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Abstract:  

This study intends to quantify, model, and evaluate the impact of preventive maintenance (PM) on interruption duration 

(IntD) in electricity distribution systems, based on analyzing the data from the dashboard of an electricity distribution 

company and expert opinions. Following the data cleaning, the data are analyzed to identify the failure modes and their 

effects, to recognize the critical components (FMEA). Subsequently, the PM activities associated with them are 

investigated, to analyze the maintenance activities scheduling impact on IntD, employing expert judgment as a decision 

support. The data analysis reveals that the fuses and fuse holders experience the highest interruption frequencies and 

durations, nominating them as critical components. Then, the impact of maintenance activity (inspection time) on the 

IntD percentage change is analyzed, leading to the calculation of the sensitivity of IntD to maintenance activity.  

The quasi-linear shape of the IntD and energy not supplied (ENS) percentage decreases versus PM inspection time, i.e. 

the intended sensitivities are observed, thus two linear models are developed to represent this impact, suitable for 

maintenance optimization problems which need linear models convexity. Moreover, two indices of  IntD

PMS   and 

 ENS

PMS   are introduced as maintenance KPIs representing the sensitivities, to prioritize PM actions versus their impact 

on IntD. 

Keywords: Preventive Maintenance, Interruption Duration, Distribution Network, Expert Judgment, Sensitivity 

Analysis, Failure Mode and Effects Analysis (FMEA). 
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1- Introduction 

 

Customer satisfaction with the offered services is a crucial benchmark for utility companies’ competitiveness, 

especially in a privatized energy system. The factors contributing to customer satisfaction in the electricity distribution 

sector include the frequency and duration of power interruptions representing system reliability [1-2], the quality of 

electricity, the level of customer service, and the fairness of pricing. Among these factors, the duration and frequency of 

power interruptions play a particularly significant role. Consequently, electricity distribution companies devote their 

efforts to improving system reliability by mitigating power interruptions [2-5], utilizing solutions including distribution 

automation [6-7], distributed generation (DG) [8-10], demand-side management (DSM) [11-15], and proactively 

engaging in maintenance activities [16, 17].  

Maintenance is conducted in various applications using different strategies like corrective, preventive, predictive, or 

reliability-centered maintenance [18]. Corrective maintenance (CM) is performed upon detection of a fault or failure. 

Preventive maintenance (PM) or time-based maintenance (TBM) is performed on a scheduled basis to minimize 

unexpected failures [19]. Predictive maintenance (PdM) or condition-based maintenance (CBM) intends to monitor the 

condition of the equipment and identify the need for maintenance [20-22]. The RCM methodology is a framework for 

developing maintenance programs that concentrate on reliability. The aim is to achieve cost effectiveness by controlling 

maintenance performance, which implies a trade-off between corrective and preventive maintenance [18,23,24]. PM 

activities are performed in two stages of inspection and repair, which both need to be scheduled in terms of prioritizing 

components or feeders to be inspected or repaired/serviced. Table 1 represents a cause and effect mapping of PM 

activities of inspection and repair as causes to the reliability measures of interruption frequency and duration as the 

effect.  

 

PM activities play a crucial role in reducing the frequency and duration of interruptions. Research on modeling and 

prediction of interruption frequency can be categorized into harsh weather conditions [25-28] and normal conditions 

[29-36]. Reference [33] provides a PM planning based on a risk-based method employing the risk priority number of 

each equipment. The risk priority number is defined based on interruption frequency or failure rate prediction for each 

equipment. In [34], the planning of PM activities in the short-term horizon (monthly) has been discussed for four 

medium voltage feeders. This planning is scheduled based on monthly failure rate estimation, employing the Weibull 

probability distribution. In [35], recurrent neural networks (RNNs) are proposed to predict failure rates considering 

random and deteriorating failures. The implementation of this failure rate prediction model on the RCM problem 
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indicates that accounting for random failure rates can aid in preventing financial loss and achieving satisfactory 

reliability levels. In [36], a maintenance framework based on asset management is presented for overhead lines, which 

utilizes a developed failure rate model that considers expending cost and other effecting factors. The suggested model 

can achieve an acceptable reliability level in an asset management-based maintenance strategy. 

Despite extensive research on modeling and prediction of the frequency of interruptions [35] and identifying their 

root causes, there is still a lack of research on modeling and prediction of interruption duration (IntD) [3,5]. Within the 

research works on IntD modeling and prediction, two main approaches are involved: statistical learning and machine 

learning.  

The IntD modeling and prediction by statistical learning is mostly focused on identifying the most appropriate 

probability density function by utilizing historical data. The importance of considering the probabilistic nature of IntD 

is emphasized by [37], as failing to consider this may result in a 40% error in the estimated expected interruption 

expenses. Researchers in [38] examine the statistical significance of various features without presenting a specific 

prediction algorithm. A proposed approach in this domain, as outlined in [39], involves utilizing a Weibull-Markov 

random model to analyze distribution systems reliability. This model overcomes the drawbacks of the homogeneous 

Markov model while permitting analytic calculations. Another study in [40] investigates beta distribution's potential for 

modeling reliability indices. The authors compare the beta distribution with seven alternative distributions by 

emphasizing the advantages of describing reliability indices through their probabilistic distributions rather than relying 

on single values, such as their mean. Furthermore, [41] focuses specifically on modeling the IntD of primary 

distribution lines, driven from eight years of data collected from a distribution company. The investigation in [42] aims 

to probabilistically model IntD in distribution systems and extract a maintainability function. The authors fit the 

collected data from a distribution company with eleven different probability distribution functions and evaluate the 

results. In this study, the generalized extreme value distribution (GEVD) is suggested as the optimal choice for 

modeling IntD, despite the prevailing recommendation in literature to utilize Burr and Weibull distributions. 

The IntD modeling and prediction by machine learning are performed under both harsh weather conditions like [43-

45] or normal circumstances like [46-49]. Regarding the latter, normal circumstances, the following papers are 

considerable: In [46], a fuzzy-heuristic technique is developed, relying on expert knowledge to determine the relative 

importance of features. The proposed approach combines historical data with engineering expertise, though calibrating 

this combination proves challenging. Furthermore, reference [47] focuses on utilizing interruption and PM reports 

alongside using learning and natural language processing methods to predict IntD in real-time. Reference [48] proposes 

machine learning for IntD prediction utilizing historical and real-time data employing meteorological data and 
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interruption reports. In [49], an IntD model is developed, considering PM action, where linear and nonlinear regression 

methods are used to model the IntD considering the effect of the repair crew locations and urban traffic, in terms of the 

repair crew travel time to the accident site. 

PM activities consist of inspection and repair, each requiring prioritization of components or feeders to be serviced. 

PM inspection time plays a key role in reduction of interruption duration and frequency, thus failure costs reduction for 

the utility company and the customer. In [50], the authors present an optimal visual PM inspection scheduling model for 

distribution feeders considering it as a stochastic process, and propose a four-state Markov model. Reference [51] 

schedules the inspection time employing facility defect predictions. First, the effective features are extracted by a 

relation analysis approach utilizing the chi-square test. Subsequently, the features are employed to predict facility 

defection, which is utilized in inspection time scheduling. Moreover, several studies have utilized weighting parameters 

to prioritize feeders for inspection time, based on historical data [52,53].  

In this manuscript, an essential practical and industry-striving, yet surprisingly unattended, question is raised as: 

how much do the prior PM activities affect the IntD time, when a failure occurs on the distribution network. Since, to 

the best of the authors’ knowledge, no previous study has directly assessed or analyzed the electricity distribution 

systems PM inspection time impact on IntD. We have devoted an effort to model and predict the IntD, using statistical 

and machine learning approaches [42, 48-49]. However, in [48], the limited time span of the study (one season) 

hindered comprehensive modeling of the IntD. In [49], although being successful in modeling the behavior of IntD 

versus the discrete change of the PM actions, whether being conducted or not in the previous six months, it hardly 

yielded satisfactory results on the analysis of the IntD behavior versus a continuous change of the PM inspection time. 

Whereas, finally in the research reported in this paper, a pragmatic phenomenological approach is proposed to achieve 

this goal, based on historical data and expert judgment, utilizing failure mode and effects analysis (FMEA), yielding 

satisfactory results. Therefore, the notable contributions of this article can be summarized as follows: 

- Proposing a phenomenological sensitivity approach to the analysis of electricity distribution systems 

maintenance activities impact on IntD, based on historical data and expert judgment,  

- Introducing two indices as key performance indicators (KPIs) named “  IntD

PMS  ” and “  ENS

PMS  ” to quantify 

and represent the sensitivity of IntD and energy not supplied (ENS) to PM inspections on each electricity 

distribution system feeder and in aggregate, which can be utilized as a measure to compare and prioritize PM 

actions on feeders, 

- Conducting failure mode and effects analysis on the electricity distribution systems failures historical data, 

leading to exploration of fuses and fuse holders in low-voltage distribution network, as critical components, 
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- Discovering the quasi-linear shape of the IntD and ENS percentage decrease versus inspection time, and 

developing a linear model to represent the impact of the inspection time on the IntD of each electricity 

distribution system feeder. This linear model is useful and utilized in maintenance scheduling optimization 

problem models, where linear models are fruitful due to their convexity. 

2- Methodology 

 
This research utilizes the operation dashboard of the GTEDC as its data source. Figure 1 illustrates the proposed 

methodology of this paper, which is inspired by the Crisp methodology [54]. Once the data is collected and explored, 

the initial step involves preprocessing and cleaning the data to align with the specific problem being investigated. 

Following the data cleaning process, the next step entails analyzing the historical data using the FMEA tool [23]. 

FMEA is an effective approach for prioritizing and addressing failures by focusing on the most critical components. By 

identifying these critical components, the study proceeds to investigate the PM activities associated with them, 

employing expert judgment as a supportive tool. Consequently, the insights from the historical data exploration, FMEA, 

and expert judgment are incorporated to analyze the electricity distribution systems maintenance activities scheduling 

impact on IntD, using a phenomenological sensitivity approach, with its key components elaborated as follows. 

2-1- Core Business Understanding 

The first step of the methodology is business understanding. In this step, researchers should aim to understand the 

business functions and objectives. The researcher in this field should possess expertise in electricity distribution 

engineering. 

2-2- Data Understanding 

Available data should be collected, described, and explored. Following data collection and integration from 

multiple data sources, the acquired data should be described, including the format and the quantity of data. Then the 

data should be explored using querying, visualization, and reporting techniques considering data mining goals. 

2-3- Preprocessing and Cleaning of Historical Data 

Collected data often contain inconsistencies, such as data entry and measurement errors, missing values, and 

redundant data. Therefore, in this step, these inconsistencies should be identified and corrected. Subsequently, to 

evaluate how preventive maintenance actions impact IntD and reliability indices, any irrelevant interruptions to the 

research goal should be eliminated. 
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2-4- FMEA in distribution systems 

In order to prioritize PM activities in the electrical distribution network, it is necessary to identify critical 

components [55-57]. To analyze and detect critical components, we utilize the historical data, employing the FMEA 

tool. Figure 2 illustrates the specific area of focus within the scope of the distribution system failures in this study.   

2-4-1- FMEA Process 

 
The working steps involved in this tool, as described by [23], are as follows: 

1- Defining the system under analysis, including boundaries, functions, and failures,  

2- Identifying failure modes, 

3- Determining failure modes impacts, 

4- Ranking failure modes' severity in terms of their impact, and identifying the most critical component, 

5 - Identifying the root cause of the critical component failure mode, 

6- Determining actions for each root cause that can reduce the severity of its failures. 

In order to rank failure modes' impacts, the following formulas are considered: 
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In Eq. (1), the share of the ith distribution system component in the interruption frequency is calculated in the years 

under study. This share is calculated through dividing the frequency of interruptions caused by the ith component 

failures by the total frequency of interruptions in that feeder. Similarly, in Eq. (2), the share of ith distribution system 

component in the IntD is calculated. For employing the FMEA tool, besides the historical data, expert opinions are also 

required. 

2-4-2- Expert Judgment as a Source of Phenomenological Rules 

 
Expert opinions are used as a source of phenomenological rules in the FMEA process to provide decision support 

on root causes and PM activities' impact. Conducting a proper analysis using the FMEA tool requires the accurate 

identification of root causes for failure modes. Furthermore, expert opinions help identify related PM actions associated 
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with the root causes. However, accurately identifying root causes is not the final step; the expertise of experts is also 

necessary to quantify the impact of these preventive actions on failures. 

2-5- Sensitivity Analysis Formulation 

 

A sensitivity analysis is conducted on the inspection time (month) impact on IntD in feeders. The analysis explores 

the impact of inspection time on IntD. To facilitate this investigation, a yearly time frame has been defined, spanning 

from the start of July to the end of June in the next year. Calculation of the IntD (MTTR index) involves applying the 

developed formulation expressed in equations 3 to 6, considering the following two scenarios: In scenario “NPM”, no 

PM action is performed, and IntD is calculated assuming no PM actions (
,f y

NPMIntD ), while in scenario “PM”, IntD is 

calculated considering PM actions performed on critical components in the mth month (
, ,f m y

PMIntD ): 
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In Eq. (3), IntD is calculated considering no PM actions ( ,f y

NPMIntD ) for feeder f and year y. Eq. (4) produces the 

average duration of interruptions influenced by PM actions in the mth month until the end of that year ( , ,

,

f m y

Mean AffU ). The 

coefficients c and ,Mean PMU  are derived from expert judgments and serve specific purposes. The value of coefficient c 

reflects the level of uncertainty involved in identifying defects in critical components during PM activities. It's 

represented as a numerical value ranging from zero to one, indicating the average percentage of defect detection during 

PM inspections. On the other hand, the parameter ,Mean PMU  refers to the average IntD that would occur in the network if 

a defective critical component is detected and needs to be repaired or replaced. IntD calculation is performed by Eq. (5), 

considering introduced coefficients and PM inspection time for each feeder and each year. Lastly, the percentage 

decrease in IntD with the implementation of PM actions in the mth month ( , ,% f m y

PMIntD ) can be calculated using Eq. 

(6). 
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Regarding the calculation of the percentage decrease in ENS resulting from the implementation of PM actions on 

the critical component in the mth month ( , ,% f m y

PMENS ), the following formulas can be utilized: 

 

,, , , ,
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Eq. (7) has been employed to determine the amount of ENS when a defective critical component is detected and 

replaced during an inspection. The ENS in jth interruption ( , ,f y j

NPMENS ) is multiplied by the coefficient 
,

, ,

Mean PM

f y j

NPM

U

U
 to 

calculate the ENS of replacing the defective critical component ( , ,f y j

PMENS ), considering that the ENS is directly related 

to the IntD. After calculating , ,f y j

PMENS  for all interruptions of the feeder, the next step involves applying the uncertainty 

coefficient c and calculating the ENS that would occur if inspection and repairs were carried out in the mth month 

( . .f m y

PMENS ).  

Assuming two scenarios for each month results in two outputs that can be employed in interpolation. In the first 

scenario, no PM action is performed, and in the second scenario, the performance of PM activities is considered with 

100% certainty in detecting defective components. By linear interpolation between these two points, considering the 

value of c, the amount of ENS in the event of performing PM actions in mth month can be determined. Consequently, 

the percentage decrease in ENS with the implementation of PM actions in the mth month can be calculated using Eq. 

(8). 

3- Implementation and Results 

The proposed methodology is implemented to the operational data of GTEDC company in this section. It begins by 

describing the distribution system as the core business understanding step in methodology, followed by distribution 

system failures data description as the data understanding step. Afterward, the data preprocessing is described, followed 

by presenting the results of applying the FMEA tool to the preprocessed data. Furthermore, this section offers the 

knowledge derived from expert judgment, which is utilized in the sensitivity analysis. 

3-1- The Distribution System Under Study 

The workflow in the operation practice of the GTEDC PM team is as follows: 
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1) Annually, an independent team conducts load profiling for each feeder in July. In this study, the Gregorian 

solar calendar months are approximated with their relevant Jalali solar months. 

2) The load profiling results are saved on the company's operational dashboard, which can be accessed by the PM 

team. 

3) The PM team devotes all its effort to inspecting all feeders, but due to the huge network and limited 

availability of resources, the inspections are prioritized using the historical data and the registered load 

profiles. 

4) These visits are scheduled from August to June of the next year, considering the workload of the team. 

Considering these steps, sensitivity analysis of electricity distribution systems maintenance activities impact on 

IntD based on historical data and expert judgment is defined as the research goal. 

3-2- Distribution System Failures Data 

The operational dashboard of the GTEDC provides a wealth of information for network operators. In this 

dashboard, the interruption log reports are utilized as the primary data source for this study. These reports meticulously 

document network interruptions, including interruption initiation time, repair crews' arrival time on site, restoration 

time, dates, interruption cause, outage groups, IntD, and ENS. PM team utilizes these reports to schedule their activities.  

3-3- Preprocessing and Cleaning 

In the first step, inconsistent data are dropped from the data set, including records with missing values and data 

entry errors. Secondly, in investigating PM activities concerning IntD and reliability indices, random and unrelated 

interruptions should be dropped. Accurate analysis of corresponding index changes can only be achieved when 

statistically irrelevant failure records are removed from the data. 

To achieve this, in the recorded columns or different attributes, one should search for random and unrelated factors 

to PM actions. For instance, in the interruption group column, which records the distribution network section where 

interruption has occurred, cases such as street lighting and customer connections are considered unrelated data. Other 

columns, such as interruption cause, contain similar records like equipment theft, digging, external object collision, fire, 

and animal crossings. The mentioned considerations result from expert consultants on the recorded data over three 

years. After the pre-processing, 627 interruption records remained for further analysis. In this research, the distribution 

posts are not limited to a specific type and most of the posts are ground type. 
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3-4- FMEA of Distribution Systems 

In this section, the result of the implementation of the FMEA tool on preprocessed data is presented in two 

sections. The first section illustrates the historical data analysis results, and the second indicates extracted experimental 

rules from expert judgment. 

3-4-1- FMEA Process 

Figure 3 shows the contribution of each network component to the interruptions frequency that occurred over a 

three-year period in four specific feeders. To enhance clarity and facilitate understanding, components that resulted in 

fewer than four interruptions during this period have been categorized as other. The analysis reveals that a significant 

majority, precisely over 63%, of the failures can be attributed to fuse and fuse holder issues in the first place, while LV 

cables are in second place with 8%.  

Furthermore, Figure 4 displays the temporal distribution of failed components throughout the same three-year 

period in the investigated feeders. Similarly, components leading to less than two hours of interruption within the three-

year timeframe have been categorized as other. Notably, over 57% of the total IntD during these three years can be 

traced back to the fuses and fuse holders in the first place, while LV cables are in the second place with 9%.  

Consequently, the data analysis revealed that the failure incidents attributed to fuse and fuse holders significantly 

contribute to the frequency and duration of power interruptions by 63% and 57% contribution rates, respectively. 

Therefore, the fuse and fuse holder are designated as critical components within the electricity distribution system in 

this research, thus are concentrated in the analysis.  

The following section seeks expert opinions to investigate related PM actions and their consequential effects on 

critical component interruptions. 

 

3-4-2- Extracting Experimental Rules from Expert Judgment 

 
This section presents the results from consulting with experts in order to extract rules from expert judgment. The 

rules and values are obtained by combining the knowledge of a group of experienced experts. This collective approach 

results in a comprehensive outlook, which helps in making informed decisions. This method also helps in mitigating 

individual biases and incorporating different perspectives. 

To prevent failures in critical components, the electricity distribution system PM team utilizes thermography 

cameras. These cameras capture thermal images of objects and surfaces employing thermal imaging technology. These 
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images depict temperature distribution on the target surface and, through colorization, highlight points with higher 

temperatures in brighter colors. 

The proficient maintenance team can effectively identify defects by analyzing the obtained thermal images. They 

promptly solve the issues, thus preventing potential failures. This proactive approach significantly reduces downtime 

for customers. In the event of a failure, the restoration process involves customer notification, dispatching the 

maintenance team, diagnosing the fault, performing repairs, and restoring functionality. However, by identifying and 

addressing these issues proactively, the process is limited to power interruption, repair actions, and power restoration. 

According to expert opinion, conducting inspections prior to failures can prevent an average of 80% of 

interruptions occurring in the critical components until the end of that year. The remaining 20% can be attributed to the 

inherent uncertainty in detecting defects. 

Taking into account the maintenance team's performance and expert opinion, the team prioritizes the inspection of 

feeders on a monthly basis. By doing so, they anticipate preventing 80% of related interruptions until the next year for 

that feeder, resulting in a mere 5-minute downtime for each of these incidents as perceived by customers. Furthermore, 

by leveraging historical data analysis and expert insights, a sensitivity analysis is conducted to assess the impact of PM 

inspection time on reliability indices. 

3-5- Sensitivity Analysis Results 

 
A hypothetical scenario is considered where PM inspections are performed on each feeder during the mth month. 

Subsequently, using equations 3 to 8, the percentage decrease in IntD and ENS is calculated. For each feeder and every 

year under study, this process is applied, covering the period from August to June. Figures 5 and 6 provide a 

representative example of the results for feeder A over a three-year period, as there is limited space to plot all output 

values for all four feeders. In Figure 5, the horizontal axis represents the month of PM inspection, and the vertical axis 

represents the percentage decrease in IntD. For example, if PM actions were performed in August for feeder A in the 

third year, it could decrease IntD by approximately 35 percent. In Figure 6, the horizontal axis represents the month of 

PM inspection, and the vertical axis represents the percentage decrease in ENS. As an example, this figure shows if PM 

actions were performed in August for feeder A in the third year, it could decrease ENS by approximately 12 percent.  

4- Discussions 

4-1- Meta-analysis 

 
The interesting feature that is visually apparent in Figures 5 and 6 is the quasi-linear shape of the IntD and ENS 
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percentage decrease curves. This quasi-linear shape might be useful and utilized in maintenance scheduling 

optimization problem models, where linear models are fruitful due to their convexity. Consequently, we fit a linear 

model to the acquired results of feeder A, employing linear regression, which is visually depicted by the dashed line in 

figures 5 and 6 and represented for feeders A and B in Eq.s (9) to (12): 

 

% 0.023 0.2978A

PMIntD m      

 

(9) 

% 0.0042 0.0586A

PMENS m      

 

(10) 

% 0.027 0.3520B

PMIntD m      

 

(11) 

% 0.0221 0.2630B

PMENS m      (12) 

 
where the percentage decrease in IntD and ENS is represented versus the month of performing PM actions on critical 

components.  

This analysis is also conducted over a three-year period for the feeders B, C, D, which can be observed in figures 7 

and 8, expressing the decreasing trend of delayed PM inspection time on IntD and ENS reduction. As observed in 

Figure 7, the average sensitivity of IntD to PM inspection time in feeder B is higher compared to A, B, and C, 

expressed as a higher slope of its relevant line. The reason might be that feeder B has the highest percentage share of 

critical components in the interruption frequency (71.67%) and duration (64.37%) among the feeders.  

Moreover, it is noticeable that the average sensitivity of IntD to PM inspection time in feeder A is higher than in 

feeder D, while the sensitivity of ENS to PM inspection time in feeder D is higher than in feeder A. We may justify this 

observation as follows: Available statistics indicate that although, on average, one-thirteenth of the feeder failures occur 

at the medium voltage level in this network, each failure at the medium voltage level results in over 30 times the ENS 

compared to that of a failure at the low voltage level. Therefore, the lower percentage of medium voltage failures in 

feeder D compared to feeder A, results in a greater impact in reducing the percentage of ENS in that feeder. In Figure 9 

the relation between the percentage decrease of ENS and the percentage decrease of IntD is depicted for each year in 

feeder A. As anticipated, this relation also follows the quasi-linear shape with a slope of less than one, which means a 

greater percentage decrease in IntD than ENS would be expected. 

Investigation of the average and standard deviation of the percentage decrease in IntD and ENS versus inspection 

time yields valuable empirical findings for distribution systems maintenance practice regarding the nature of the 

feeders. Figures 10 and 11 show the average and standard deviation of IntD and ENS for individual feeders, as well as 

the four feeders aggregated values, serving as an index for each feeder and for the aggregated network of the feeders, 
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represented as [58]: 
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Eq.s (13) and (14) provide a  1 100%  confidence interval for the average sensitivity of IntD and ENS to PM 

actions, respectively. These indices can be utilized as a measure to compare and prioritize PM actions on feeders. For 

instance, in Eq. (13) for the case of thermal imaging of fuses and fuse holders as the proper maintenance action, the 

corresponding index values are [0.137±0.032] and [0.16±0.053] considering α=0.05 significance level for feeders A and 

B, respectively, which means that we are 95% confident that the average percentage decrease in IntD is between 10.5% 

and 16.9% for feeder A, and between 10.7% and 21.3% for feeder B.  

In Eq. (14), the corresponding index values are [0.029±0.008] and [0.096±0.06] for feeders A and B, respectively, 

which means that we are 95% confident that the average percentage decrease in ENS is between 2.1% and 3.7% for 

feeder A, and between 9% and 10.2% for feeder B. The reason for the lower percentage decrease in ENS compared to 

the IntD, as mentioned earlier, may be justified as the presence of a few medium voltage interruptions with a short 

duration but high ENS in the electricity distribution system. 

4-2- Technical Justification for the Critical Components  

The primary underlying factors contributing to critical component failures can be attributed to two key events: 

phase imbalance and loose connections. Phase imbalance refers to issues that lead to an unequal distribution of 

electrical loads among the three phases of the power system. This phenomenon can be attributed to factors such as 

uneven load distribution, faulty electrical equipment, improper single-phase load distribution, and voltage fluctuations. 

In a distribution network, the operator achieves balance by dividing the service cable among the three phases using 

estimations. However, due to pre-existing disparities in consumer consumption and inaccuracies in this division, one 

phase may bear a greater burden than the others, resulting in excessive current flow and, over time, causing the fuse to 

burn out. 

Loose connections are another significant factor contributing to the occurrence of interruptions. The root of this 

issue can be attributed to factors such as improper and loose equipment installation, lack of cleanliness and maintenance 

of connection surfaces, equipment defects or poor quality, and the presence of mechanical and thermal stresses. 
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Mechanical stresses, such as vehicle collisions with panels or vibrations and oscillations resulting from construction 

activities in the vicinity or earthquakes, can cause deformation and looseness in the connections. Thermal stresses can 

change the size and shape of electrical components. These alterations can stimulate and weaken the connections, 

resulting in loose connections. The presence of loose connections generates sparks within the panel. The heat generated 

by these sparks causes deformation and burning of the fuse holder, leading to interruptions. Accordingly, defects in the 

critical components can be solved by replacement, which can be performed at the time of PM inspection and does not 

need to be scheduled for other expert teams. 

5- Conclusions 

 

This paper aimed to assess the sensitivity of IntD to PM actions in electricity distribution system. Accordingly, data 

collection and analysis were conducted with the help of expert opinion utilizing the operational dashboard of the 

GTEDC. The data analysis revealed that the fuses and fuse holders exhibit the highest frequency and duration of 

interruptions among network components, leading to their selection as critical components. Following the study of 

related preventive actions, the effect of these actions was evaluated based on expert opinions. Subsequently, the quasi-

linear shape of the IntD and ENS percentage decrease versus inspection time is discovered, and a linear model is 

developed to represent the impact of the inspection time on the interruption duration of each electricity distribution 

system feeder. This linear model might be useful and utilized in maintenance scheduling optimization problem models, 

where linear models are fruitful due to their convexity. 

In addition, two indices were introduced as key performance indicators (KPIs) named “  IntD

PMS  ” and “  ENS

PMS  ” 

to quantify and represent the sensitivity of IntD and ENS to PM inspections on each electricity distribution system 

feeder and in the aggregate, which can be utilized as a measure to compare and prioritize PM actions on feeders. 
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Figure 2: Research focus based on FMEA results 

 

Figure 3: The share of each network component in the interruption frequency during three years in four feeders 

 

Figure 4: The share of each network component in the interruption durations during three years in four feeders 

 

Figure 5: Percentage decrease of interruption duration regarding month of PM actions on critical components for each year and 

fitted linear regression 

 

Figure 6: Percentage decrease of ENS regarding month of PM actions on critical components for each year and fitted linear 

regression 

 

Figure 7: Fitted regression line on percentage decrease of interruption duration  by PM actions on the critical component during 3 

years for each feeder 

 

Figure 8: Fitted regression line on percentage decrease of ENS by PM actions on the critical component during 3 years for each 

feeder 

 

Figure 9: Percentage decrease of ENS based on percentage decrease of interruption duration for each year in feeder A 

 

Figure 10: Mean and standard deviation of the percentage decrease of interruption duration by PM actions on critical component 

during 3 years regarding each feeder and aggregated 

 

Figure 11: Mean and standard deviation of the percentage decrease of ENS by PM actions on critical component during 3 years 

regarding each feeder and aggregated 
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Figure 1: The proposed research methodology of the paper 
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Figure 3: The share of each network component in the interruption frequency during three years in four feeders 

 

 
 

Figure 4: The share of each network component in the interruption durations during three years in four feeders 

 

 
Figure 5: Percentage decrease of interruption duration regarding month of PM actions on critical components for each 

year and fitted linear regression 
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Figure 6: Percentage decrease of ENS regarding month of PM actions on critical components for each year and fitted 

linear regression 
 

 
Figure 7: Fitted regression line on percentage decrease of interruption duration  by PM actions on the critical 

component during 3 years for each feeder 
 

 
Figure 8: Fitted regression line on percentage decrease of ENS by PM actions on the critical component during 3 years 

for each feeder 
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Figure 9: Percentage decrease of ENS based on percentage decrease of interruption duration for each year in feeder A 
 

 
Figure 10: Mean and standard deviation of the percentage decrease of interruption duration by PM actions on critical 

component during 3 years regarding each feeder and aggregated 
 

 
Figure 11: Mean and standard deviation of the percentage decrease of ENS by PM actions on critical component during 

3 years regarding each feeder and aggregated 
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Nomenclature 
 

Abbreviations:  Constants/Variables:  

KPI Key performance indicator c  Level of uncertainty involved in 

identifying defects in critical components 

during PM activities 

ENS Energy not 

served/supplied/sold 
,Mean PMU  Mean interruption duration for 

replacement/repair of detected defective 

critical component 

FMEA Failure mode and effects 

analysis 

,f y

NPMU  Sum of interruption durations of, 

considering no PM actions 

GTEDC Greater Tehran Electricity 

Distribution Company 

, ,f y j

NPMU  Duration of jth interruption, considering no 

PM actions 

IntD Interruption duration ,f y

iU  Sum of interruption durations of ith 

distribution system component 

MTTR Mean time to 

restoration/repair/replacement 

, ,

,

f m y

Mean AffU  Mean duration of interruptions that are 

affected by PM actions 

DG Distributed generation , ,f m y

AffU  Sum of interruption durations that are 

affected by PM actions in the mth month 

DSM Demand-side management , ,f m y

UAffU  Sum of interruption durations that are 

unaffected by PM actions in the mth month 

CM Corrective maintenance ,f y

Tot  Total frequency of interruptions 

PM Preventive maintenance ,f y

i  Frequency of interruptions of ith 

distribution system component 

PdM Predictive maintenance , ,f m y

Aff  Total frequency of interruptions that are 

affected by PM actions 

RCM Reliability-centered 

maintenance 

, ,f m y

UAff  Total frequency of interruptions that are 

unaffected by PM actions 

TBM Time-based maintenance , ,f y j

PMENS  ENS of replacing the detected defective 

critical component in PM activities, for jth 

interruption 

CBM Condition based maintenance , ,f y j

NPMENS  ENS of jth interruption, considering no PM 

action 

RNN Recurrent neural networks , ,f m y

PMENS  ENS of fth feeder in yth year, considering 

PM actions in the mth month 

GEVD Generalized extreme value 

distribution 

,f y

NPMENS  ENS of fth feeder, in yth year, considering 

no PM actions 

Indices:  , ,% f m y

PMENS  Percentage decrease in ENS considering 

PM actions 

i, j, m, y, f Index corresponding to a 

distribution system component 

type, distribution system 

interruption, month of PM 

inspection, year under study, 

feeder name, respectively 

,f y

NPMIntD  Interruption duration for a typical failure 

considering no PM actions 

Sets:  , ,f m y

PMIntD  Interruption duration for a typical failure 

considering PM actions 

Y  Set of years under study , ,% f m y

PMIntD  Percentage decrease in interruption 

duration for a typical failure considering 

PM actions 

M  Set of months of PM inspection 

time 
iFSh  Share of ith distribution system component 

in the frequency of interruptions 
COMP  Set of distribution system 

components 
iDSh  Share of ith distribution system component 

in the duration of interruptions 

F  Set of feeders   
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 IntD

PMS   
PM to IntD effectiveness factor, 

considering  1 100%  confidence level 
  

 ENS

PMS   
PM to ENS effectiveness factor, 

considering  1 100%  confidence level 
  

IntD
PMS

SD  Standard deviation of PM to IntD 

effectiveness factor 
  

ENS
PMS

SD  Standard deviation of PM to ENS 

effectiveness factor 
  

α Significance level   

2

t  The t distribution critical value with n-1 

degrees of freedom 
  

n  Sample size   

 

 

 

 

 

 

 

 


