
A New DC Offset Boostable Chaotic System with

Multistability, Coexisting Attractors and Its

Adaptive Synchronization

Rameshbabu Ramar⋆1 and Sundarapandian Vaidyanathan2

1⋆ Department of Electronics and Communication Engineering ,
VSB Engineering College , Karur, Tamil Nadu, India - 639111
Email: rrameshbabu15@gmail.com, Mobile No. +91 8015166025

2Centre for Control Systems , Vel Tech University , 400 Feet Outer
Ring Road, Vel Nagar, Avadi, Chennai-600062 , Tamil Nadu, India

Email: sundar@veltech.edu.in, Mobile No. +91 9566113754

October 1, 2023

Abstract

In this paper, a new chaotic system with three sinusoidal nonlineari-
ties is reported. The basic behavior of the new chaotic system is analyzed
by means of equilibrium points, stability, and Lyapunov exponents. The
new system has countably infinite number of equilibrium points, which is
a novel feature of the system. The new system has multiple interesting
features such as topologically different attractors, coexisting attractors,
offset-boosted attractors, and polarity reversed offset-boosting attractors.
These special features are analyzed and verified using classical tools such
as bifurcation diagrams, Lyapunov exponent plots, and attractor dia-
grams. The bifurcation analysis and simulation results show that the
proposed system has rich chaotic dynamics. Furthermore, the adaptive
synchronization of the new system is achieved using a nonlinear feedback
control methodology. MATLAB plots are shown to illustrate the control
results for the new chaotic system with three sinusoidal nonlinearities.

Keywords: Chaotic system, Dynamic analysis, Coexisting attractors, Off-
set boosting, Adaptive synchronization.

1 Introduction

The chaos theory deals with the dynamical behavior of nonlinear dynamical
systems which are highly sensitive to initial conditions and system parameters.
Chaos has many applications in the field of science and engineering such as
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navigation of mobile robots [1,2], analog to digital converters [3] medical image
processing [4, 5], investigation of HIV virus [6] and Internet of Things [7–9].

Many chaotic systems are introduced with unique features such as self-
excited attractors [10,11], hidden attractors [12,13], coexisting attractors [14,15],
infinitely many shifted attractors [16, 17], multi scroll attractors [18, 19], mem-
ristor attractors [20,21] and fractional order [22].

The chaotic attractors can be classified as self-excited attractors and hidden
attractors. The self-excited attractors [23–25] can be detected using the unsta-
ble equilibrium points while the hidden attractors can be observed in the no
equilibrium system [26–28]. Many systems have been designed with no equilib-
rium [29, 30], stable equilibrium [31–33], line and curve of equilibrium [34–36],
non-hyperbolic equilibrium [37–39] and infinitely many equilibria [40, 41]. The
chaotic system with amplitude control and offset boosting control are reported
in many papers [42–45].

It has been of great interest to design a new offset boostable chaotic system
with topologically different and multistability attractors. The multiple coexist-
ing attractors can be realized in a chaotic system with fixed parameter values
and different initial conditions. In [46], six different self-excited chaotic attrac-
tors are generated for different values of system parameters and realized initial
condition based on multiple coexisting attractors. In [47], three different attrac-
tors are generated based on the equilibrium and initial conditions. This initial
condition-based multiple attractor behavior is realized in many chaotic systems
such as Gyrostat system [48], memristive system [49], unified system [50], con-
servative system [51], neuron system [52] and chemical oscillator [53] etc.

Infinitely many shifted attractors or offset-boosted attractors can also be
realized in a particular chaotic system with fixed initial conditions and differ-
ent parameter values. The dc offset boosting means that the attractor of the
particular system can be shifted in any dimension in phase space. It is easy
and convenient to switch the chaotic signal from bipolar to unipolar for various
engineering applications such as Analog to Digital circuit chips, digital informa-
tion transmission and signal conditioning circuits. The offset-boosted chaotic
system can also be used to reduce the modulation devices in digital informa-
tion systems. In 2016, Li and Sprott [54] realized the dc offset boosting in
a chaotic system by introducing a single constant value. In the recent years,
the offset boosting of chaotic signals has become an active area of research in
chaotic literature and many scholars have applied the method to their proposed
chaotic systems. In some of the systems [55–59], both initial conditions trig-
gered coexisting attractors and offset boosting coexisting attractors have been
realized.

One of the main practical applications of chaotic systems is secure communi-
cation in which the chaotic systems can act as the transmitter (master system)
and receiver (slave system). In the past few decades, chaos synchronization has
received great attention owing to its applications in designing secure communi-
cation systems. Various adaptive synchronization schemes have been developed
in recent years such as sliding mode controller [60, 61], backstepping neural
network method [62,63], observer-based synchronization [64] and so on.
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In this research paper, a new offset boostable chaotic system with three
sinusoidal nonlinearities is presented and the adaptive synchronization of the
proposed system for the application of secure communication is also discussed.
The proposed system has the following novel features:

• The system has countably infinite number of equilibrium points.

• The system generates topologically different attractors, one-wing, two
wing and seven-scroll attractors.

• The system generates initial condition-oriented multiple coexisting attrac-
tors.

• The system generates offset boosting oriented infinitely many coexisting
attractors.

• The system generates polarity reversed coexisting multiple attractors.

The remaining sections of this paper are organized as follows. In Section 2,
the mathematical model of a new dc offset boostable chaotic system is intro-
duced and its basic properties are analyzed. In Section 3, the topologically dif-
ferent attractors of the proposed system are verified using bifurcation diagrams.
In section 4, the multistability and coexisting attractors of the proposed chaotic
system are analyzed using bifurcation diagram and phase plots. In Section 5,
the offset boosting oriented infinitely many coexisting attractors and polarity
control behavior of the proposed chaotic system are discussed with Lyapunov
exponent diagrams and phase plots. In Section 6, the adaptive synchronization
of the proposed system is addressed for the practical applications. Finally, the
conclusions are summarized in Section 7.

2 Design and Analysis of New Chaotic System

Lai et al. [65] introduced a new chaotic system as given in (1).

ẋ = ax− yz

ẏ = −by + xz

ż = −cz + xyz + k

(1)

In the Lai system (1), x,y and z are the state variables and a,b,c,k are the
parameters of system (1). It was shown in [65] that the Lai system is chaotic
for (a, b, c, k)=(4, 9, 4, 4). The Lyapunov exponents of Lai system (1) are found
as l1 = 1.7729, l2 = 0 and l3 = −7.5949. Also, the Lyapunov dimension of
the Lai system (1) is found as DL = 2.2334. The Lai system (1) presents one
scroll and initial condition-oriented coexisting attractors. We are motivated by
the Lai system [65] to design a new chaotic system with topologically differ-
ent strange attractors, one-wing attractors, two-wing attractors, seven scroll at-
tractors, multi-stability and coexisting attractors, offset boosting attractors and
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phase reversal attractors. The distance between the initial condition-oriented
coexisting attractors can also be controlled in the new chaotic system.

The new chaotic system (2) is designed by introducing a sinusoidal nonlinear-
ity in the first differential equation, two sinusoidal nonlinearities in the second
differential equation and replacing the term xyz by cxy in the third differential
equation of (1). Thus, the mathematical model of new chaotic system is in the
form of Eq. (2).

ẋ = a sinx− cyz

ẏ = b sinx + z sinx

ż = c(xy − z) + d

(2)

Here x,y and z are the signal variables of new system (2), a,b,c and d are the
system bifurcation parameters. The proposed system (2) has some interest-
ing multiple features for various system parameter values such as topologically
different attractors, coexisting attractors, dc offset boosting and multi-scroll at-
tractors. The parameter values c and d are chosen as 4 and 36.5 respectively
and other parameter values are mentioned in Table. 1. Figure 1 and Figure 2
show the attractors of new system (2) in yz and xy plane respectively.

In this work, Wolf algorithm is used to calculate the Lyapunov exponents of
the system (2) with the initial condition (−1, 0, 1) and simulation time t = 1E4
sec. Then, Lyapunov dimension (DL) of the system (2) is calculated using the
Eq. (3).

DL = 2 +
l1 + l2
|l3|

(3)

Table. 2 shows the Lyapunov exponent values (l1, l2, l3) and their corre-
sponding Lyapunov dimension value (DL) for all cases. Table. 2 indicates that
the proposed system (2) has fractal chaotic behaviour within itself. It also in-
dicates that the system (2) has highly complex behavior in cases 4 and 5. The
divergence lT of the system (2) is calculated by adding all the Lyapunov expo-
nent values (lT = l1 + l2 + l3). The negative values obtained for lT indicate that
the system (2) is dissipative for all cases.

The equilibrium points for the proposed system can be obtained by equating
ẋ = 0,ẏ = 0 and ż = 0 in (2) as given in Eq. (4).

a sinx− cyz =0 (4a)

(b + z) sinx =0 (4b)

c(xy − z) + d =0 (4c)

From Eq. (4b), we have two cases to consider: (A) sinx = 0 and (B)
sinx ̸= 0.

First, we consider the Case (A), when sinx = 0. In this case, Eq. (4a)
reduces to yz = 0. Either y = 0 or z = 0. When y = 0, Eq. (4c) gives cz = d
or z = d

c .
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In this case, we have a countably infinity number of equilibrium points given
by

En =

(
nπ, 0,

d

c

)
, (n is any integer) (5)

Next, we consider the case when sinx = 0 and z = 0. In this case, Eq. (4c)
gives cxy + d = 0. When x = 0, the equation cxy + d = 0 has no solution.
When x = nπ, where n is a non-zero integer, we get y = − d

cnπ . Thus, we have
a countably infinite number of equilibrium points given by

Fn =

(
nπ,− d

cnπ
, 0

)
, (n is any non-zero integer) (6)

Next, we consider the case (B), when sinx ̸= 0. In this case, Eq. (4b) yields
b + z = 0 or z = −b. Then the equilibrium points are obtained by solving the
following system:

a sinx + bcy = 0

c(xy + b) + d = 0
(7)

For specific values of a, b, c, d, the two algebraic equations (7) can be solved
to obtain the values of x and y.

To discuss the stability type of the equilibrium points of the proposed system
(2), we suppose that the parameters a, b, c, d are positive constants. We calculate
the Jacobian matrix and obtain the following:

J =

∣∣∣∣∣∣
a cosx −cz −cy

(b + z) cosx 0 sinx
cy cx −c

∣∣∣∣∣∣ (8)

If we choose sinx = 0, then the system (2) has countably infinite equilibrium
points given by En (where n is an integer) and Fn (where n is a non-zero integer)
as defined in the equations (5) and (6).

First, we discuss the stability type of the equilibrium points En, when n is
an even integer. For this case, sinx = 0 and cosx = 1. Hence, the Jacobian
matrix at En is given by

J =

∣∣∣∣∣∣
a −d 0

b + d
c 0 0

0 cnπ −c

∣∣∣∣∣∣ (9)

which has the characteristic equation

(λ + c)[λ2 − aλ + d(b + d/c)] = 0 (10)

Hence, the Jacobian matrix J has the eigenvalue λ = −c and the other two
eigenvalues are roots of the characteristic equation

λ2 − aλ + d(b + d/c) = 0 (11)
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By Routh-Hurwitz criterion, we know that the quadratic equation (11) has
a positive real root and a negative real root. This shows that the equilibrium
points En are saddle points and unstable, when n is an even integer.

Next, we discuss the stability type of the equilibrium points En, when n is
an odd integer. For this case, sinx = 0 and cosx = −1. Hence, the Jacobian
matrix at En is given by

J =

∣∣∣∣∣∣
−a −d 0

−b− d
c 0 0

0 cnπ −c

∣∣∣∣∣∣ (12)

which has the characteristic equation

(λ + c)[λ2 + aλ− d(b + d/c)] = 0 (13)

Hence, the Jacobian matrix J has the eigenvalue λ = −c and the other two
eigenvalues are roots of the characteristic equation

λ2 + aλ− d(b + d/c) = 0 (14)

By Routh-Hurwitz criterion, we know that the quadratic equation (14) has
a positive real root and a negative real root. This shows that the equilibrium
points En are saddle points and unstable, when n is an odd integer.

Combining the two cases, we conclude that the equilibrium points En are
saddle points and unstable, where n is any integer.

Next, we discuss the stability type of the equilibrium points Fn where n is
an even integer. In this case, sinx = 0 and cosx = 1.

Hence, the Jacobian matrix at Fn is given by

J =

∣∣∣∣∣∣∣
a 0 d

nπ

b 0 0

− d
nπ cnπ −c

∣∣∣∣∣∣∣ (15)

which has the characteristic equation

λ3 + (c− a)λ2 + λ

(
d2

n2π2
− ac

)
− bcd = 0. (16)

By Routh-Hurwitz stability criterion, the characteristic equation (16) has
unstable roots.

Thus, we conclude that the equilibrium points Fn are unstable, when n is
an even integer.

In a similar manner, we can use Routh-Hurwitz stability criterion to establish
that the equilibrium points Fn are unstable, when n is an odd integer. Com-
bining the two cases, we conclude that the equilibrium points Fn are unstable,
where n is any integer.

If we choose sinx ̸= 0, then z = −b for an equilibrium point and the values
of x and y of the equilibrium point can be obtained by solving the system (7)
as given in Table. 3 which indicates that all the equilibrium points of system
(2) are unstable saddle points.
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3 Evolution of Topologically Different Attrac-
tors

The proposed system (2) presents six different types of attractors for various
values of system parameters as given in Table. 1. In this section, this special
behavior of the proposed system (2) is analyzed and verified by plotting the
bifurcation diagram and Lyapunov exponent spectrum under the parameter
a.The bifurcation diagram and Lyapunov plots can be plotted by varying the
system parameter a and keeping others as constant. In this paper, the variation
of λ1, λ2 and λ3 are represented in blue, red and green colors respectively in all
the Lyapunov exponent plots.

3.1 Under the parameters a ∈ [1, 2], (b, c, d) = (1, 4, 36.5)

The bifurcation diagram and Lyapunov exponents spectrum under the param-
eters a ∈ [1, 2] and (b, c, d)=(1, 4, 36.5) with the initial condition (−1, 0, 1) is
shown in Figure 3. It is observed from the Figure 3a that the system (2) has
broken bifurcation diagram and the system (2) has two wing chaotic attractor in
the region a ∈ [1, 1.13], one wing chaotic attractor in the region a ∈ [1.25, 1.6].
It is also observed from Figure 3a that there is a change in the amplitude level
in the region a ∈ [1.25, 1.35], a ∈ [1.36, 1.57] and a ∈ [1.58, 1.6] and thus the sys-
tem (2) presents different chaotic attractors in this regions. Figure 3b shows the
corresponding Lyapunov exponent plot and indicates that the system presents
periodic attractor beyond a = 1.6. Figures (3c-3e) represent the various chaotic
and periodic attractors in the region a ∈ [1, 2] and (b, c, d)=(1, 4, 36.5).

3.2 Under the parameters a ∈ [1, 3], (b, c, d)=(10, 4, 36.5)

The bifurcation diagram under the parameters a ∈ [1, 3] and (b, c, d) = (10, 4, 36.5)
with the initial condition (−1, 0, 1) is shown in Figure 4a which indicates that
the system (2) produces seven-scroll attractor in the region a ∈ [1, 2.25] and
single scroll attractor in the region a ∈ [2.3, 2.55]. Since there is a change in
the amplitude level beyond a = 2.55, system (2) presents different attractors
in this region. Figure 4b represents the corresponding Lyapunov exponent plot
under the parameter a. Figure 4c represents the seven-scroll chaotic attractor at
a = 1.5 in the (x, y) plane. Figure 4d represents one scroll attractor at a = 2.5
(Blue) and a = 2.6 (Red) in (x, y) plane.

4 Evolution of Multistability and Coexisting At-
tractors

Multistability for a chaotic system means that the chaotic system under consid-
eration produces multiple attractors for the same set of parameter values but
different initial conditions. The proposed system (2) presents multiple coex-
isting attractors for case 2 and case 5 mentioned in Table 1 for various initial
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conditions. This special behavior can be verified using bifurcation diagram and
attractor diagram as given in Figures 5 - 7. In order to demonstrate the coex-
isting attractor behavior, the bifurcation diagram of system (2) is plotted with
the initial conditions X1 = (−1, 0, 1) (Blue) and X2 = (1, 0,−1) (Red).

4.1 Under the parameters a ∈ [1, 2], (b, c, d) = (1, 4, 36.5)

Figure 5a shows the bifurcation diagram under the parameter a in the region
aϵ[1 − 2], (b, c, d) = (1, 4, 36.5) with the initial conditions X1 (Blue) and X2

(Red). It is observed in Figure 5a that there is no overlapping of bifurcation
amplitude xmax in the small regions a ∈ [1.14, 1.17], a ∈ [1.25, 1.31], a ∈
[1.4, 1.47] and a ∈ [1.59, 1.69]. Thus, the new system (2) produces coexisting
multiple chaotic and periodic attractors in these particular regions. Figures (5b
- 5d) represent the various coexisting chaotic and periodic attractor diagrams
in the region aϵ[1 − 2].

4.2 Under the parameters b ∈ [0.75, 1.1], (a, c, d)= (1.3, 4, 36.5)

Figure 6a shows the bifurcation diagram under the parameter b in the region
b ∈ [0.75, 1.1] and (a, c, d) = (1.3, 4, 36.5) with the initial conditions X1 (Blue)
and X2 (Red). It can be observed from Figure 6a and the Lyapunov exponent
diagram given in Figure 6b that there is no overlapping of amplitude in the
region b ∈ [0.75, 1.05]. It is also noted that the chaotic and periodic states are
still unchanged for the different initial conditions. The system (2) has forward
bifurcation phenomena under this parameter which means that the periodic
attractors are detected in the region b ∈ [0.75, 0.96] and chaotic attractors are
detected beyond b = 0.96. Figures (6c - 6f) show the various coexisting periodic
and chaotic attractors in the region b ∈ [0.75, 1.1].

4.3 Under the parameters d ∈ [36, 38.5], (a, b, c)=(1.3, 1, 4)

Figure. 7a shows the bifurcation diagram under the parameter d in the region
d ∈ [36 − 38.5] and (a, b, c)=(1.3, 1, 4) with the initial conditions X1 (Blue) and
X2 (Red).It can be observed from Figure 7a that there is no overlapping of am-
plitude in the region d ∈ [36.4, 38.5] and the chaotic and periodic states are un-
changed under the parameter d also.The system (2) has chaotic attractors in the
region d ∈ [36, 37.3] and then periodic attractors in the region d ∈ [37.3, 38.5]. It
is evident that the system experiences reverse bifurcation under the parameter
d.

5 Evolution of Offset Boosting

One of the main issues in the chaos control is offset boosting which means the
change of position of the attractor in phase space. This can be realized in a
particular chaotic system by introducing an offset booster with any one of its
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state variables. The introduction of booster value increases or decreases the
average value of that particular signal and changes its location. If the signal
appears in multiple times in the system, this particular behavior can be realized
by adding multiple booster values with the signal. Recently, Chunbiao Li [66]
demonstrated parameter-oriented, initial condition-oriented offset boosting and
polarity control behavior in VB14 based chaotic systems. The author realized
the various offset boosting attractors in VB14 system by introducing a constant
parameter, periodic function and trigonometric functions.

In the proposed system (2), offset boosting control along the y dimension
can be realized for various booster value δ when a = (1.5, 2.5, 2.6), b = 10, c = 4
and d = 36.5. The new chaotic system with booster parameter is given in Eq.
(17).

ẋ = a sinx− c(y + δ)z

ẏ = b sinx + z sinx

ż = c[x(y + δ) − z] + d

(17)

5.1 Offset boosting for the parameters (a, b, c, d)=(1.5, 10, 4, 36.5)

The system (17) presents infinitely many shifted attractors along y direction
when a = 1.5 for various values of δ. This is shown in Figure 8 in which
δ = 0 (Blue), δ = 8 (Red), δ = −8 (Green). Figures 8a-8b show the coexisting
offset boosted attractors in (x, y) and (y, z) planes. Figure 8c represents the
time variation of the offset boosted signal y. Figure 8d shows the Lyapunov
exponent plot of (2) under δ ∈ [−8, 8]. It can be concluded from Figure 8d
that the booster value does not affect the Lyapunov exponent values of the new
system (2).

5.2 Offset boosting with multistability for the parameters
(a, b, c, d)=(2.5, 10, 4, 36.5)

The system (2) also presents both initial condition-oriented coexisting attractors
and offset boosting oriented coexisting attractors simultaneously when a = 2.5.
This is shown in Figures 9a and 9b in which blue and red colors represent the
coexisting attractors with δ = 0 under (−1, 0, 1) (Blue) and (1, 0,−1) (Red),
green and cyan colors represent the coexisting attractors with δ = 1 under
(−1, 0, 1) (Green) and (1, 0,−1) (Cyan), magenta and yellow colors represent
the coexisting attractors with δ = −1 under (−1, 0, 1) (Magenta) and (1, 0,−1)
(Yellow). It can be concluded that the distance between the coexisting attractors
can be controlled in the proposed system (2).Figure 9c represents the offset
boosted attractors in yz plane with δ = 0 (Blue), δ = 2 (Red) and δ = −2
(Green) with initial condition (−1, 0, 1) for all attractors. Figure 9d shows that
the offset booster does not change the chaotic behavior of the system in the
region δ ∈ [−1, 1].
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5.3 Offset boosting with polarity reversal for the param-
eters (a, b, c, d)=(2.6, 10, 4, 36.5)

The offset boosting in the system (2) introduces polarity reversal for negative
values of δ when a = 2.6. Even though the offset boosting in the y dimension
does not change the polarity of the left-hand side of system (18) for a negative
value of δ, it introduces polarity reversal. Figure 10 represents the polarity
reversal in which δ = 6 (Blue), δ = 10 (Green), δ = 14 (Magenta), δ = −6
(Red), δ = −10 (Cyan), δ = −14 (Yellow) and the initial condition (−1, 0, 1) is
chosen for all the attractors. Figure 10c indicates that the Lyapunov spectrum
of system (17) is not modified by an offset booster in the region δ ∈ [−10, 10].

ẋ = a sinx− c(y − δ)z

ẏ = b sinx + z sinx

ż = c[x(y − δ) − z] + d

(18)

6 Adaptive Synchronization of the New Chaotic
System

In this section, the adaptive synchronization of identical new chaotic system is
achieved by using master-slave adaptive feedback control method. The synchro-
nization result is verified using the Lyapunov stability theory.

The master system and slave system are given in Eq. (19) and Eq. (20)
respectively as follows:

ẋ1 = a sinx1 − cy1z1

ẏ1 = b sinx1 + z1 sinx1

ż1 = c(x1y1 − z1) + d

(19)

ẋ2 = a sinx2 − cy2z2 + U1

ẏ2 = b sinx2 + z2 sinx2 + U2

ż2 = c(x2y2 − z2) + d + U3

(20)

The synchronization errors can be defined as e1 = x2 − x1, e2 = y2 − y1,e3 =
z2 − z1 and the error dynamics can be obtained from Eq. (19) and Eq. (20) as
given in Eq. (21).

ė1 = a[sinx2 − sinx1] + c(y1z1 − y2z2) + U1

ė2 = b[sinx2 − sinx1] + z2 sinx2 − z1 sinx1 + U2

ė3 = c[x2y2 − x1y1 − e3] + U3

(21)

Now, the adaptive controllers [U1,U2,U3] for the synchronization of the pro-
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posed system can be obtained as Eq. (22) with the following equations:

U1 = −â[sinx2 − sinx1] − ĉ[y1z1 − y2z2] −G1e1

U2 = −b̂[sinx2 − sinx1] − z2 sinx2 + z1 sinx1 −G2e2

U3 = −ĉ[x2y2 − x1y1 − e3] −G3e3

(22)

Here, G1,G2 and G3 are the positive gains and â,b̂ and ĉ are the estimates
of unknown parameters a,b and c respectively. By substituting the Eq. (22) in
Eq. (21), we get the following closed-loop error dynamics:

ė1 = ea[sinx2 − sinx1] + ec[y1z1 − y2z2] −G1e1

ė2 = eb[sinx2 − sinx1] −G2e2

ė3 = ec[x2y2 − x1y1 − e3] −G3e3

(23)

Here, ea = a − â, eb = b − b̂, ec = c − ĉ and thus ėa = − ˙̂a, ėb = − ˙̂
b, ėc = − ˙̂c.

Now, consider the Lyapunov stability function as given in Eq. (24),

V̇ = e1ė1 + e2ė2 + e3ė3 + eaėa + ebėb + ecėc (24)

By substituting Eq. (23) in Eq. (24), we obtained that

V̇ = −[G1e
2
1+G2e

2
2+G3e

2
3]+ea[e1(sinx2−sinx1)− ˙̂a]+eb[e2(sinx2−sinx1)− ˙̂

b]

+ ec[e1(y1z1 − y2z2 + e3(x2y2 − x1y1 − e3) − ˙̂c] (25)

In view of Eq. (25), the parameter update law can be chosen as,

˙̂a = e1(sinx2 − sinx1)

˙̂
b = e2(sinx2 − sinx1)

˙̂c = e1[y1z1 − y2z2 + e3(x2y2 − x1y1 − e3)]

(26)

From the equations (25) and (26), the time derivative of the Lyapunov func-
tion can be obtained as,

V̇ = −G1e
2
1 −G2e

2
2 −G3e

2
3 (27)

which is a negative semi-definite function.
Using Barbalat’s lemma and Lyapunov stability theory, we conclude that the

closed-loop system (23) is globally asymptotically stable for all initial values of
the error signals e1, e2, e3 by using the adaptive controller (22) and adaptive
parameter law (26).

The mathematical results for adaptive synchronization derived in this section
is verified with the following conditions

• The system parameters are chosen as a = 1.3, b = 1, c = 4,d = 36.5.
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• The initial conditions for master and slave system are chosen as (-1,0,1)
and (1,0,-1) respectively.

• The initial conditions for parameters are chosen as a(0) = 1,b(0) = −1
and c(0) = 1.

• The gains are chosen as G1 = G2 = G3 = 1.

Figure 11 represents the unsynchronized and synchronized state variables
with initial conditions (-1,0,1) (blue) and (1,0,-1) (red).

7 Conclusion

In this paper, a chaotic system with three sinusoidal nonlinearities is intro-
duced and analysed its special behaviors such as countably infinite number of
equilibrium points, different attractors, coexisting attractors and offset-boosting
attractors. The proposed system exhibits different six types of attractors which
are verified using bifurcation diagrams and Lyapunov exponent plots. The at-
tractors of the proposed system can be offset-boosted for the particular param-
eter values. The coexisting attractors and offset-boosted attractors are verified
and analyzed in detail with the help of bifurcation diagram and Lyapunov expo-
nent plots. The Lyapunov exponent plots under offset booster parameter have
constant values which indicates that the booster parameter does not modify the
stability and chaotic behavior of the proposed system. Finally, the proposed
system is adaptively synchronized for the application of secure communication
systems. The mathematical and simulation results indicate that the proposed
system has very wealthy chaotic dynamics and can be used for secure commu-
nication systems.

References
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1. Figure 1: Attractors of the proposed system in yz plane when c = 4 and
d = 36.5. (a) Two wing attractor, (b) One scroll attractor, (c) One scroll
attractor, (d) Two wings attractor, (e) One wing attractor and (f) One
wing attractor

2. Figure 2: Attractors of the proposed system in the xy plane for various
values of a and b, while the parameters c and d are fixed at c = 4 and
d = 36.5. (a) Two wings attractor, (b) One scroll attractor, (c) One scroll
attractor, (d) Seven scroll attractor, (e) One wing attractor and (f) One
wing attractor.

3. Figure 3: (a) Bifurcation diagram and (b) corresponding Lyapunov ex-
ponent plot for the parameter range a ∈ [1, 2]. (c) Two wing chaotic
attractors when a = 1.1, (d) One wing attractors when a = 1.3 (Blue)
and a = 1.5 (Red) and (e) Periodic attractor when a = 1.65. The remain-
ing parameters are taken as (b, c, d) = (1, 4, 36.5) and the initial conditions
are chosen as (−1, 0, 1).

4. Figure 4: (a) Bifurcation diagram and (b) the corresponding Lyapunov
exponent plot under the parameter a ∈ [1, 3]. (c) Seven-scroll attractor
in (x, y) plane when a = 1.5, (d) Single-scroll attractors in xy plane when
a = 2.5 (Blue) and a = 2.6 (Red). The remaining parameters are taken
as (b, c, d)=(10, 4, 36.5).The initial conditions are chosen as (−1, 0, 1).

5. Figure 5: (a) Bifurcation diagram for the region a ∈ [1, 2],(b, c, d)=(1, 4, 36.5)
with the initial conditions X1 (Blue) and X2 (Red), (b) Coexisting chaotic
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attractors, (c) Coexisting chaotic attractors, and (d) Coexisting periodic
attractors for the new system (2)

6. Figure 6: (a) Bifurcation diagram under the parameter b ∈ [0.75, 1.1] with
initial conditions X1 (Blue) and X2 (Red). (b) The corresponding Lya-
punov exponent plot. (c) Coexisting periodic attractors, (d) Coexisting
periodic attractors, (e) Coexisting periodic attractors and (f) Coexisting
chaotic attractors when (a, c, d)=(1.3, 4, 36.5) for the new system (2)

7. Figure 7: (a) Bifurcation diagram and (b) Lyapunov exponents plot under
the parameter d ∈ [36, 38.5] with X1 (Blue) and X2 (Red), (c) Coexisting
chaotic attractors, (d) Coexisting periodic attractors when (a, b, c)=(1.3, 1, 4)
for the new system (2)

8. Figure 8: Parameter oriented infinitely many coexisting attractors when
(a, b, c, d)=(1.5.10, 4, 36.5). (a-b) Offset boosted attractors in xy plane and
yz plane at δ=0 (Blue),δ=8 (Red) and δ=−8 (Green), (c) Time variation
of offset boosted signal y, (d) Constant Lyapunov exponent plot of system
(17) in the region δ ∈ [−8, 8].

9. Figure 9: Evolution of offset boosting with multistability when (a, b, c, d)=
(2.5, 10, 4, 36.5). (a-b) The offset boosting with initial condition oriented
coexisting attractors in xy and yz plane respectively. Note that the dis-
tance between the coexisting attractors can be controlled by the offset
booster parameter. (c) The offset boosted attractors without initial con-
dition oriented coexisting attractors where δ = 0 (Blue), δ = 2 (Red) and
δ = −2 (Green), (d) Lyapnnov exponent plot of system (17) under the
booster parameter δ.

10. Figure 10: Evolution of offset boosting with polarity reversal when (a, b, c, d)=
(2.6, 10, 4, 36.5). (a) Polarity reversed attractors, (b) Polarity reversed at-
tractors, (c) Shifted signal y, (d) Lyapunov spectrum plot of system (17)
under the parameter δ.

11. Figure 11: (a),(c),(e) Unsynchronized state variables and (b),(d),(f) Syn-
chronized state variables between the master system (19) and slave system
(20)
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(a) (a, b)=(1.1, 1) (b) (a, b)=(1.3, 1)

(c) (a, b)=(1.5, 1) (d) (a, b)=(1.5, 10)

(e) (a, b)=(2.5, 10) (f) (a, b)=(2.6, 10)

Figure 1: Attractors of the proposed system in yz plane when c = 4 and d =
36.5. (a) Two wing attractor, (b) One scroll attractor, (c) One scroll attractor,
(d) Two wings attractor, (e) One wing attractor and (f) One wing attractor.
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(a) (a, b)=(1.1, 1) (b) (a, b)=(1.3, 1)

(c) (a, b)=(1.5, 1) (d) (a, b)=(1.5, 10)

(e) (a, b)=(2.5, 10) (f) (a, b)=(2.6, 10)

Figure 2: Attractors of proposed system in the xy plane for various values of a
and b, while the parameters c and d are fixed at c = 4 and d = 36.5. (a) Two
wings attractor, (b) One scroll attractor, (c) One scroll attractor, (d) Seven
scroll attractor, (e) One wing attractor and (f) One wing attractor.
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(a) Bifurcation diagram (b) Lyapunov exponent plot

(c) a = 1.1 (d) a = 1.3 (Blue) and a = 1.5 (Red)

(e) Periodic attractor at a = 1.65

Figure 3: (a) Bifurcation diagram and (b) corresponding Lyapunov exponent
plot for the parameter range a ∈ [1, 2]. (c) Two wing chaotic attractors when
a = 1.1, (d) One wing attractors when a = 1.3 (Blue) and a = 1.5 (Red) and
(e) Periodic attractor when a = 1.65. The remaining parameters are taken as
(b, c, d) = (1, 4, 36.5) and the initial conditions are chosen as (−1, 0, 1).
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(a) Bifurcation diagram (b) Lyapunov exponent plot

(c) a = 1.5 (d) a = 2.5(Blue) and a = 2.6(Red)

Figure 4: (a) Bifurcation diagram and (b) the corresponding Lyapunov exponent
plot under the parameter a ∈ [1, 3]. (c) Seven-scroll attractor in (x, y) plane
when a = 1.5, (d) Single-scroll attractors in xy plane when a = 2.5 (Blue) and
a = 2.6 (Red). The remaining parameters are taken as (b, c, d)=(10, 4, 36.5).The
initial conditions are chosen as (−1, 0, 1).

23



(a) Bifurcation diagram (b) a = 1.3

(c) a = 1.42 (d) a = 1.65

Figure 5: (a) Bifurcation diagram for the region a ∈ [1, 2],(b, c, d)=(1, 4, 36.5)
with the initial conditions X1 (Blue) and X2 (Red), (b) Coexisting chaotic
attractors, (c) Coexisting chaotic attractors, and (d) Coexisting periodic at-
tractors for the new system (2).
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(a) Bifurcation diagram (b) Lyapunov exponent plot

(c) b = 0.76 (d) b = 0.85

(e) b = 0.92 (f) b = 0.96

Figure 6: (a) Bifurcation diagram under the parameter b ∈ [0.75, 1.1] with
initial conditions X1 (Blue) and X2 (Red). (b) The corresponding Lyapunov
exponent plot. (c) Coexisting periodic attractors, (d) Coexisting periodic at-
tractors, (e) Coexisting periodic attractors and (f) Coexisting chaotic attractors
when (a, c, d)=(1.3, 4, 36.5) for the new system (2).
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(a) Bifurcation diagram (b) Lyapunov exponent plot

(c) d = 36.5 (d) d = 38.5

Figure 7: (a) Bifurcation diagram and (b) Lyapunov exponents plot under the
parameter d ∈ [36, 38.5] with X1 (Blue) and X2 (Red), (c) Coexisting chaotic
attractors, (d) Coexisting periodic attractors when (a, b, c)=(1.3, 1, 4) for the
new system (2).
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(a) (x, y) plane (b) (y, z) plane

(c) Time variation of shifted signal y (d) Lyapunov exponent plot

Figure 8: Parameter oriented infinitely many coexisting attractors when
(a, b, c, d)=(1.5.10, 4, 36.5). (a-b) Offset boosted attractors in xy plane and yz
plane at δ=0 (Blue),δ=8 (Red) and δ=−8 (Green), (c) Time variation of offset
boosted signal y, (d) Constant Lyapunov exponent plot of system (17) in the
region δ ∈ [−8, 8].
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(a) xy plane (b) yz plane

(c) Offset boosted attractors (d) Lyapunov exponent plot

Figure 9: Evolution of offset boosting with multistability when
(a, b, c, d)=(2.5, 10, 4, 36.5). (a-b) The offset boosting with initial condi-
tion oriented coexisting attractors in xy and yz plane respectively. Note
that the distance between the coexisting attractors can be controlled by the
offset booster parameter. (c) The offset boosted attractors without initial
condition oriented coexisting attractors where δ = 0 (Blue), δ = 2 (Red) and
δ = −2 (Green), (d) Lyapnnov exponent plot of system (17) under the booster
parameter δ.
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(a) (x, y) plane (b) (y, z) plane

(c) Offset boosted y signal (d) Lyapunov spectrum plot

Figure 10: Evolution of offset boosting with polarity reversal when
(a, b, c, d)=(2.6, 10, 4, 36.5). (a) Polarity reversed attractors, (b) Polarity re-
versed attractors, (c) Shifted signal y, (d) Lyapunov spectrum plot of system
(17) under the parameter δ.
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(a) x signal (b) x signal

(c) y signal (d) y signal

(e) z signal (f) z signal

Figure 11: (a),(c),(e) Unsynchronized state variables and (b),(d),(f) Synchro-
nized state variables between the master system (19) and slave system (20).
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Table 1: Different Cases of Parameters in the proposed system

Case Parameters Figures Special Features

1 a = 1.1,b = 1 Figures 1a & 2a Two wings attractor

2 a = 1.3,b = 1 Figures 1b & 2b
Initial condition oriented Coex-
isting attractors

3 a = 1.5,b = 1 Figures 1c & 2c One scroll attractor

4 a = 1.5,b = 10 Figures 1d & 2d
Seven-scroll attractors in (x, y)
plane and offset boosting based
coexisting attractors

5 a = 2.5,b = 10 Figures 1e & 2e

Simultaneous initial condition
oriented and offset boosting ori-
ented infinitely many coexisting
attractors

6 a = 2.6,b = 10 Figures 1f & 2f
Polarity reversal and parameter
oriented infinitely many coexist-
ing attractors

Table 2: Lyapuov Exponents and Lyapunov Dimensions

Cases Lyapunov Exponents DL lT Types

1 l1 = 0.3985,l2 = 0, l3 = −4.799 2.083 -4.4005 Dissipative

2 l1 = 0.4456, l2 = 0, l3 = −4.7245 2.094 -4.2789 Dissipative

3 l1 = 0.3417, l2 = 0, l3 = −4.438 2.077 -4.096 Dissipative

4 l1 = 0.95127, l2 = 0, l3 = −4.973 2.1913 -4.0217 Dissipative

5 l1 = 0.66232, l2 = 0, l3 = −4.8642 2.136 -4.2017 Dissipative

6 l1 = 0.82392, l2 = 0, l3 = −5.0237 2.164 -4.1998 Dissipative
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Table 3: Equilibrium Points when sinx ̸= 0 (Case B) and their corresponding
Eigen Values

Case
Equilibrium Points
(x, y, z)

Eigen Values

1 (38.95, -0.26, -1) (-12.056, 8.018, 0.893)

2
(±33.35,∓0.304,−1) (-10.732, 6.6678, 1.1507)

(±32.68,∓0.31,−1) (-10.568, 6.499, 1.1632)

3 (±33.63,∓0.301,−1) (-10.8004,6.733, 1.3178)

(±32.4,∓0.3125,−1) (-10.503, 6.426, 1.343)

4 (−1158.79, 0.0165,−10) (-47.31, 43.306, -1.345)

5 (−578.61, 0.033,−10) (2.124, 33.01,-37.05)

6 (465.64,−0.041,−10) (-0.696, 40.39,-44.4)
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