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Abstract  

The generation of electrical power through wind turbines has significantly 

increased nowadays. However, these systems are prone to faults that can disrupt 

the network and incur substantial costs for the generation units. Therefore, 

effective maintenance scheduling becomes crucial. A major challenge faced by 

wind turbines is their maintenance requirements, as any interruption in their 

operation and power generation can result in significant economic losses. 

Consequently, meticulous planning is indispensable to minimize such 

consequences. This paper that is the first part of the study conducts a survey of 

data acquisition methods in condition monitoring of wind turbines. In the 

second part, signal processing techniques for condition monitoring of wind 

turbines are presented. Furthermore, the paper examines a range of studies that 

have implemented practical condition monitoring methods in wind turbines, 

delving into the associated challenges and proposing potential solutions. 

Various methods such as vibration analysis, acoustic analysis, electrical 

parameter analysis, AI-based techniques, and fault-tolerant control have been 

employed for wind turbine maintenance. However, limitations exist in terms of 

data availability and computational burden. Future challenges include 

developing algorithms that require less data, reducing computational 

requirements, updating models with new conditions, enabling early detection 

and proactive maintenance, and reducing maintenance costs. 

 

Keywords: wind turbine, conditional monitoring, fault prediction, fault 

tolerance, artificial intelligence 
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As the worldwide growth of wind power generation continues, wind 

turbines are playing an increasingly important role in the present and future of 

renewable energy and wind turbines (WTs) with permanent magnet 

synchronous generators (PMSG) are mostly integrated with power systems as 

popular energy conversion systems [1][2]. However, there are two major 

challenges facing the current wind generation landscape that threaten this global 

role. Firstly, a significant number of existing wind turbines have reached their 

estimated lifespan of 20 years and require additional maintenance services. 

Secondly, new wind turbine technology is moving towards larger turbines in 

remote offshore locations, which creates new challenges for inspection and 

maintenance. As a result, the operation and maintenance (O&M) costs of wind 

turbines, both onshore and offshore, have recently received more attention. 

Wind turbines are complex aero-electro-mechanical systems that are often 

installed in remote locations and constantly exposed to harsh weather 

conditions, as well as different aerodynamic, gravitational, centrifugal, and 

gyroscopic loads. These factors collectively contribute to a high frequency of 

faults and failures in wind turbines, unlike conventional power plants. [3] [4] [5] 

 Maintenance access is problematic and costly due to the large size of 

turbines and safety regulations, which limit maintenance services to certain 

weather conditions and daylight hours relatively low air humidity, temperatures 

above 10 degrees Celsius, and decreased wind speeds (8-12 m/s) [6]. Offshore 

wind farms face additional challenges due to the harsh marine environment, 

causing higher failure rates and maintenance complications, such as difficult 

access, higher logistics costs, and the need for specialized manpower [7] [8]. 

The low reliability of wind turbine equipment and the resulting unplanned 

outages and stoppages have led to increased O&M costs, which now constitute 

a significant portion of the total cost of wind power generation [9] [10] [11]. 

O&M costs currently makeup about 10-30% of the total energy production cost 

of an onshore wind farm once it becomes operational. [12]. Furthermore, while 

offshore wind farms can generate more wind energy, their O&M costs can 

increase by up to 25-50% of the total energy production cost, representing a 

significant rise [13]. To combat these costs, it is necessary to improve wind 

turbine reliability and availability through appropriate condition monitoring 

solutions. 

Section (II) presents the necessity and types of maintenance schedules. 

Section (III) covers the types of data and methods for data acquisition for 

condition monitoring. In section (IV), a survey of research focused on wind 

turbine fault detection, isolation, tolerance, and data challenges is presented. 

Finally, in section (V), the conclusion is proposed. 
 

II. Maintenance scheduling 

A. Reliability Centered Maintenance 
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RCM is a maintenance planning concept aimed at ensuring that systems 

continue to meet the needs of their users in their current operating context. The 

effective adoption of RCM results in improved cost-effectiveness, enhanced 

reliability, increased machine uptime, and a better comprehension of the level of 

risk that the organization is managing. Wind turbines are expensive equipment, 

and a catastrophic failure, such as a tower collapse, can result in irreparable 

economic and technical losses. Thus, proper maintenance is essential. 

Conventional maintenance planning is applied in three ways: 

 Corrective maintenance,  

 Preventive maintenance,  

 Predictive maintenance. 

In corrective maintenance, equipment is allowed to run until it fails, which 

is a significant drawback of this method. In preventive maintenance, despite the 

periodic inspections, failures may still occur in the mid-term of the inspection 

period, making this method also flawed. Predictive maintenance requires a large 

amount of historical information to predict future events, so a lack of data can 

hinder this method. As mentioned, each maintenance method has its own 

advantages and disadvantages, which are compared in Table I [14]. 

 

Reference [15] proposes a combined approach for wind turbine generator 

maintenance by integrating time-based maintenance (TBM) and condition-based 

maintenance (CBM) strategies. A stochastic state model based on stochastic 

differential equations (SDE) accurately represents generator degradation. The 

model considers component failure using a proportional hazards model and 

incorporates random fluctuations with Brownian motion. The analysis 

highlights the benefits of combining TBM and CBM and proposes a joint 

maintenance strategy. The model's practical application validates its 

effectiveness. Researchers In [16] introduce an optimized maintenance plan for 

a 2MW wind turbine to minimize costs. The study utilizes a two-layer 

optimization framework and Monte Carlo simulation to estimate component 

failure times. The results offer insights into the optimal number of preventive 

maintenance actions and timing, enhancing overall maintenance efficiency. The 

approach can be applied to wind farms and similar engineering systems. 

Authors In [17] introduce a preventive maintenance system for wind turbines 

that utilizes deep computational learning techniques. The system aims to detect 

surface damage on turbine blades, reducing downtime and manual inspection 

risks. It consists of an Android application, convolutional neural networks for 

image processing, a portable telescope, and a motorized mount. The system 

autonomously scans blade surfaces, presents defect findings to the user, and has 

been successfully validated in a real wind farm setting. In reference [18], 

authors focus on the predictive maintenance of wind turbines using a deep 

learning model and a supervisory control and data acquisition (SCADA) 

system. By preprocessing the data and addressing imbalanced classes, the 



4 
 

proposed method achieves early detection of abnormal conditions. Compared to 

traditional statistical analysis and data mining approaches, the deep learning 

model demonstrates higher precision rates and can identify potential faults up to 

72 hours in advance. The study highlights the importance of comprehensive 

data preprocessing and the effectiveness of the proposed deep-learning approach 

in wind turbine maintenance. 

B. Fault-Tolerant Control Systems 

Maintenance can be performed without interrupting the operation of the 

system during a fault occurrence. The term used to describe this concept is fault 

tolerance, which refers to a system's capacity to maintain its operation even 

when faced with faults or errors. Fault-Tolerant Control Systems (FTCS) have 

been developed and classified into two main categories: Active FTCS (AFTCS) 

and Passive FTCS (PFTCS) [19]. 

a) AFTCS 

The Active Fault-Tolerant Control System (AFTCS) comprises three 

subsystems: a Fault Detection and Isolation (FDI) module, a reconfiguration 

mechanism, and a reconfigurable controller. The FDI module constantly 

provides real-time fault information to the controller, which then utilizes this 

data to reconfigure itself through the AFTCS. The FDI plays a critical role in 

identifying and isolating defective components, allowing the controller to adapt 

to the new conditions by being reconfigured. 

b) PFTCS 

The architecture of the Passive Fault-Tolerant Control System (PFTCS) is 

comparatively straightforward in contrast to AFTCS. It lacks an FDI unit and a 

controller reconfiguration mechanism. In this method, the normal and abnormal 

conditions are recognized by a controller with parameters defined at the design 

stage.  

A brief comparison of AFTCS and PFTCS is presented in Table II [20]. 

 

 

III. Conditional monitoring: Data Acquisition methods 

Conditional monitoring (CM) refers to the practice of observing a 

machinery's condition parameter, such as temperature or vibration, to detect 

substantial fluctuations that may suggest the emergence of a fault [21]. Most 

practical CM methods are as follows that’s scheme is shown in Figure 1 : 

   

 

A. Electrical Base Method 

This method involves utilizing the voltage and current signals of electrical 

equipment to identify faults or potential problems. By analyzing the voltage and 

current signals, the accuracy of the equipment's performance can be determined. 

One such approach is the assessment of harmonic patterns in the voltage and 
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current signals [22]. Because the control and protection systems of electrical 

equipment use electrical signals, there is no need for additional sensors, which 

reduces implementation costs and improves reliability. The use of electrical 

signals in analysis improves the reliability of the CM method compared to other 

methods, as it is simple to implement, highly reliable, and low-cost [23]. This 

method is commonly used in electrical equipment, such as in detecting 

generator faults (such as internal short circuits and bearing faults, etc.) [24]. 

B. Vibration signals 

Today, vibration signals are widely used in rotary machines for fault 

detection and prediction [25], such as generators and wind turbines [26]. In this 

method, the movement or vibration of the equipment is expressed in the form of 

time signals or frequency diagrams. Since the characteristics of each piece of 

equipment are fixed and unique, healthy equipment will not change over time. 

However, when a fault occurs, these characteristics will change. By using 

different methods, equipment defects can be determined [27]. 

Vibration signals are broadly classified into two categories: stationary and 

non-stationary. Stationary signals have static characteristics over time, such as 

periodic vibrations caused by a worn-out bearing. In other words, these signals 

have a fixed frequency [28]. On the other hand, non-stationary signals have a 

frequency that changes over time, such as vibration signals in a generator's rotor 

due to a growing crack inside a work piece [29]. 

To analyze stationary signals, methods based on the Fourier transform are 

usually used, while non-stationary signals are typically analyzed using the 

Hilbert Transform (HT) [30], wavelet transform (WT) [31], or short-time 

Fourier transform (STFT) [32]. 

C. Acoustic Emission (AE)   

As is known, the sound waves of equipment in a healthy operating mode 

are unique, and if a fault occurs, the sound waves emitted from the equipment 

will change. This change in sound may be due to deformations, corrosion, or 

cracking that occur prior to equipment failure [33]. For example, Electric 

machines can produce acoustic emission (AE) due to various sources such as 

cyclic fatigue, impacts, turbulence, friction, cavitation, material loss, and 

leakage, among others [34].To acquire data, sensors are positioned on the 

surface of the material, and the data collected by each sensor is tracked. If there 

are any imperfections present in specific areas, then the signal characteristics 

from the closest sensor to the disruption would exhibit distinct variations. By 

analyzing the discontinuity, it is possible to determine the defect position and 

suspect area of the structure. 

Broadly, there are two methods of data analysis. The first method involves 

analyzing fundamental signal parameters such as energy and amplitudes. 

However, sometimes it can be challenging to detect faults using this approach 

[35].Another approach involves using the entire waveform instead of just the 

parameters. This approach enables the utilization of signal processing 
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techniques such as wavelet-based acoustic emission characterization, which has 

demonstrated superior performance compared to the previous approach [36]. 

D. Lubrication Oil Analysis 

Lubrication oil plays a crucial role in minimizing friction between moving 

surfaces in electrical and mechanical machines. Lubrication oil analysis (LOA) 

involves assessing fluid properties such as fluid viscosity, additive levels, 

oxidation properties, and specific gravity, along with fluid contamination 

including moisture, metallic particles, coolant, air, and wear debris [37]. The 

quality of the oil is evaluated using various methods such as particle filtration, 

spectrographic oil analysis, analytical ferrography, and radioactive tracer 

methods. A sample of the oil must be taken from the machine and examined in a 

laboratory to study its chemical composition [38], [39]. 

E. Infrared thermography 

The health of equipment and components can be assessed by measuring 

their temperature, which is a widely used indicator. This technique is based on 

two laws - Planck's law and Stefan-Boltzmann's law - which state that all 

objects with a temperature above 0 K (-273°C) emit electromagnetic radiation 

in the infrared region of the electromagnetic spectrum [14]. Infrared 

thermography (IRT) involves capturing the infrared radiation emitted by an 

object using thermal imagers to identify any abnormal heat patterns or thermal 

anomalies. Such anomalies can be indicative of potential faults, defects, or 

inefficiencies in a system or machine [40]. 

Condition monitoring of electrical machines using IRT relies heavily on 

the temperature measurement of the equipment being tested [41]. Infrared 

thermography is typically divided into two categories: quantitative and 

qualitative thermography. The quantitative approach measures the precise 

temperature values of objects, using ambient temperature as a reference point. 

The qualitative approach measures the relative temperature values of hotspots 

compared to other parts of the equipment under similar conditions and identifies 

the locations of hotspots [42]. 

F. Ultrasound Base Methods 

Ultrasound is widely used in the condition monitoring of equipment, and 

structures as it provides a non-destructive method of testing for faults, defects, 

and other issues. It is particularly useful for detecting issues in rotating 

equipment such as bearings and gears, as well as for detecting leaks in boilers, 

condensers, and other pressure vessels [43]. In active ultrasonic testing, a 

guided beam of ultrasound is transmitted into the equipment, and the 

characteristics of the emitted and received signals are analyzed to determine the 

presence and location of any subsurface discontinuities. In passive ultrasonic 

testing, the ultrasound is detected through physical processes without the need 

for a transmitted signal. This method is commonly used for contact monitoring 

techniques such as bearing faults and gear damage. Overall, ultrasound provides 
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a quick and effective means of condition monitoring, allowing maintenance 

teams to quickly identify and address potential issues before they escalate into 

major problems [44]. 

G. SCADA 

The operation of this system is such that the information of each equipment 

parameter, including 1) voltage, current, and electric power, 2) temperature, 3) 

rotor speed, 4) wind speed, and other parameters, is saved and sent to the 

control center with a recording rate ranging from a few seconds to several 

minutes [45]. The SCADA system, by using suitable algorithms, provides rich 

information on wind turbine performance which can be used for condition 

monitoring, fault prediction, and lifetime estimation of wind turbines [46]. 

However, as is known, this system is not designed for conditional monitoring 

due to its low sampling rate. For that reason, a significant amount of 

information regarding the characteristics of wind turbine faults is lost, making it 

challenging to detect most of the information related to wind turbine faults 

through analysis in the time-frequency and frequency domain [47]. 

H. General Parameters 

Correct, temperature, torque, and strain are indeed considered general 

parameters used in wind turbine condition monitoring [48]. Together with other 

parameters such as wind speed, rotor speed, voltage, current, and electric power, 

they offer a comprehensive assessment of the wind turbine's health and 

performance. The information gathered from these parameters helps to identify 

any potential faults or issues with the wind turbine and also aids in fault 

prediction and lifetime estimation [49]. 

a. Temperature  

Temperature is one of the most crucial parameters in the maintenance and 

condition monitoring of equipment [50], especially when it comes to wind 

turbines. During normal operation, it is essential that the temperature of the 

equipment does not exceed its limit. The abnormal temperature in a wind 

turbine is usually a result of defects in the gearbox, short circuits in the 

generator's windings, or excessive rotor speed [51]. This temperature parameter 

provides valuable information about the performance of the equipment and is 

used for fault prediction in the generator, gearbox, bearings, and wind turbine 

power drive. It is an economical and reliable method of monitoring equipment 

conditions. However, its main disadvantage is that it cannot detect the fault 

location on its own [52]. To effectively use this parameter, standards for 

equipment condition monitoring must be defined. 

 IEEE-Standards 1310-2012 [53] 

 IEEE-Standards 1718-2012 [54] 

 ISO-Standard 17359-2006 [55] 

b. Torque 
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This parameter, used in rotating equipment such as generators, is measured 

by torque sensors or through the electrical parameters of the machine [56]. The 

utilization of torque sensors in wind turbine condition monitoring demands a 

significant number of sensors, leading to the complication of the process and an 

increase in investment costs. This method is not used commercially due to these 

limitations [57]. 

c. Strain 

Strain sensors are commonly used on a large scale for wind turbine blade 

condition monitoring [58]. These sensors are usually applied in large numbers 

on the surface of the blades or in different layers to detect structural defects or 

damage [59], such as blade icing, mass imbalance, or lightning strikes by using 

the information they provide. Compared to methods based on sound and 

vibration, this method has several advantages, including not requiring a high 

sampling rate, enabling faster diagnosis of structural faults, and not needing a 

power supply for sensors. However, the disadvantages of this method include its 

lack of sufficient accuracy compared to other methods, increasing complexity, 

and investment cost [58]. 

The comparison of the different types of signals used in condition 

monitoring is shown in Table III [60]. The table provides an overview of 

various monitoring techniques employed in condition monitoring systems 

(CMS) for different components in a system. These techniques include vibration 

analysis, acoustic emission (AE), strain measurement, torque monitoring, 

temperature sensing, oil parameter analysis, electrical signal monitoring, 

SCADA signal analysis, infrared thermography, and ultrasound inspection. 

Each technique has its own set of characteristics, such as intrusiveness, 

complexity, online or offline capability, incipient fault detection, fault detection, 

fault location, fault identification, signal-to-noise ratio (SNR)/sampling 

frequency, cost, standardization, and usage in a Commercial system. 

These monitoring techniques play a crucial role in detecting and 

diagnosing potential faults or anomalies in various components such as 

bearings, blades, gearboxes, generators, shafts, towers, and more. By 

continuously monitoring these components, maintenance teams can identify 

early signs of faults, enabling them to take timely corrective actions and avoid 

unplanned downtime or costly repairs. 

It's important to note that while some techniques, like vibration analysis 

and AE, SCADA and Electrical signals are widely used and standardized in 

CMs applications, others may have limitations or are not commonly employed 

like in CMs. Factors such as cost, complexity, and the specific requirements of 

the monitored components influence the selection and implementation of these 

techniques. 

By leveraging a combination of these monitoring techniques, organizations 

can be understanding the health and performance of their systems. This enables 
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proactive maintenance strategies, optimizing operational efficiency, and 

ensuring the reliability and longevity of critical assets. 

 

IV. Conditional monitoring: a literature review (wind turbine) 
 

Researchers in [61] introduce a new online vibration-based diagnosis 

method for monitoring high-speed bearings in wind turbines. The method 

utilizes the adaptive resonance theory 2 (ART2) for the unsupervised 

classification of extracted features and incorporates the Randall model adapted 

to the bearing's geometry. The time domain, frequency domain, and time-

frequency domain are explored for improved fault characterization. 

In [62] researchers use condition monitoring techniques such as vibration 

analysis and acoustic signal analysis to detect tooth chip breakage and tooth root 

crack failures in a wind turbine gearbox. Wavelet analysis and statistical 

features are employed, and the results indicate accurate early detection using 

vibration signals at stationary loads and acoustic signals at non-stationary loads.  

Reference [63] proposes a multiview fault diagnosis framework for wind 

turbine gearboxes, combining current and vibration signals. Using unsupervised 

multiview learning based on canonical correlation analysis (CCA), the method 

extracts enhanced fault-related features and achieves superior diagnosis 

performance, particularly for compound faults, compared to unimodal signal-

based methods. 

Reference [64] investigates the correlation between dimensional 

parameters and electrical asymmetry indicators in laboratory-based systems 

compared to actual wind generators. The study compares small-scale off-the-

shelf wound rotor induction machines (WRIMs) and micromachines. The 

findings show that micromachines accurately reflect fault-related harmonics and 

transient operating conditions, making them suitable for developing condition 

monitoring strategies for real wind turbine systems. 

Reference [65] introduces a new approach for current-based gearbox fault 

diagnosis in wind turbines. It uses a multiview sparse filtering method to extract 

informative features from raw current signals, improving fault diagnosis 

performance. Reference [66] proposes an electrical signature analysis (ESA)-

based method for detecting external bearing defects in electromechanical 

drivetrains. The method utilizes electrical measurements from the terminal 

machine, offering advantages over vibration-based methods. A new signal 

model based on torsional resonances is developed and validated experimentally. 

The ESA-based method demonstrates effective fault detection even at low 

speeds, with benefits in terms of cost, complexity, and reliability. Reference 

[67] presents a noninvasive fault diagnosis method for bearing failures in DFIG-

based wind turbines using the modulation signal bispectrum (MSB) detector. 

The MSB method analyzes the stator current signals to detect torque oscillations 
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and identifies spectral components related to bearing faults. The proposed 

current-based MSB method offers a cost-effective solution without requiring 

additional sensors and has potential applications in various industries 

In [68] authors focus on identifying major fault types in large-scale 

permanent magnet wind turbines. Theoretical analysis is conducted on rotor 

eccentricity, stator winding short circuit, and permanent magnet 

demagnetization. The wavelet analysis algorithm is used to analyze the 

abnormal electromagnetic signal waveform and extract characteristic 

frequencies. 

Reference [69] proposes an integrated acoustic emission (AE) monitoring 

scheme for detecting and localizing incipient faults in the main bearing (MB) of 

wind turbines. The scheme includes a high-frequency envelope autocorrelation 

(HFEA) method for accurate rotating speed estimation, an adapted spectral 

coherence (ASC) technique for identifying faulty sources, and a damage 

localization model for improved maintenance efficiency. This scheme offers a 

promising tool for wind turbine health management and inspection efficiency 

improvement. In reference [70], authors explore the use of acoustic emission 

(AE) monitoring to detect and analyze gear surface wear in a planetary gearbox. 

AE provides valuable information about surface friction, surpassing the 

limitations of traditional monitoring methods. The study identifies AE event 

width as an effective indicator for monitoring gear active surfaces. A data 

reduction algorithm-based condition indicator is proposed for AE-based gear 

monitoring, taking into account system-specific factors. 

Reference [71] presents a fault diagnosis method for pitch bearings in wind 

turbines using acoustic emission technology. The method involves selecting 

acoustic emission signals with cracking characteristics based on kurtosis value 

and extracting fault features using wavelet spectrum theory. An online 

monitoring system based on acoustic emission is developed and successfully 

identifies crack faults in pitch bearings using wavelet packet transform and 

time-frequency spectrum analysis. 

In reference [72] A method for analyzing stator current characteristics is 

proposed to detect blade imbalance in double-fed induction generators (DFIGs). 

The method utilizes coordinate transformation and simulation models to analyze 

fault characteristics under different conditions. It effectively determines the 

severity of the fault by monitoring changes in the characteristic frequency's 

amplitude. 

Reference [73] proposes an ensemble approach for anomaly detection and 

fault diagnosis in wind turbines using SCADA data. Historical SCADA data 

from healthy turbines are used to create a reference space, and anomalies are 

detected by comparing predicted behavior with this reference. Fault diagnosis is 

performed by analyzing the distributions and correlations of SCADA data. The 

approach is validated using data from field wind turbines, demonstrating its 

ability to detect anomalies and diagnose faults before maintenance shutdowns 
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are required. In reference [74], authors propose a novel spatio-temporal 

multiscale neural network (STMNN) for fault diagnosis of wind turbines using 

SCADA data. The STMNN captures complex temporal and spatial correlations 

in the data through its multiscale deep echo state network and multiscale 

residual network modules. To address the data imbalance issue and improve 

diagnosis performance, researchers use focal loss as the loss function. In 

reference [75], researchers propose a novel fault diagnosis method called 

adaptive multivariate time-series convolutional network (AdaMTCN) for wind 

turbines using SCADA data. It employs resampling and multivariate time series 

convolutional networks (MTCN) to extract enriched features. Multiple MTCN 

models are combined using an adaptive decision fusion method. Experimental 

results show AdaMTCN's excellent diagnostic performance with complex 

SCADA data. Reference [76] proposes a data-driven approach for wind turbine 

fault diagnosis and early warning using SCADA data. Our method improves 

anomaly data processing and feature measurement accuracy. The proposed wind 

turbine condition monitoring scheme provides advance warnings for generator, 

gearbox, and hydraulic system failures. The warning lead times are 3.67 hours, 

5.17 hours, and 2.33 hours, respectively. 

Reference [77] proposes a semi-supervised anomaly detection model for 

wind turbines using SCADA data. The model captures inter-variable correlation 

and temporal dependence, achieving superior performance compared to existing 

methods. The F1-score outperforms baselines by 3.86% in the unsupervised 

model and reaches 98.60% with the auxiliary discriminator. 

In reference [78], AFTC system was presented using partial adaptation 

based on the Terminal Back-stepping Sliding Mode (TBSM) control strategy for 

adjusting the pitch angle of variable-speed wind turbines in the presence of 

faults in the actuators and sensors. Additionally, in this research, an estimation 

method based on time delay was employed as an online fault estimation 

algorithm for identifying and isolating faults. In reference [ 79], a safe load 

reduction plan is presented under the title of "Fault-Tolerant Control of the pitch 

System" individually, aiming to adjust the blade angle in the presence of blade 

activation fault.  

In reference [80], authors investigate control methodology for variable-

speed variable-pitch wind turbines considering uncertain nonlinear dynamics, 

system faults, and external disturbances. The goal is to maximize power 

extraction by designing optimal desired states. A model-based nonlinear 

controller is developed, and radial basis function neural networks are used to 

estimate unknown nonlinearities. An adaptive neural fault tolerant control 

approach is proposed to handle uncertainties and unknown actuator faults. 

Simulation studies confirm the effectiveness of the method. In reference [81], 

researchers present a cooperative control scheme for wind farms, aiming to 

improve reliability and availability. By using a fuzzy model reference adaptive 
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control approach, the scheme addresses power generation issues caused by 

blade erosion and debris buildup.  

In reference [82], an adaptive control system was designed for wind 

turbines with the objectives of reducing faults in the pitch system, maintaining 

the generator power at the nominal value, and minimizing mechanical stresses. 

 Reference [83] presents an experimental comparison between a fault-

tolerant control strategy and a classical proportional-integral controller for a 

symmetrical six-phase induction generator. The proposed variable structure 

control approach effectively handles unbalanced currents and enables power 

generation even with a loss of stator phases. The controller demonstrates 

robustness and good regulation performance in both healthy and faulty modes. 

Reference [84] proposes a robust, fault-tolerant control system for wind energy 

applications. It introduces an observer-based approach to handle sensor failures 

and irregular conditions, specifically focusing on the generator speed sensor. 

The system does not require controller reconfiguration and utilizes anticipated 

speed information. 

Studies proposed in this section are summarized in Table IV, including: 

monitored components, data types, and methods. 

 
  

V. Conclusion 

 

Incorporating an array of monitoring techniques is imperative for the 

thorough evaluation of wind turbine conditions. Among these techniques are 

vibration analysis, acoustic emission, electrical signal assessments, and the 

comprehensive analysis of SCADA data. Their combined implementation 

significantly enhances the rapid and accurate detection of faults that may arise 

within critical turbine components. By promptly pinpointing these issues, the 

need for unscheduled maintenance disruptions and the associated high-cost 

repairs is effectively diminished. The scholarly resources referred to in this 

article introduce pioneering methodologies that intricately improve the process 

of diagnosing faults and their subsequent management. This approach not only 

serves to optimize the overall performance of wind turbines but also accentuates 

the mounting significance of avant-garde research in heightening operational 

reliability and efficiency. This paper is the first section of two-part paper. In the 

second part that is published in a separate paper, widely used signal processing 

techniques for condition monitoring of wind turbines are presented. 
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Table I: Comparison of Conventional Maintenance Methods [14] 

Method Advantages Drawbacks 

Corrective 

maintenance 

 

Maintenance expenses 

during operation are kept 

at a minimum  

Components are utilized 

for their maximum lifespan 

 

High risk in consequential damages 

resulting in extensive downtimes 

No maintenance scheduling is possible 

Spare parts logistics are complicated 

Long delivery periods for parts are likely 

Preventive 

scheduled 

maintenance 

 

Low downtime 

Scheduled maintenance 

Easy spare part logistics 

Higher maintenance costs 

Components will not be used for maximum 

lifetime 

Predictive 

condition-based 

maintenance 

 

Full lifetime use of 

components 

Low expected downtime 

Scheduled maintenance 

Easy spare part logistics 

 

Reliable information about the remaining 

lifetime of the components is required 

High effort for condition monitoring 

hardware and software is required 

Cost of another layer in the system 

Identification of appropriate condition 

threshold values is difficult 

 

Table II:Comparison between AFTCS and PFTCS [20] 

System’s Property  AFTCS  PFTCS  

Architecture Complex Simple 

Time Response Slow Fast 

Fault Detection Online / Real Time Offline 

Computations Large Relatively Small 

Fault Detection and Isolation 

(FDI) 

Essential Not Required 

Controller Reconfiguration Required Not Required 

Noise Effect can corrupt the system and 

result in erroneous decision-

making 

Robust to Noise 

Time delay Possible due to noise No Time Delay 

Faults nature Various Fixed predefined 

faults are 

accommodated 

Control Structure Variable Fixed 
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Table III: Comparison of different signals for WT CMFD [60] 

Signal 
Monitored 

components 
Intrusive 

Complexity Capability 
SNR/ 

Sampling 

frequency 

Cost Std 

Used 

in 

Com 

CMs 
Install 

Signal 

process 
Online/Offline 

Incipient 

fault 

detection 

Fault 

detection 

Fault 

location 

Fault 

identify 

Vibration 
Bearing, blade, gearbox, 

generator, shaft, tower 
Yes High Medium Online Yes Yes Yes Yes High/Medium High Yes Yes 

AE Bearing, Blade, gearbox Yes High High Online Yes Yes Yes Yes High/High High Yes Yes 

Strain Blade Yes High Medium Online Yes Yes Yes Yes High/low High No Yes 

Torque 
Blade, gearbox, 

generator, shaft 
Yes High Medium Online Yes Yes Yes Yes High/Medium High No No 

Temp 
Gearbox, generator, 

Bearing, power converter 
Yes Medium Low Online Possible Yes Possible No High/Low Medium Yes Yes 

Oil parameters Bearing, gearbox, 

generator 
Yes Medium Low Both Possible Yes Possible Possible High/Low 

Medium 

or high 
No Yes 

Electrical 

signals 

Bearing, Blade, 

gearbox, generator, 

motor, power converter, 

sensor, shaft, tower 

No Low High/medium Online Possible Yes Yes Yes Low/ Medium Low No Yes 

SCADA 

signals 

Blade pitch, control 

system, generator, 

hydraulic system, power 

converter, sensor, overall 

system 

No − Medium Online Possible Yes Possible Possible Low/Low Low No Yes 

Infrared 

thermography 

 

Blade , gearbox Yes Low Low Both Possible Yes Yes Yes High/− low High No No 

Ultrasound Bearing, blade, gearbox Yes Low Low Both Possible Yes Yes Yes 
High/− 

medium 

High 

No No 
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Table IV: recent studies summarizing (monitored component, data, methods) 

Ref Monitored Component(s) Data Type(s) Methods(s) 

61 Bearing Vibration   Randall model 

62 breakage, crack in the 

Gearbox 

Vibration, Acoustic Wavelet 

63 Gearbox Bearing Vibration 

Current 

Canonical Correlation 

Analysis 

64 Fault-Related Harmonics Dimensional Parameters, 

Electrical asymmetry 

Correlation 

65 Gearbox Stator Current Multiview Sparse Filtering 

66 Drivetrains Bearing Stator Current Signal Model Based on 

Torsional Resonances 

67 Bearing Stator Current Modulation Signal Bispectrum 

68 Rotor eccentricity, Stator 

Winding Short Circuit 

Electromagnetic 

Characteristics 

  Wavelet  

69 Bearing Acoustic Envelope Autocorrelation, 

Adapted Spectral Coherence 

70 Planetary Gears Acoustic Data Reduction Algorithm 

71 pitch Bearings Acoustic Wavelet  

72 Blade Stator Current Coordinate Transformation 

73 Wind turbine SCADA Correlation of SCADA data 

74 Wind turbine SCADA STMNN 

75 Wind turbine SCADA AdaMTCN 

76 Generator, Gearbox, 

Hydraulic System 

SCADA Density-Based Spatial 

Clustering 

77 Wind turbine SCADA Semi-supervised Multivariate 

Time Series 

78 Actuators, Sensors Sensors TBSM 

79 Blades Actuators Sensors Load Reduction  

80 Actuator Sensors RAFFNN 

81 Blades, debris buildup Sensors Fuzzy Logic 

82 Pitch System Sensors  Adaptive Controller 

83 Generator winding Sensors Controller 

84 Sensors Sensors Observer-Based Approach 
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