model. Conversely, at higher values of c2 and θ2, the model yields lower profit.
This highlights to inventory managers that the purchasing cost and deterioration rate of product
2 should be closely monitored as higher values of these parameters result in lower profit relative
to the other parameters. Furthermore, at lower values of the parameters, the profit is more
sensitive to b1 and a2 as well as b2 and θ1, where b1 and a2 result in higher profit whereas b2
and θ1 result in lower profit. A highlight to inventory managers from this outcome of the model
is the fact that a lower value of deterioration rate for product 1 results in lower profit. From
Figure 3, higher values of c1 and c2 in the model suggest longer cycle lengths relative to other
parameters. This observation indicates that the model is more sensitive to purchasing cost of
both products at higher values. Conversely, higher values of the base demand, A1 and A2 lower
the cycle length as seen in the graph. On the other hand, lower values of h2 and A2 increase
the cycle length more, relative to other parameters, while lower values of b1 and c2 decrease the
cycle length less than other parameters.
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5.3 Comparisons with existing studies

The model developed in this paper can be said to be an extension of the Karaöz et al [3] model.
However, in this study, the model is extended to incorporate the deterioration of items while
omitting the substitution of items from the model. As such, the sensitivity analysis of the model
developed in this paper is compared with the sensitivity analysis of some parameters of Karaöz
et al.[3]’s model as this is a more realistic comparison. This comparison is summarised in Table
6. From the table, the two are comparable in that a change in a common parameter result in
similar profit changes in both models.

(Insert Table 6)

6 Conclusion

The inventory level of products does not deplete through demand only. Factors such as deteri-
oration do contribute to inventory depletion. Moreover, demand for items is seldom constant.
Factors such as the display of stock, time dynamics, selling price, substitutability, and com-
plementarity of items have a huge influence on the overall demand for an item. Also, there
may be cost savings in joint ordering of items. This study’s focus has been on developing an
optimal inventory policy for mutually complementary items with stocks that deplete due to
both demand and deterioration. The demand for each of these items was represented as an
exponential function of the product’s selling price, the complementary product’s selling price,
and time. The items could also be ordered together by choosing their joint cycle length, and
hence their order quantities, appropriately.

The mathematical model was formulated and solved for the values of the selling price of the
two products and the cycle length that maximises the profit. A numerical example was used
to demonstrate a practical application of the model and the optimal replenishment time and
profit were determined. Sensitivity analysis indicated how changes in certain parameters of the
model influence the cycle length, product price, and profitability of the inventory system.

The model can be extended in many ways, for instance, by incorporating substitutable items.
This will address some other real-life scenarios, and this may be done together with the comple-
mentary products as presented in this model. The model can also be further extended to allow
for shortages as this scenario is also quite realistic in many inventory management systems due
to opportunities for full and partial backlogging of demand. In addition, the demand for some
items may be stimulated by a physical display of the bulk presence of the item, therefore, it
may be interesting to extend the model to items that have stock dependent demand.
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Author(s) Substitute item Complementary item Mutual price dependent Deterioration Constant demand? (Type) Joint replenishment Shared ordering cost

Maity and Maiti [12] Yes Yes No Yes No (Linear) No No

Karaöz et al. [3] Yes Yes No No No (Natural Exponential) No No

Maragatham,and Palani [19] No No No Yes No (Exponential) No No

Mishra [20] No No No Yes Yes Yes No

Hemmati et al. [13] No Yes No No No (Linear) Yes No

Mokhtari [2] Yes Yes No No No (Linear) Yes No

Edalatpour and Mirzapour [9] Yes Yes No Yes No (Linear) Yes No

Taleizadeh et al. [11] Yes Yes Yes Yes No (Linear) Yes No

Aliyu and Sani [6] No No No Yes No (Natural exponential) No No

Amiri et al. [21] No No No Yes Yes No No

Mashud [22] No No No Yes No (Linear and exponential) No No

Rajesh and Vinod [10] Yes Yes No No No (Linear) Yes No

Yanhai and Jinwen [14] No Yes No No No (Probability distribution function) No No

Poormoaied [15] No Yes No No No (Probability distribution function) Yes No

Rajesh and Vinod [23] Yes Yes No Yes No (linear) Yes No

Salami et al. [24] No No No Yes No (linear) No No

Feng et al. [25] No No No Yes No (linear) No No

Adak and Mahapatra [26] No No No Yes No (linear) No No

This Model No Yes Yes Yes No (natural Exponential) Yes Yes

Table 1: Article placement from the context of the literature

Notations Units Description

n Dimensionless An index representing the product, n = 1, 2 in this case

An Unit/Time Base demand (a constant) of product n.

an Constant Product 1’s price coefficient for the demand rate (a > 0) of product n.

bn Constant Product 2’s price coefficient for the demand rate (b > 0) of product n.

cn R/Unit Purchasing cost per unit of product n.

Dn Unit/Time Demand for product n.

hn R/Unit/Time Holding cost per unit of product n per unit time.

In(t) Unit Inventory level at time t of product n.

k0 R/Batch The constant portion of order cost per order.

kn R/Batch The variable portion of order cost per order for product n.

n Constant Deterioration rate of product n, where (0n1).

n Constant Constant governing rate of change with time (decrease or increase) of demand for the nth product.

Decision Variables Units Description

Pn R Selling price (R/Unit) of product n.

Qn Unit The order quantity for nth Product.

T Time Length of replenishment cycle.

Table 2: Notations and decision variables used in deriving the inventory model.
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Parameters Product 1 Product 2

an 0.06 0.02
bn 0.04 0.08

n 0.40 0.50
hn 6.00 5.00
cn 24.00 20.00
An 300 450

n 0.28 0.35
e 2.718 -
k0 500 -
kn 150 300

Table 3: Numerical values.

P1 P2 T TP Q1 Q2

40.12 34.12 3.05 1234.98 122.56 223.43

Table 4: Model results.

P1 P2 T TP Q1 Q2 a1 Change in parameter

32.54 27.11 1.42 1293.60 281.25 116.81 0.02 -75
34.99 29.16 1.83 1611.57 258.46 163.13 0.03 -50
39.12 32.60 2.52 1562.80 188.63 194.89 0.05 -25
40.12 34.12 3.05 1234.98 122.56 223.43 0.06 0
35.09 35.75 3.24 1063.04 98.83 234.98 0.08 25
31.63 36.61 3.35 999.85 80.38 246.21 0.09 50
29.04 37.06 3.41 983.42 66.04 256.56 0.11 75

Table 5: The effects of changing a1while keeping other parameters at the original values.

Karaöz et al. [3]’s model. This Model

An increase in the parameter of β results in an
increase in prices together with profit per unit of time. An increase in the parameter of time β1 or β2 makes the profit per unit of time increase as observed in Figure 2.

At higher values of the price coefficients of the products,
profit is reduced Similarly, in this paper at higher values of the price coefficients of the products the unit profit decreases as seen in Figure 2.

Table 6: Comparison of results with existing study

Figure 1: Inventory levels of two deteriorating mutually complementary products with time.
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Figure 2: Changes in profit due to parameter changes

Figure 3: Change in T due to parameter changes.
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