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Abstract. The discrete grey modelling technique is a novel methodology of grey
prediction models, which is e�ective to improve the e�ectiveness and applicability of grey
models. In order to build a more general and e�ective univariate grey prediction model, the
discrete grey modelling technique is utilised in this paper to build a Quadratic Polynomial
Discrete Grey Model (QPDGM). The properties of the QPDGM have been discussed, which
indicate that the new model can be regarded as an extension of the conventional discrete
grey model and nonhomogeneous grey model, and it is also coincidence with three classes of
exponential sequences. The QPDGM is �nally applied to predict the energy consumption
of China, including the electric power, crude oil and natural gas consumptions. The results
have been compared to some commonly used univariate grey prediction models, which
indicates the QPDGM is generally more accurate than other models.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

Energy consumption is an important indicator re-

ecting the economic level and also related to envi-
ronment protection. Future energy consumption is
always important for the decision makers to adjust
the policies and marketing strategy, as a consequence,
energy forecasting and related topics have appealed
considerable interest of research in recent years. Many
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methods have been applied in these �elds, such as
regression models [1], time series analysis methods
[2], data-driven schemes [3], computational intelligence
technology [4], hybrid prediction system [5], and grey
models [6]. Among these methods, the grey models
present a di�erent way of modelling, which are aiming
at dealing with the systems with known and unknown
information.

In the grey system theory, the grey prediction
models play an important role which have been widely
applied in many �elds. The univariate grey prediction
models are most popular due to their e�ectiveness
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and applicability in time series forecasting with small
samples. The basic GM(1,1) model represents the
key idea of the methodology of the grey prediction
models, and a lot of new univariate grey prediction
models have been developed based on the similar
methodology in the recent few years, such as the
Nonhomogeneous Grey Model with exogenous term
k (NGM(1; 1; k)) [7], Euler Polynomial-Driven Grey
Model (EPDGM) [8], multiple fractional order time-
delayed grey model [9], Grey Model with N -order
Polynomial term (GMP(1; 1; N)) [10], and Nonlinear
Multivariate Grey Model (NMGM(1, N)) [11], hyper-
bolic time delayed grey model [12], grey Verhulst model
[13], Nonlinear Grey Bernoulli Model (NGBM(1,1))
[14], etc. Such researches have signi�cantly enriched
the grey system model family and provide a wide range
of choice for decision-oriented research.

But there still exist issues in the methodology
of the grey prediction models. One of the most
signi�cant issues is believed to be that the structure of
the so called background value of the GM(1,1) model
is not accurate. Since this issue was pointed out
by Tan [15] in 2000, a lot of researchers have made
signi�cant e�orts to �nd an appropriate structure of the
GM(1,1) model, and �nally an accurate structure of the
background value was found by Wang et al. [16] in 2008,
with which the GM(1,1) can be available to express ar-
bitrary homogeneous exponential sequences precisely.
The improved background restructuring method by
Wang et al. [16] have been successfully applied to
modify the NGM(1; 1; k) [17] and grey Verhulst model
[18]. Another issue has been pointed out by Kong
and Wei [19], which is the inconsistency between the
grey di�erential model and the solution of the GM(2,1)
model. Such inconsistency can be modi�ed using a
parameter transform, and the revised GM(2,1) can
also be coincidence with pure homogeneous exponential
sequences. And this idea has also been successfully
applied to improve the GM(1,1) [20], NGM(1; 1; k) [21],
FAGMO(1; 1; k) [22]. The similar issues have also been
found in the multivariate grey models in recent research
[23], and it was proved that the method provided by
Kong [19] is also e�cient to improve the GMC(1; n)
model. But it should be noticed that although these
issues can be modi�ed, the correspondence methods are
still complex and the revised models are not easy to be
analysed.

A novel methodology of grey prediction models
have been developed by Xie and Liu in 2009, which is
called the Discrete Grey Modelling Technique (DGMT)
in this paper. The initial work was presented to
build a novel discrete GM(1,1) model (DGM(1,1)) [17],
which has proved that the DGM(1,1) is accurate to
predict pure homogenous exponential sequences, and
this property is the same to the modi�ed GM(1,1)
model with restructured background values by Wang et

al. [16] and the improved GM(1,1) by Chen et al. [20].
This indicates that the DGMT is also available to
modify the issues of the conventional grey prediction
models. And it was shown that the implementation
of the DGMT was much simpler than background
value reconstruction. Due to its e�ectiveness and
applicability for improving the conventional univariate
grey prediction models, the DGMT has also been used
to build some novel discrete grey prediction models in
recent researches, such as the DGM [17], the discrete
grey Verhulst model [24], the NIGM [25], etc. In
our previous works, the DGMT has been extended
to build the discrete GM(1; n) model with di�erence
formulations [26], the DGMT has also been proved to
be e�cient to build the nonlinear multivariate grey
models [27]. All these discrete models have been
proved to be more e�ective in applications than their
correspondence conventional grey models and also easy
to use.

This study is aiming at building a more general
and e�ective univariate grey prediction model using
the DGMT, which is called the Quadratic Polyno-
mial Discrete Grey Model (QPDGM). The QPDGM
can be regarded as an extension of the DGM and
NDGM, which contains the properties of coincidence
with homogeneous and nonhomogeneous exponential
sequences of the DGM and NDGM. The applications of
predicting the energy consumption of China, including
the electric power consumption, Crude Oil Consump-
tion (COC) and natural gas consumption, are carried
out to evaluate the performance of the QPDGM in
comparison with some commonly used univariate grey
prediction models.

The rest of this paper is organized as follows:
Section 2 presents the de�nition and the properties of
the conventional DGM and NDGM. Section 3 gives the
de�nition and properties of the QPDGM along with
the discussion on the relationship of the QPDGM, the
DGM and NDGM. Section 4 shows the numerical re-
sults of the applications of China's energy consumption
forecasting and conclusions are drawn in Section 5.

2. The existing DGM(1,1) model and
NDGM(1,1) model

In this section, we �rstly overview some important
de�nitions of the grey modelling method and the
existing DGM(1,1) and NDGM(1,1) models [28].

2.1. The DGM(1,1) model and its properties
De�nition 1. Set the original sequence to be:

X(0) =
n
x(0)(1); x(0)(2); : : : ; x(0)(n)

o
: (1)

The �rst-order accumulated generating operation (1-
AGO) sequence of the X(0) is de�ned as:
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X(1) =
n
x(1)(1); x(1)(2); : : : ; x(1)(n)

o
; (2)

where x(1)(k) =
Pk
j=1 x

(0)(j).
The di�erence equation:

x(1)(k + 1) = �1x(1)(k) + �2 (3)

is called the discrete grey model, abbreviated as DGM.
The parameters �1 and �2 can be obtained using

the least squares estimation method as:

[�1; �2]T = (BTB)�1BY; (4)

where:

Y =

0BBB@
x(1)(2)
x(1)(3)

...
x(1)(n)

1CCCA ; B =

0BBB@
x(1)(1) 1
x(1)(2) 1

...
...

x(1)(n� 1) 1

1CCCA :

The recursive function of the DGM is given as:

x(1)(k + 1) = �k1x
(0)(1) +

1� �k1
1� �1

�2: (5)

The predicted values X̂(0) is obtained using the
�rst-order Inverse Accumulated Generating Operation
(1-IAGO), which is de�ned as:

x̂(0)(k) = x̂(1)(k)� x̂(1)(k � 1): (6)

The most important property of the DGM is its
accuracy of predicting the pure exponential sequence,
which is also the most signi�cant advantage over the
conventional GM(1,1) model, which can be described
by the following Thereom 1.

Theorem 1 [17]. Assume that the original sequence
is:

X(0) =
�
ac; ac2; :::; acn; acn+1; acn+2; :::

	
; c>0: (7)

One uses the �rst n points to build the DGM, the
parameters will be:

[�1; �2]T = [c; ac]T ;

and the predicted values will be:

x̂(0)(k) = ack; k = 1; 2; : : : :

The Theorem 1 indicates that the DGM can �t
the pure homogeneous exponential sequence without
bias. This is a very important property that it will not
be limited by the grey development coe�cient term like
the classical GM(1,1) [17].

2.2. The NDGM(1,1) model and its properties
De�nition 2. The de�nitions of original sequence

X(0) and its 1-AGO sequence are the same to Eqs. (1)
and (2). The di�erence equation:

x(1)(k + 1) = �1x(1)(k) + �2k + �3; (8)

is called the NDGM.
The parameters �1; �2, and �3 can be obtained

using the least squares method as:

[�1; �2; �3]T = (BTB)�1BY; (9)

where:

Y =

0BBB@
x(1)(2)
x(1)(3)

...
x(1)(n)

1CCCA ;

B =

0BBB@
x(1)(1) 1 1
x(1)(2) 2 1

...
...

...
x(1)(n� 1) n� 1 1

1CCCA :

The recursive function of the NDGM is given as:

x(1)(k + 1)=�k1x
(0)(1)+�2

kX
j=1

j�k�j1 +
1��k1
1��1

�3: (10)

The predicted values X̂(0) of NDGM can also be
obtained using the 1-IAGO in Eq. (6).

It can be seen that when �2 = 0, the NDGM
model (8) yields to the DGM model (3). The following
Theorem 2 is a summary of the results by Xie and
Liu [17], which depicts an important property of the
NDGM.

Theorem 2. Assume that the original sequence is:

X(0) =
�
ac+ b; ac2 + b; : : : ; acn + b; acn+1

+b; acn+2 + b; : : : ;
�
; c > 0: (11)

One uses the �rst n points to build the NDGM,
the parameters will be:

[�1; �2; �3]T = [c; b(1� c); ac+ b]T ;

and the predicted values will be:

x̂(0)(k) = ack + b: (12)

The Theorem 2 indicates that the NDGM is accu-
rate to predict the pure nonhomogeneous exponential
sequences. And it is obvious that when b = 0 the
original sequence (11) turns to be a pure homogeneous
exponential sequence, and at this time the NDGM is
accurate to predict the pure homogeneous exponential
sequences too. Obviously, this property makes the
NDGM more 
exible to deal with more complex se-
quence.
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3. The proposed QPDGM and its properties

In this section, we will introduce a novel as QPDGM.

3.1. De�nition of the proposed QPDGM model
De�nition 3. The de�nitions of original sequence
X(0) and its 1-AGO sequence are the same to Eqs. (1)
and (2). The di�erence equation:

x(1)(k + 1) = �1x(1)(k) + �2k2 + �3k + �4; (13)

is called the QPDGM.
The system parameters �1, �2, �3, and �4 can be

obtained using the least squares estimation method as:

[�1; �2; �3; �4]T = (BTB)�1BY; (14)

where:

Y =

0BBB@
x(1)(2)
x(1)(3)

...
x(1)(n)

1CCCA ;

B =

0BBB@
x(1)(1) 1 1 1
x(1)(2) 22 2 1

...
...

...
...

x(1)(n� 1) (n� 1)2 n� 1 1

1CCCA :

The recursive function of the NDGM is given as:

x(1)(k + 1) = �k1x
(0)(1) +

kX
j=1

[�2j2 + �3j]�k�j1

+
1� �k1
1� �1

�4: (15)

The predicted values X̂(0) of NDGM can also be
obtained using the 1-IAGO in Eq. (6).

It can be seen that the QPDGM yields the NDGM
when �2 = 0, and it yields to DGM when �2 = �3 = 0.
Thus it is actually a more general model than these
two models. And it is also reasonable to imply that
the existing models can be taken place by the QPDGM
with proper coe�cients.

3.2. Some important properties of the
QPDGM

In this subsection we will discuss the properties of
the QPDGM, which depicts its accuracy with three
classes of exponential sequences. And then make a brief
discussion on its 
exibility.

Theorem 3. Assume that the original sequence is:

X(0) =
�
ac+ b+ d; ac2 + 2b+ d; : : : ; acn

+bn+ d; acn+1 + b(n+ 1) + d; acn+2

+b(n+ 2) + d; : : :
	
; (16)

where a; b; c; d 2 R and c > 0. One uses the �rst n
points to build the QPDGM, the system parameters
will be:

[�1; �2; �3; �4]T =
�
c;
b
2

(1� c); b+ (1� c)
�
b
2

+ d
�
;

ac+ b+ d
�T
; (17)

and the predicted values will be:

x̂(0)(k) = ack + bk + d: (18)

Proof 1. Considering the 1-AGO of the given sequence
(16), we have:

x(1)(k + 1) =
k+1X
j=1

x(0)(j)

= ac
1� cc+1

1� c + b
(k + 1)(k + 2)

2

+d(k + 1) = �ack+2

1� c +
b
2
k2+

�
3b
2

+d
�
k

+
�
b+ d+

ac
1� c

�
: (19)

Then we substitute the x(1)(k)(k = 2; 3; : : : ; n)
into the right side of the QPDGM model (13), we have:

�1x(1)(k) + �2k2 + �3k + �4 =

�1

�
ac

1� ck
1� c + b

k(k + 1)
2

+ dk
�

+ �2k2

+�3k + �4 =
�
�ack+1

1� c
�
�1 +

�
b
2
�1 + �2

�
k2

+
�
b
2
�1 + �1d+ �3

�
k +

�
ac

1� c�1 + �4

�
: (20)

By substituting the parameters in Eq. (17) into
Eq. (20), we have:

x(1)(k + 1) = �ack+2

1� c +
b
2
k2 +

�
3b
2

+ b
�
k

+
�
b+ d+

ac
1� c

�
= �1x(1)(k) + �2k2

+�3k + �4: (21)

Noticing that the Eq. (21) holds for any k =
2; 3; : : :, which means the parameters �1, �2, �3, and
�4 in Eq. (17) are the solution of the following linear
system:
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B[�1; �2; �3; �4]T = Y; (22)

where B and Y are de�ned in Eq. (14). Thus, there
must be:

[�1; �2; �3; �4]T = (BTB)�1BTY: (23)

It is obvious that the matrix B has full column
rank when n > 4, thus the solution of the least squares
method (23) is unique. Thus, if we substitute the
original sequence x(0)(k) by k from 1 to n to build the
QPDGM, the parameters are the ones in Eq. (17).

Then we substitute the parameters �1, �2, �3, and
�4 in Eq. (17) into the recursive function in Eq. (15),
we have:

x̂(1)(k + 1) = ck[ac+ b+ d]

+
kX
j=1

�
b
2

(1�c)j2+
�
b+ (1�c)

�
b
2

+d
��
j
�
ck�j

+
1� ck
1� c [ac+ b+ d] = �ack+1

1� c +
b
2
k2

+
�

3b
2

+ b
�
k +

�
b+ d+

ac
1� c

�
: (24)

Thus the predicted values X̂(0) can be obtained
using 1-IAGO (6) as:

x̂(0)(k) = x̂(1)(k)� x̂(1)(k � 1) = ack + bk + d: (25)

Above all, Theorem 3 is proved.
Theorem 3 represents the most important prop-

erty of QPDGM, which indicates that the QPDGM
is unbiased to the sequence satisfying the formulation
(16). This formulation contains an exponential term
ack, a linear term bk and a constant. Comparing to
the properties described in Theorems 1 and 2, it is
clear to see that the sequences to which the DGM and
NDGM are unbiased are speci�c formulations of the
sequence (16) described above. Thus it is clear that
the QPDGM is a more general unbiased model than
the existing DGM and NDGM. In fact, it is very easy
to prove that the QPDGM can also accurately �t and
predict the sequences described in Theorems 1 and 2,
the details are presented in the following corollaries.

Corollary 1. Assume that the original sequence is:

X(0) =
�
ac; ac2; : : : ; acn; acn+1; acn+2; : : :

	
; (26)

where a; c 2 R and c > 0. One uses the �rst n points
to build the QPDGM, the system parameters will be:

[�1; �2; �3; �4]T = [c; 0; 0; ac]T ; (27)

and the predicted values will be:

x̂(0)(k) = ack: (28)

Proof 2. The sequence (26) is actually a speci�c
formulation of sequence (16) if we set b = d = 0.

Then following the results in Theorem 3, the
parameters obtained by QPDGM based on the �rst n
points should be:

[�1; �2; �3; �4]T =
�
c;
b
2

(1�c); b+(1� c)
�
b
2

+d
�
;

ac+ b+ d
�T
b = d = 0[c; 0; 0; ac]T : (29)

Substituting the parameters into the response
function of QPDGM like it did in Eq. (24), the restored
values of QPDGM can be obtained by:

x̂(0)(k) = ack: (30)

Above all, Corollary 1 is proved.

Corollary 2. Assume that the original sequence is:

X(0) =
�
ac+ d; ac2 + d; : : : ; acn + d; acn+1 + d;

acn+2 + d; : : :
�
; (31)

where a; c; d 2 R and c > 0. One uses the �rst n points
to build the QPDGM, the system parameters will be:

[�1; �2; �3; �4]T = [c; 0; (1� c)d; ac+ d]T ; (32)

and the predicted values will be:

x̂(0)(k) = ack + d: (33)

Proof 3. The sequence (31) is actually a speci�c
formulation of sequence (16) if we set b = 0.

Similarly, following the results in Theorem 3, the
parameters obtained by QPDGM based on the �rst n
points should be:

[�1; �2; �3; �4]T =
�
c;
b
2

(1�c); b+(1�c)
�
b
2

+d
�
;

ac+ b+ d
�T
b = 0[c; 0; (1� c)d; ac+ d]T : (34)

Similarly, we have the restored values as:

x̂(0)(k) = ack + d: (35)

Above all, Corollary 2 is proved.
On the other hand, it should be noticed that the

DGM and NDGM can only predict the monotonous
sequences according to their properties Theorems 1
and 2. It is clear that, with more 
exible struc-
ture, the QPDGM is not limited to the monotonous
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Figure 1. Di�erent curves produced by QPDGM model
with di�erent parameters.

sequences. The Figure 1 plots the curves produces
by QPDGM, the parameters are the ones de�ned in
Eq. (16). It is clear that if proper parameters are set,
the QPDGM can produce more complex curves rather
than monotonous sequences. This clearly implies that
the QPDGM would can be suitable for more complex
data sets, therefor it can be expected to be applied in
wider range of variety of �elds.

4. Applications

China is now the largest energy consumer in the world,
and it consumes 23% world's total primary energy in
2014. But now China is also facing a great challenge
with growing scale of energy consumption. Thus it is
very important to forecast the future energy consump-
tion accurately in order to make suitable policies and
marketing strategies for the decision makers, such as
the government and energy companies.

In this section, we use the QPDGM to predict the
primary energy consumption of China, including elec-
tric power consumption (EPC, 109 kilowatt-hour=109

kWh), (COC, 104 tons of equivalent coal= 104 TEC)
and natural gas consumption (NGC, 109 m3). The
results by QPDGM are compared to the commonly
used univariate grey models, including the GM(1,1)
[28], DGM [17], NDGM [29], and ONGM [21], in
which these grey models are commonly applied in
energy consumption forecasting in recent researches.
The latest raw data of energy consumption of China
from 2000 to 2014 are collected from the o�cial
website http://data.stats.gov.cn of National Bureau of

Statistics of China. In all the cases the �rst twelve
points are used to build the prediction models, and the
rest three points are used for testing.

Three evaluation criteria are used to assess the
e�ectiveness of the prediction models, including the
absolute percentage error ("k), the Mean Absolute
Percentage Error (MAPE) and the maximum absolute
percentage error ("max), which are de�ned as:

"k =
���� x̂(0)(k)� x(k)

x(0)(k)

����� 100(%);

k = 2; 3; : : : ; n; (36)

MAPE=
1

N � 1

NX
k=2

���� x̂(0)(k)�x(k)
x(0)(k)

�����100(%); (37)

"max = max
k=1;:::;N

���� x̂(0)(k)� x(k)
x(0)(k)

����� 100(%): (38)

4.1. Case 1: Predicting the electric power
consumption of China

In this subsection, the case study of electric power
consumption of China by forecasted grey models will
be presented. The raw data of EPC of China from 2000
to 2014 are listed in the following Table 1.

The predicted values by GM(1,1), DGM, NDGM,
ONGM, and QPDGM are listed in Table 2 and Figure 2

Figure 2. The predicted values of EPC of China by
GM(1,1), DGM, NDGM, ONGM, and QPDGM.

Table 1. Raw data of EPC 109 kWh of China from 2000 to 2014.

Year EPC Year EPC Year EPC

2000 13472.38 2005 24940.32 2010 41934.49
2001 14723.46 2006 28587.97 2011 47000.88
2002 16465.45 2007 32711.81 2012 49762.64
2003 19031.6 2008 34541.35 2013 54203.41
2004 21971.37 2009 37032.14 2014 56383.69
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Table 2. Prediction results of EPC of China by GM(1,1), DGM, NDGM, ONGM, and QPDGM.

Year Raw data GM(1,1) DGM NDGM ONGM QPDGM

2000 13472.38 13472.38 13472.38 13472.38 13472.38 13472.38

2001 14723.46 15826.5305 15843.3686 14337.8442 14366.1904 14883.6562

2002 16465.45 17664.2495 17685.0000 16797.2886 16811.0017 16412.6033

2003 19031.60 19715.358 19740.7025 19396.7388 19398.1159 18912.9337

2004 21971.37 22004.6333 22035.3597 22144.1647 22135.8159 21885.9529

2005 24940.32 24559.7311 24596.7475 25047.9901 25032.8669 25088.9893

2006 28587.97 27411.5175 27455.8708 28117.1180 28098.5440 28403.9552

2007 32711.81 30594.4430 30647.3383 31360.9585 31342.6623 31773.3877

2008 34541.35 34146.9581 34209.7816 34789.4572 34775.6081 35169.3243

2009 37032.14 38111.9784 38186.3229 38413.1259 38408.3724 38578.1583

2010 41934.49 42537.4024 42625.0970 42243.0748 42252.5858 41993.2682

2011 47000.88 47476.6905 47579.8336 46291.0467 46320.5559 45411.4322

2012 49762.64 52989.5107 53110.5084 50569.4525 50625.3068 48831.0822

2013 54203.41 59142.4596 59284.0681 55091.4100 55180.6206 52251.4555

2014 56383.69 66009.8663 66175.2418 59870.7836 60001.0815 55672.1806

Table 3. Error values of EPC of China by GM(1,1), DGM, NDGM, ONGM, and QPDGM.

Year GM(1,1) DGM NDGM ONGM QPDGM

2000 0.0000 0.0000 0.0000 0.0000 0.0000
2001 7.4919 7.6063 2.6191 2.4265 1.0880
2002 7.2807 7.4067 2.0154 2.0986 0.3210
2003 3.5927 3.7259 1.9186 1.9258 0.6235
2004 0.1514 0.2912 0.7865 0.7485 0.3888
2005 1.5260 1.3776 0.4317 0.3711 0.5961
2006 4.1152 3.9601 1.6470 1.7120 0.6437
2007 6.4728 6.3111 4.1296 4.1855 2.8688
2008 1.1418 0.9599 0.7183 0.6782 1.8180
2009 2.9159 3.1167 3.7292 3.7163 4.1748
2010 1.4377 1.6469 0.7359 0.7586 0.1402
2011 1.0123 1.2318 1.5103 1.4475 3.3817

MAPE 3.3762 3.4213 1.8401 1.8244 1.4586
"max 7.4919 7.6063 4.1296 4.1855 4.1748

2012 6.4845 6.7277 1.6213 1.7336 1.8720
2013 9.1121 9.3733 1.6383 1.8029 3.6012
2014 17.0726 17.3659 6.1846 6.4157 1.2619

MAPE 10.8897 11.1556 3.1481 3.3174 2.2450
"max 17.0726 17.3659 6.1846 6.4157 3.6012

along with the MAPE and "max, which are also listed
in Table 3.

The numerics of minimum MAPE and "max are
all presented in bold font in Table 3. It is clearly to
see that the QPDGM has the minimum MAPE for

�tting and prediction, which indicates it has the best
overall accuracy in this case study. The NDGM has
the minimum "max for �tting, which is only 0.0452%
smaller than that of QPDGM. Meanwhile the QPDGM
still has the minimum "max for prediction, which
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is much smaller than the other four models, which
indicates the QPDGM has the best robustness. In
summary, the QPDGM performs best in this case.

4.2. Case 2: Predicting the COC of China
In this subsection, the China's COC will be forecasted
by the above �ve grey models. The raw data of COC
of China from 2000 to 2014 and the predicted values
by GM(1,1), DGM, NDGM, ONGM, and QPDGM are
listed in Table 4 which are also plotted in Figure 3.
Meanwhile, the MAPE and the "max are listed in
Table 5.

It can be seen in Table 5 that the MAPE from

Figure 3. The predicted values of COC of China by
GM(1,1), DGM, NDGM, ONGM, and QPDGM.

2000 to 2011 of the GM(1,1) model is 3.6871%, that
of the DGM is 3.6918%, that of NDGM is 2.3189%,
that of ONGM is 2.4028% and that of QPDGM is
2.7418%. Meanwhile, the MAPE from 2012 to 2014
of the GM(1,1) model is 4.8842%, that of the DGM is
4.9432%, that of NDGM is 2.8825%, that of ONGM
is 2.3114% and that of QPDGM is 2.2728%. We can
observe that the ONGM has the minimum MAPE for
�tting, which is only 0.3390% smaller than that of
QPDGM, and the QPDGM has the minimum MAPE
for prediction and the minimum "max for �tting and
prediction. Thus the QPDGM performs best in this
case study as it has the best overall accuracy and
robustness.

4.3. Case 3: Predicting the natural gas
consumption of China

The raw data of NGC of China from 2000 to 2014
and the predicted values by GM(1,1), DGM, NDGM,
ONGM, and QPDGM are listed in Table 6, which are
also plotted in Figure 4. Meanwhile, the MAPE and
"max are shown in Table 7.

As shown in Table 7, the �tting MAPE and the
prediction MAPE of the GM(1,1) are 3.0374% and
5.8277%, those of the DGM are 3.1451% and 6.5468%,
those of the NDGM are 3.1668% and 7.4146, those
of the ONGM are 3.1563% and 7.6893, those of the
QPDGM are 2.1131% and 1.7141%, respectively. It is
clearly seen that the QPDGM has the minimum MAPE
and "max for �tting and prediction, which indicates it
outperforms the other four prediction models in this
case study.

Table 4. Prediction results of COC of China by GM(1,1), DGM, NDGM, ONGM, and QPDGM.

Year Raw data GM(1,1) DGM NDGM ONGM QPDGM

2000 32332.08 32332.0800 32332.0800 32332.0800 32332.0800 32332.0800

2001 32975.96 35408.0474 35419.6379 33061.6908 33228.8121 32144.2832

2002 35611.17 37661.6128 37674.6790 36566.1477 36625.9026 37110.8163

2003 39613.68 40058.6076 40073.2903 39965.4017 39945.0585 40639.2110

2004 45825.92 42608.1606 42624.6127 43262.6110 43188.0677 43695.3724

2005 46523.68 45319.9813 45338.3685 46460.8389 46356.6770 46596.4692

2006 50131.73 48204.3974 48224.8994 49563.0569 49452.5934 49446.6483

2007 52945.14 51272.3938 51295.2054 52572.1471 52477.4846 52280.1079

2008 53542.04 54535.6546 54560.9867 55490.9052 55432.9799 55108.0774

2009 55124.66 58006.6074 58034.6886 58322.0429 58320.6714 57934.2442

2010 62752.75 61698.4711 61729.5486 61068.1907 61142.1147 60759.8189

2011 65023.22 65625.3055 65659.6470 63731.8998 63898.8296 63585.1993

2012 68363.46 69802.0655 69839.9607 66315.6450 66592.3010 66410.5159

2013 71292.12 74244.6579 74286.4199 68821.8269 69223.9799 69235.8115

2014 72846.00 78970.0015 79015.9692 71252.7738 71795.2839 72061.1002
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Table 5. Error values of COC of China by GM(1,1), DGM, NDGM, ONGM, and QPDGM.

Year GM(1,1) DGM NDGM ONGM QPDGM

2000 0.0000 0.0000 0.0000 0.0000 0.0000
2001 7.3753 7.4105 0.2600 0.7668 2.5221
2002 5.7579 5.7946 2.6817 2.8495 4.2112
2003 1.1232 1.1602 0.8879 0.8365 2.5888
2004 7.0217 6.9858 5.5936 5.7562 4.6492
2005 2.5873 2.5478 0.1351 0.3590 0.1565
2006 3.8445 3.8036 1.1344 1.3547 1.3666
2007 3.1594 3.1163 0.7045 0.8833 1.2561
2008 1.8558 1.9031 3.6399 3.5317 2.9249
2009 5.2281 5.2790 5.8003 5.7978 5.0968
2010 1.6801 1.6305 2.6844 2.5666 3.1758
2011 0.9260 0.9788 1.9859 1.7292 2.2115

MAPE 3.6872 3.6918 2.3189 2.4028 2.7418
"max 7.3753 7.4105 5.8003 5.7562 5.0968

2012 2.1043 2.1598 2.9955 2.5908 2.8567
2013 4.1415 4.2000 3.4650 2.9009 2.8843
2014 8.4068 8.4699 2.1871 1.4424 1.0775

MAPE 4.8842 4.9432 2.8825 2.3114 2.2728
"max 8.4068 8.4699 3.4650 2.9009 2.8843

Table 6. Prediction results of NGC of China by GM(1,1), DGM, NDGM, ONGM, and QPDGM.

Year Raw data GM(1,1) DGM NDGM ONGM QPDGM

2000 245.03 245.0300 245.0300 245.0300 245.0300 245.0300
2001 274.30 249.6623 250.2644 253.9693 254.8541 269.6823
2002 291.84 293.8823 294.6979 297.3991 297.9783 298.0926
2003 339.08 345.9345 347.0205 348.7467 349.0296 341.1392
2004 396.72 407.2061 408.6327 409.4556 409.4651 399.3272
2005 467.63 479.3301 481.1839 481.2325 481.0100 473.1790
2006 561.41 564.2287 566.6163 566.0952 565.7062 563.2352
2007 705.23 664.1644 667.2170 666.4293 665.9713 670.0549
2008 812.94 781.8006 785.6789 785.0555 784.6672 794.2165
2009 895.20 920.2725 925.1733 925.3088 925.1818 936.3185
2010 1069.41 1083.2704 1089.4344 1091.1319 1091.5259 1096.9798
2011 1305.30 1275.1383 1282.8594 1287.1865 1288.4474 1276.8410
2012 1463.00 1500.9898 1510.6264 1518.9842 1521.5671 1476.5644
2013 1705.37 1766.8438 1778.8325 1793.0414 1797.5389 1696.8355
2014 1868.94 2079.7858 2094.6577 2117.0626 2124.2400 1938.3633

5. Conclusions

A novel univariate grey prediction model, the
Quadratic Polynominal Discrete Grey Model
(QPDGM), has been proposed in this paper. The
QPDGM is an extension of the conventional DGM

and NDGM, as it can be accurate to predict the
homogeneous and nonhomogeneous exponential
sequences. The QPDGM model is actually coincidence
with the sequences in the form of Eq. (18), which is a
more general exponential form, and thus the QPDGM
is more 
exible than the existing DGM and NDGM.
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Table 7. Error values of NGC of China by GM(1,1), DGM, NDGM, ONGM, and QPDGM.

Year GM(1,1) DGM NDGM ONGM QPDGM

2000 0.0000 0.0000 0.0000 0.0000 0.0000

2001 8.9820 8.7625 7.4119 7.0893 1.6834

2002 0.6998 0.9793 1.9048 2.1033 2.1425

2003 2.0215 2.3418 2.8509 2.9343 0.6073

2004 2.6432 3.0028 3.2102 3.2126 0.6572

2005 2.5020 2.8984 2.9088 2.8612 1.1866

2006 0.5021 0.9274 0.8345 0.7652 0.3251

2007 5.8230 5.3902 5.5019 5.5668 4.9878

2008 3.8305 3.3534 3.4301 3.4778 2.3032

2009 2.8008 3.3482 3.3634 3.3492 4.5932

2010 1.2961 1.8725 2.0312 2.0680 2.5780

2011 2.3107 1.7192 1.3877 1.2911 2.1803

MAPE 3.0374 3.1451 3.1668 3.1563 2.1131

"max 8.9820 8.7625 7.4119 7.0893 4.9878

2012 2.5967 3.2554 3.8267 4.0032 0.9272

2013 3.6047 4.3077 5.1409 5.4046 0.5004

2014 11.2816 12.0773 13.2761 13.6602 3.7146

MAPE 5.8277 6.5468 7.4146 7.6893 1.7141

"max 11.2816 12.0773 13.2761 13.6602 3.7146

Figure 4. The predicted values of NGC of China by
GM(1,1), DGM, NDGM, ONGM, and QPDGM.

The results of the applications of energy consumption
forecasts of China indicate that the QPDGM can
be more accurate than the GM(1,1), DGM, NDGM,
ONGM, which indicates that QPDGM has a high
potential in energy consumption forecasts due to
its higher 
exibility. In summary, the QPDGM is a
general and e�ective univariate grey prediction model,

which can be expected to used in wider range of �elds
in the future studies.
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