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Abstract 

In the previous paper, diverse data acquisition methods based on data types 

for condition monitoring wind turbines is explored. The present study investigates 

advanced signal processing techniques in the field of condition monitoring of wind 

turbines. Methods include synchronous sampling, signal decomposition, envelope 

analysis, statistical evaluation, model-based approaches, Bayesian methods, and 

artificial intelligence techniques. Comparison and analysis of these methods and 

their applications in wind turbine fault detection and diagnosis are presented in this 

coming study. Moreover, the survey encompasses innovative approaches using 

various data sources, addressing challenges in components like bearings, 

gearboxes, blades, and generators. Insights into the evolution of data-driven 

decision-making in the wind energy sector are provided, with a focus on strengths, 

limitations, and future directions. A summarized table offers an overview of 

studies, highlighting monitored components, data types, and methods. 

 

Keywords: wind turbine, conditional monitoring, fault prediction, artificial 

intelligence (AI) 

 

I. Introduction 

In the realm of equipment condition monitoring, the path from data 

acquisition to actionable insights demands a nuanced approach. In the previous 

paper, diverse equipment monitoring methods based on data types is explored. 

Here, the authors delve into a pivotal aspect of signal processing methods. These 

techniques, including synchronous sampling, signal decomposition, envelope 
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analysis, statistical analysis, model-based methods, Bayesian methods, and AI-

based methods, are crucial for deciphering complex signals, especially in non-

stationary contexts like wind turbines. 

Section II unveils the principles, strengths, and limitations of each method, 

offering a view of their roles. In section III, a survey of research focused on wind 

turbine fault detection, and isolation is presented. Finally, in section IV, the 

conclusion is proposed. 

 

 

II. Conditional Monitoring: Signal processing method  

In the previous part, the types of equipment condition monitoring methods 

based on data types were explained. It is necessary to process the data for fault 

detection and to identify the characteristics associated with each piece of 

equipment. In this section, the most practical and widely used signal processing 

method will be presented. 

It is well known that the signals from wind turbines due to fluctuations in 

wind speed are non-stationary signals [1]. This issue makes it difficult to use 

classic signal processing methods, and therefore it is necessary to choose 

appropriate methods. The most widely used and practical signal processing 

methods are as follows that’ scheme is shown in Figure 1: 

 synchronous sampling 

 Signal decomposition 

 Envelope Analysis 

 Statistical analysis 

 Model-based methods 

 Bayesian methods 

 AI-based Methods 
 

A. Synchronous sampling 

Due to the non-stationary nature of the signals from the wind turbine, it is not 

possible to use classical methods based on the frequency spectrum of signals. In 

this method, short and suitable time windows are first considered, then the Fourier 

transform (as given in Equation (1)) is applied to obtain the frequency spectrum of 

the signals within that time window. Based on the resulting diagram, the 

characteristics and frequency characteristics of the faults are determined. 
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Where 𝑋(𝑗𝜔) Is the Fourier transform of 𝑥(𝑡) function. 

Frequency analysis methods based on synchronous sampling have higher 

resolution in the frequency domain compared to time-frequency domain analysis 

methods and are computationally efficient for use in online wind turbine condition 

monitoring, such as the wavelet transform or short-time Fourier transform [2]. 

B. Signal Decomposition 

In this method, the non-stationary signal is first converted into several sub-

signals using techniques such as wavelet transform, Empirical Mode 

Decomposition (EMD), etc. Then, the important characteristics of the sub-signals 

are identified through time or frequency analysis. 

a. Wavelet Transform 

The wavelet transform is a mathematical technique that decomposes a signal 

by controlling the scale and converting the original wavelet factors into several 

lower-resolution levels using equation (2) as follows: 
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Where 𝑋𝜔 Is the wavelet transform of the signal, 𝑎 is the scale factor,  𝑏 is the 

shift factor, 𝜓 is the mother signal, & 𝑥(𝑡) is the main signal. 

The fundamental concept of the wavelet transform involves breaking down a 

signal into a group of frequency channels that possess identical bandwidth on a 

logarithmic scale in a hierarchical manner [2]. The wavelet transform is divided 

into two main categories: 1) Continuous wavelet transform, and 2) Discrete 

wavelet transform, which depend on whether the a and b parameters are continuous 

or discrete. The wavelet transform has an advantage over the Fourier transform in 

that it can be used for any type of signal in both the time and frequency domains 

simultaneously [3]. However, one of the most significant challenges with this 

method is choosing the appropriate mother wavelet, as a poor choice can reduce its 

accuracy and computational efficiency. 

b. Empirical Mode Decomposition 

In this method, the original signal is divided into several sub-signals while 

retaining the basic characteristics of the original signal, such that the sum of the 

sub-signals is equal to the original signal. Typically, the characteristics of the 

original signal are extracted using the Hilbert transform or the Fourier transform 

[4]. One of the key advantages of this method is its ease of implementation and 

ability to be used with any type of signal. However, this method is very sensitive to 

noise and also integrates the modes of the system, making it difficult to extract the 

main features of the signal [5]. 

C. Envelope Analyses 



This method uses a smooth function to detect anomalies by distinguishing 

parts of the signal that have a very large amplitude compared to other parts. The 

envelope analysis is a widely used and effective technique that has been 

incorporated into many commercial wind turbine condition monitoring systems 

(WT CMSs). The envelope of a signal is a time-domain signal that typically needs 

to be subjected to additional signal processing methods [2]. 

D. Statistical analysis 

In this method, statistical parameters of the signal such as average, root mean 

square, kurtosis, and skewness, etc. are measured in the healthy operating mode. 

Then, by monitoring the equipment and measuring the statistical parameters during 

operation, it is compared and evaluated against its healthy operation [6].The 

statistical analysis methods are established and straightforward to apply. But, these 

methods typically only identify the existence of a fault in a wind turbine (WT) or 

subsystem of WT, and they rarely provide detailed information about the fault's 

mode or location. Additionally, the statistical methods are susceptible to noise, 

which limits their effectiveness in high-noise environments [7]. 

E. Model-Based Methods 

In this method, the dynamic behavior of the equipment is modeled using 

accurate mathematical models. The parameters obtained from the model are then 

compared with the measured values of the equipment. If there is a difference 

outside the predefined range, the fault, and its occurrence will be detected in the 

equipment. The effectiveness of this method depends on the accuracy of the 

mathematical model, and as it is known, a comprehensive and accurate model 

cannot be obtained in reality due to uncertainties [8]. This method is also not 

usually able to detect the type of fault or its modes and is only used to detect the 

occurrence of a fault. Its scheme is shown in Figure 2[9]. 

F. Bayesian methods 

Bayesian networks are a graphical model used to estimate probabilities. The 

model consists of nodes representing random variables with distinct states, 

connected by directional arcs representing conditional dependencies [10]. Bayesian 

networks can assess the likelihood of different scenarios as the root cause of an 

event or predict probabilities for future events [11]. Markov models, Kalman filters 

(KFs), and particle filters such as the particle filter Chebyshev are commonly used 

Bayesian techniques in engineering for prediction. Its Hieratical chart is shown in 

Figure 3. 

  

a. Markov model 

Markov models are used to predict future failure probabilities by determining 

the probabilities associated with each state and the transitions between them. These 



models have the characteristic that future states depend only on the preceding state. 

To utilize Markov models for prediction, certain assumptions are taken into 

consideration [12]: 

 Transition probabilities are independent of time, meaning that the failure rate 

is constant.  

 The waiting time in a particular state follows an exponential trend. 

 The sum of all transition probabilities for leaving one state and entering 

different states must equal one [13]. 

On the contrary, the Hidden Markov Model (HMM) is an advancement of 

Markov chains where certain states are not directly observable, hence transition 

probabilities cannot be directly determined. An HMM is described by the number 

of model states, the number of observation symbols per state, a probability 

distribution for state transitions, a probability distribution for observation symbols, 

and an initial state distribution [12]. HMMs possess the advantage of modeling 

both spatial and temporal phenomena and can analyze time-series data without 

comprehending the failure physically, as long as enough data is present for 

training. However, a drawback of all types of Markov models is their 

computational complexity. The number of computations required to evaluate the 

accuracy of the model fitting the observation dataset is proportional to the number 

of states squared [14]. 

b. Filters 

Kalman Filters (KFs) are iterative algorithms employed to predict the hidden 

state of a dynamic system using imprecise measurements. The algorithm estimates 

the state by reducing the average squared error through linear projections [15].The 

method is predicated on the idea that the measurement and process noise are 

additive, white, and Gaussian, and are also independent of each other. Particle 

filters are a suitable alternative to KFs because they do not have the limitations of 

KFs. They are particularly well-suited for estimating the Probability Density 

Function (PDF) in the future for multivariable and non-standard problems [16]. 

G. Artificial intelligence 

Artificial Intelligence (AI) is a collection of methods and techniques that 

allow a machine or computer to learn and imitate human behavior. AI can be 

broadly divided into three categories: 1) Machine learning, 2) Reinforcement 

learning, and 3) Neural networks. It's important to note that Deep learning is a 

subset of Machine learning. In this method, the machine is trained by providing 

input-output pairs. With sufficient examples, the machine learns how to perform 

the task, rather than being programmed with a specific mathematical formula [17]. 

a. Artificial neural network 



Warren McCulloch and Walter Pitts were pioneers in the development of 

Artificial Neural Networks (ANNs) in 1943 [18]. Since then, there has been a 

growing interest in understanding the properties of ANNs. In 1985, John Hopfield's 

book [19] and the development of back-propagation ANN models by David 

Rumelhart and G. Hinton in 1986 [20] sparked more focused interest in ANNs for 

specific industrial applications. Neural networks are used in the following fields 

[21]: 

 Association: A technique for reducing data dimensionality.  

 Classification: A technique for grouping data into classes.  

 Conceptualization: A technique for creating concepts based on concrete 

data. 

 Prediction: A technique for forecasting future values.  

 Optimization: A technique for finding the minimum solution. 

 Filtering: A technique for sorting data based on certain criteria. 

Table I  Table I displays a list of the early contributions to 

Artificial Neural Networks (ANNs). 

Considering the numerous types of neural networks that have been developed 

to date, they primarily differ in their structure, data flow direction, type of neuron 

employed, density, number of layers, and types of activation functions. Figure 4 

illustrates the fundamental architecture of a neural network. 

1. Perceptron 

The Perceptron is the simplest and oldest model of a neuron, which receives 

two inputs, combines them, applies an activation function, and finally forwards the 

result to the output layer [22]. This network structure is shown in Figure 5. 

2. Feed Forward Neural Networks 

One of the older members of the Neural Network family is the Feed-forward 

Neural Network, with its approach dating back to the 1950s [23]. The function of 

this algorithm typically follows these rules: 

 Every node is connected to all other nodes in the network. 

  Data flows only in a forward direction from the input layer to the 

output layer.  

 There is a layer called the "hidden layer" located between the input and 

output layers. 

 The back-propagation algorithm is frequently used to train this type of neural 

network [24] [25]. 

3. Recurrent Neural Networks  

Recurrence neural networks utilize recurrent cells, a type of cell distinct from 

those used in feed-forward neural networks [26].The Jordan network, the first of 



this type of network, includes hidden cells that receive their output after a delay of 

one or more iterations [27]. 

4. Hopfield Networks 

Hopfield networks are designed to respond to a known input with a similar 

output, and are trained on a limited set of examples. Each cell in the network 

serves as an input cell before training, a hidden cell during training, and an output 

cell during use. The primary objective of these networks is to create trained 

examples [28]. They are commonly used to complete input sequences or images, 

and can return the full sample when given half of a learned image or sequence 

[29]. 

5. Boltzmann Machines 

Boltzmann machines and Hopfield networks share similarities in that they 

both contain cells marked as input and remain hidden, with input cells becoming 

output cells once the hidden cells update their state. However, Boltzmann 

machines are more complex than Hopfield networks as they allow for bidirectional 

connections between nodes, while Hopfield networks only allow unidirectional 

connections. Boltzmann machines also use stochastic techniques to update the state 

of their nodes, allowing them to explore a wider range of possible solutions [30] 

[31]. During training, the Boltzmann machine updates the cells one by one, not in 

parallel [32]. 

5.1. Restricted Boltzmann Machine    

A restricted Boltzmann machine is similar in structure to a Boltzmann 

machine but is more limited [33]. It can only be trained using back-propagation 

and acts as a feed-forward network, with the only difference being that post-release 

referenced data is returned to the input layer once [34]. 

b. Machine Learning  

Machine learning is a field of artificial intelligence that focuses on teaching 

machines to improve their performance based on past data and make predictions 

[35]. It consists of a set of algorithms that are applied to large amounts of data, 

with the goal of producing a model. This model is then used for various tasks, such 

as classification, clustering, and prediction. There are three primary categories of 

machine learning algorithms: supervised, unsupervised, and deep learning [36]. 

1. Supervised Algorithms 

 In this method, the training dataset includes appropriate input and output 

values. A machine learning model is created that adjusts its variables to represent 

the corresponding input-output mapping. Supervised machine learning is further 

divided into two groups: classification and regression [37]. 

1.1.  Classification  



Classification algorithms are employed to tackle classification problems, 

where the output variable or label comprises values like "yes" or "no," "male" or 

"female," "red" or "blue," and so on [38]. Common classification algorithms 

include:  

 Random Forest Algorithm [39] 

 Decision Tree Algorithm [40] 

 Logistic Regression Algorithm [41] 

 Support Vector Machine Algorithm [42] 

 Artificial Neural Network Algorithm 

1.2. Regression 

Regression algorithms are utilized to address regression problems in which a 

linear association exists between input and output variables. These algorithms are 

implemented to anticipate continuous output variables, like forecasting stock or 

weather [43]. Some of the common regression algorithms include: 

 Simple Linear Regression Algorithm [44] 

 Multivariate Regression Algorithm [45] 

2. Unsupervised Algorithms  

In unsupervised learning, the focus is not on producing outputs, but on 

classifying data into different groups [46]. It is divided into two categories. 

2.1. Clustering  

Clustering is a technique used to identify intrinsic groups in data, where 

objects within a cluster are more similar to each other and less similar to objects in 

other clusters [47]. Some popular clustering algorithms are listed below [48]. 

 K-Means 

 Density-Based Spatial Clustering of Applications with Noise 

 Hierarchical Clustering Algorithm 

2.2. Association  

Associative rule learning is a type of unsupervised learning that identifies 

meaningful relationships between variables within vast datasets. The main 

objective of this machine learning technique is to uncover the interdependence 

between data items and to establish mappings between variables that lead to 

maximal benefits [49]. This algorithm is mainly used in market portfolio analysis 

and some common algorithms for learning associative rules include: 

 Apriori Algorithm [50] 

 Eclat Algorithm [51] 

 FP-Growth Algorithm [52] 

c. Deep Learning 

 Deep learning is a subfield of machine learning that models the structure and 

functionality of the human brain. These algorithms are designed to learn 



autonomously, using artificial neural networks that emulate the brain's information 

processing. During the training process, these algorithms utilize unknown elements 

in the input to identify features, group objects, and detect patterns in the data. Deep 

learning models often consist of multiple algorithms, each tailored to specific tasks 

[53]. Some of the most commonly used types include: 

 Convolutional Neural Networks [54] 

 Long Short-Term Memory Networks [55] 

 Recurrent Neural Networks 

 Generative Adversarial Networks [56] 

 Radial Basis Function Networks [57]  

 Multilayer Perceptron [58] 

 Self-Organizing Maps [59] 

 Deep Belief Networks [60] 

 Restricted Boltzmann Machines 

 Auto-Encoders 

d. Reinforcement Algorithms  

These algorithms are trained based on decisions, so their performance depends 

on the decisions made during training. Ultimately, the algorithms gain experience 

and are capable of producing successful outputs [61]. Reinforcement learning is a 

machine learning technique that works through a feedback loop in which an AI 

agent interacts with its environment and takes actions. The agent is rewarded for 

good actions and penalized for bad ones, with the aim of maximizing its reward 

and improving its performance through feedback. In contrast to supervised 

learning, reinforcement learning does not rely on labeled data, and the agent learns 

solely from its own experiences [62]. The process is similar to human growth and 

development, where a child learns through experiences in daily life. Reinforcement 

learning is a versatile approach that can be applied in a range of fields, including 

game theory, operations research, information theory, and multi-agent systems, due 

to its distinctive learning process [63]. 

1. Fuzzy Logic Systems   

Fuzzy logic systems are often used to detect faults in generators and wind 

turbine pitch systems [64]. These systems are trained by the characteristics of 

various faults, and fuzzy rules are developed to monitor equipment conditions. 

However, the design of fuzzy rules depends on a complete understanding of the 

mechanism of different parts in the wind turbine, which is not feasible in reality. 

Incorrect fuzzy rule design can result in incorrect diagnoses [64]. It is important to 

note that the system dimensions increase exponentially with the number of faults, 

making the cost of calculations heavy, which is one of the disadvantages of this 

method [65]. 



The comparison of Bayesian network methods with methods based on 

artificial intelligence is presented in Table II, and a comparison of the most popular 

methods is presented in Table III. 

 

III. Conditional monitoring: literature review (wind turbine) 

Over the past twenty years, there has been significant research activity in the 

field of wind turbine condition monitoring. This part discusses various research 

studies and methods related to fault diagnosis and condition monitoring in wind 

turbines. The authors of the different references propose innovative approaches and 

techniques to address specific challenges in detecting and diagnosing faults in wind 

turbine components, such as bearings, gearboxes, blades, generators, and electrical 

systems. The methods utilize different data sources, including vibration signals, 

acoustic emission, stator current, SCADA data, and more. The studies employ 

various tools and algorithms, such as statistical analysis, wavelet analysis, neural 

networks, empirical mode decomposition, support vector machines, and deep 

learning models. The aim of these research efforts is to improve the effectiveness 

and efficiency of fault detection, localization, and diagnosis in wind turbine 

systems, enabling early detection and proactive maintenance to prevent 

breakdowns and optimize turbine performance. 

Authors in [66] propose a novel diagnostic approach for condition monitoring 

of bearings used in wind turbines, addressing the challenges posed by non-

stationary load conditions. The method utilizes input data obtained from a 

commercial diagnostic system and incorporates load susceptibility characteristics 

(LSCh) to remove the dependency on operating conditions. The study includes 

case studies of bearing failure and significant condition changes, highlighting the 

need for suitable data presentation and statistical processing (linear regression 

analysis) for long-term monitoring and decision-making. In [67], authors diagnose 

rolling element bearing faults in a wind turbine gearbox using vibration analysis, 

acoustic analysis, and lubrication oil analysis. Statistical features are extracted 

from wavelet approximation coefficients, and an integrated condition monitoring 

scheme combining these techniques demonstrates better fault diagnosis capabilities 

compared to individual techniques. 

Reference [68] introduces a novel approach for fault detection in rotating 

machinery by maximizing the sparsity of the envelope spectrum. Blind filters are 

derived using different sparsity measures, enabling effective tracking of faults with 

cyclostationary signatures without prior knowledge of characteristic fault 

frequencies 

Reference [69] addresses fault diagnosis of wind turbine blades by performing 

continuous structural health condition monitoring. Statistical features are extracted 

from vibration signals, feature selection is conducted using a J48 decision tree 



algorithm, and feature classification is performed using the best-first tree and 

functional trees algorithms to determine the most effective approach. In [70], the 

Authors explore the application of vibration-based artificial neural networks 

(ANNs) for damage assessment in wind-turbine towers. Modal parameters are used 

as inputs, and element stiffness indices are the outputs. The ANNs are trained 

using a finite element model of a real wind turbine tower and are capable of 

detecting damaged elements and assessing their severities. Reference [71] proposes 

an optimized vibration-based fault detection method for offshore wind turbine 

drivetrains. By analyzing simulated shaft acceleration measurements, it is 

determined that only two vibration sensors, placed near the main and intermediate-

speed shafts, are needed to accurately detect faulty bearings. Axial vibration data 

outperforms radial data, and the approach can be applied to virtual digital twin 

models. 

Reference [72] proposes an unsupervised time-series anomaly detection 

method for wind turbine nacelles. It combines deep learning with multi-parameter 

relative variability detection and validates its effectiveness using real-world wind 

farm data. 

Reference [73] proposes a noninvasive technique for diagnosing gear tooth 

surface damage faults based on stator current analysis. The fault signature is 

identified through torque oscillation profiles and fault-related frequencies in the 

stator current. Reference [74] proposes a method for detecting gearbox faults in 

wind turbines using non-stationary stator current signals. It identifies characteristic 

frequencies of gearbox faults and presents a fault detection approach that includes 

adaptive signal resampling, statistical analysis, and fault detectors. Reference [75] 

presents a fault diagnosis algorithm for a 25-kW wind turbine drivetrain. It focuses 

on detecting and locating defects in the generator rotor and gearbox pinion. Using 

signal processing techniques, such as wavelet packet transform and local mean 

decomposition with Fast Fourier Transform, gear teeth faults are identified based 

on the detection of gear meshing frequency in the stator current. Principal 

component analysis is employed for classification of gearbox states. Despite 

limited data, significant results are obtained 

Reference [76] explores the use of acoustic emission (AE) analysis for 

diagnosing slow-speed wind turbine blade bearing faults. A novel cepstrum editing 

method called DRS-CEL is proposed to denoise raw AE signals, and 

morphological envelope analysis is applied for further noise filtering and fault type 

inference. In reference [77], researchers propose a new method for localizing faulty 

planet gears in wind turbine gearboxes using acoustic emission (AE) techniques. 

The method focuses on obtaining precise time of arrival for AE signals and utilizes 

continuous wavelet transform based on the Morlet wavelet to extract compressive 

waves. Reference [78] uses acoustic emission (AE) analysis to diagnose faults in a 



slow-speed wind turbine blade bearing. The challenge is filtering raw AE signals to 

extract weak fault signals. The proposed method involves a general linear and 

nonlinear auto-regressive (GLNAR) model to capture nonlinear characteristics and 

the SAL algorithm for signal filtering. Resampling is used to diagnose the fault 

type. Reference [79] introduces a novel approach for early-stage and low rotational 

speed rolling bearing fault diagnosis using a generative adversarial network 

(GAN)-based data enhancement. By utilizing acoustic emission (AE) signals, the 

proposed method overcomes the challenges of limited training data and data 

imbalance issues, and achieves superior performance compared to traditional 

methods such as SVM and CNN models.  

In reference [80], the combination of neural networks and the analysis of five 

experimental scenarios, including 1) Aerodynamic asymmetry, 2) Turbine rotation 

imbalance, 3) Turbine boundary imbalance, 4) Nacelle imbalance, and 5) The non-

use of software in the normal operation mode of the permanent magnet wind 

turbine generator, has been utilized for fault diagnosis in wind turbines using the 

stator current. In reference [81], fault detection in wind turbine gearboxes has been 

performed using diagonal spectrum and binary clustering tree Support Vector 

Machines. In reference [82], more models related to bearing and gearbox fault 

detection using the wavelet method and neural networks are presented. 

Additionally, other works in this field have explored the use of convolutional 

neural network methods in [83], [84]. Furthermore, the Local Mean Decomposition 

(LMD) and neural network are investigated in [85], while a back-propagation 

neural network is utilized in [86]. Moreover, an improved back-propagation neural 

network (IBPNN) is employed in [87], and a back-propagation neural network 

(BPNN) trained with the PSO algorithm is utilized in [88]. 

Reference [89] proposes an extended Kalman filter (EKF) based method to 

detect rotor electrical asymmetry in wind turbine doubly fed induction generators 

(DFIGs). The method effectively estimates and tracks fault signature components 

(FSCs) in time-varying current signals. Experimental results demonstrate the 

superiority of the EKF over other algorithms, such as continuous wavelet 

transform (CWT) and iterative localized discrete Fourier-transform (IDFT), in 

accurately diagnosing faults in different operating conditions. 

In reference [90] A framework is proposed for quantitatively evaluating faults 

and health conditions in wind turbines using generator current signals. A 

resampling algorithm handles non-stationary signals for fault feature extraction. 

The extracted features are used to calculate correlation dimensions for fault and 

health condition evaluation. 

Reference [91] proposes a fault diagnosis method for wind turbines based on 

integral extension load mean decomposition multi-scale entropy (IELMDME), and 

least squares support vector machine (LSSVM). The method effectively processes 



vibration signals, extracts characteristic parameters, and accurately classifies 

bearing fault types. 

Reference [92] presents a new method for detecting and quantifying inter-turn 

faults in line start permanent magnet synchronous motors (LSPMSMs). The 

method uses convolutional neural networks (CNNs) to analyze the stator current 

during the steady-state period and accurately detect faults without separate feature 

extraction. Experimental results demonstrate high accuracy (97.75%) in fault 

detection across various loading conditions. The proposed technique enables online 

fault detection without disrupting system functionality or requiring additional 

hardware. 

In reference [93], the support vector machine was utilized with SCADA 

training data to identify and predict faults in the following categories: 1) power 

supply, 2) cooling system, 3) generator excitation, 4) generator failure, and other 

basic faults. In this research, firstly, the correct operating mode has been separated 

from the faulty mode. Then, fault identification and prediction of the mentioned 

faults have been performed. In reference [94], the non-linear self-regression 

algorithm of the neural network, based on SCADA data, was used to detect bearing 

faults in wind turbine gearboxes. In reference [95], neural network methods were 

employed using SCADA data to detect main bearing faults in wind turbines.  

Reference [96] presents a new approach using structural break detection in 

SCADA data for monitoring and diagnosing faults in wind turbines. The Chow test 

is adapted to assess the stability of regression coefficients in a temperature-based 

model. Any instability indicates a fault occurrence. Control charts and p-values are 

used to detect structural changes. The method is validated with known fault events, 

demonstrating its effectiveness in detecting abnormalities. In reference [97], the 

authors introduce a novel intelligent fault diagnosis methodology for wind turbines 

based on deep neural networks. The imbalanced distribution of SCADA data is 

addressed using a triplet loss approach that preserves within-class and between-

classes information. The proposed method is validated using SCADA data from 

wind turbines with blade icing accretion faults, showing superior performance 

compared to traditional modeling methods.  

In reference [98], authors present a scientometric review of the evolution of 

data-driven decision-making techniques, particularly artificial intelligence (AI) 

methods, in the wind energy sector. The review highlights the progress from signal 

processing to deep learning and explores the strengths, limitations, and future 

challenges of data-driven decision-making in wind turbine operations and 

maintenance (O&M). The article addresses issues such as data availability and 

quality, transparency of AI models, and real-time deployment. It concludes by 

emphasizing the importance of adopting data-driven approaches in O&M to 



enhance the reliability of wind energy and contribute to global sustainability 

efforts. 

Studies proposed in this section are summarized in Table IV, including: 

monitored components, data types, and methods. 

 

 

IV. Conclusion  

The article discusses the importance of wind turbine maintenance in 

generating electricity to address the issue of global warming. It also highlights the 

challenges involved in their maintenance and operation. Proper planning and 

maintenance scheduling are crucial to minimize economic losses. The first section 

of this study that is published in a separate paper reviews solutions to manage these 

deficiencies and covers the types of data and methods used for data acquisition in 

the conditional monitoring of wind turbines. The second part of the study (present 

paper) discusses practical signal processing methods that can be employed in wind 

turbine conditional monitoring. The results are compared in  

 

 
 

 

 

 

 

 

Table III. Lastly, the article examines several studies with various approaches 

in condition monitoring of wind turbines that is summarized in Table IV. 

The majority of these approaches utilize vibration analysis, acoustic analysis, 

electrical parameter analysis, SCADA systems, sensors for data acquisition, and 

AI-based methods, as well as signal decomposition-based methods or a 

combination of them for signal processing. Additionally, the implementation of 

Fault Tolerant Control (FTC) is used to optimize wind turbine performance in the 

event of sensor failures. However, each method has its own limitations. The main 

challenges in these approaches are the availability of sufficient and appropriate 

data for data acquisition, as well as the computational burden associated with 

signal processing methods. The main advantages of these approaches are their high 

accuracy and the ability to model complex systems. 

Therefore, future challenges in wind turbine maintenance include: 



 Focusing on developing algorithms that require less data. 

 Reducing the computational requirements of signal processing methods. 

 Enabling the system to update the model with the occurrence of new 

conditions at any moment in time. 

 Enabling early detection and proactive maintenance to prevent breakdowns 

the wind turbine. 

 Reducing system maintenance costs. 

By addressing these challenges, future approaches can be more effective, 

practical, and efficient for wind turbine maintenance. 

 

  



References  

  

                                                            
[1] Liu, Z. and Zhang, L., "A review of failure modes, condition monitoring and fault diagnosis methods for large-

scale wind turbine bearings," Measurement,  149, p. 107002, (2020). 

[2]  Huang, Q., Jiang, D., Hong, L. et al., "Application of wavelet neural networks on vibration fault diagnosis for 

wind turbine gearbox," in Advances in Neural Networks-ISNN 2008: 5th International Symposium on Neural 

Networks, ISNN 2008, Beijing, China, September 24-28, 2008, Proceedings, Part II 5, pp. 313-320: Springer. 

[3] Watson, S. and Xiang, J., "Real-time condition monitoring of offshore wind turbines," in Proceedings of 

European Wind Energy Conference & Exhibition (EWEC), Athens, Greece, (2006), 27, p. 647654. 

[4]  Huang, N. E., Shen, Z., Long, S. R. et al., "The empirical mode decomposition and the Hilbert spectrum for 

nonlinear and non-stationary time series analysis," Proceedings of the Royal Society of London. Series A: 

mathematical, physical and engineering sciences,  454, pp. 903-995, (1998). 

[5] Civera, M. and Surace, C., "A comparative analysis of signal decomposition techniques for structural health 

monitoring on an experimental benchmark," Sensors,  21, p. 1825, (2021). 

[6]  Christensen, J. J., Andersson, C., and Gutt, S., "Remote condition monitoring of Vestas turbines," in 

Proceedings of the of European Wind Energy Conference and Exhibition (EWEC2009), Marseille, France, 

(2009), pp. 16-19. 

[7]  Amirat, Y., Choqueuse, V., and Benbouzid, M. H., "Wind turbines condition monitoring and fault diagnosis 

using generator current amplitude demodulation," in 2010 IEEE International Energy Conference, (2010), pp. 

310-315: IEEE. 

[8]  Gray, C. S. and Watson, S. J., "Physics of failure approach to wind turbine condition based maintenance," Wind 

Energy,  13, pp. 395-405, (2010). 

[9] Qiao, W. and Lu, D., "A survey on wind turbine condition monitoring and fault diagnosis—Part II: Signals and 

signal processing methods," IEEE Transactions on Industrial Electronics,  62, pp. 6546-6557, (2015). 

[10]  Kordestani, M., Samadi, M. F., Saif, M. et al., "A new fault prognosis of MFS system using integrated 

extended Kalman filter and Bayesian method," IEEE Transactions on Industrial Informatics, (2018). 

[11] Dey, S. and Stori, J., "A Bayesian network approach to root cause diagnosis of process variations," 

International Journal of Machine Tools and Manufacture,  45, pp. 75-91, (2005). 

[12] Sikorska, J. Z., Hodkiewicz, M., and Ma, L., "Prognostic modelling options for remaining useful life estimation 

by industry," Mechanical systems and signal processing,  25, pp. 1803-1836, (2011). 

[13] O'Connor, P. and Kleyner, A., Practical reliability engineering. John Wiley & Sons, (2012).. 

[14] Miao, Q. and Makis, V., "Condition monitoring and classification of rotating machinery using wavelets and 

hidden Markov models," Mechanical systems and signal processing,  21, pp. 840-855, (2007). 

[15] Welch, G. F., "Kalman filter," Computer Vision: A Reference Guide, pp. 1-3, (2020). 

[16] Rezamand, M., Kordestani, M., Carriveau, R. et al., "Critical wind turbine components prognostics: A 

comprehensive review," IEEE Transactions on Instrumentation and Measurement,  69, pp. 9306-9328, (2020). 

[17]  Xie, Y. and Zhang, T., "The application of echo state network and recurrent multilayer perceptron in rotating 

machinery fault prognosis," in 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), 

(2016), pp. 2286-2291: IEEE. 

[18]  McCulloch, W. S. and Pitts, W., "A logical calculus of the ideas immanent in nervous activity," The bulletin of 

mathematical biophysics,  5, pp. 115-133, (1943). 

[19]  Hopfield, J. J. and Tank, D. W., "“Neural” computation of decisions in optimization problems," Biological 

cybernetics,  52, pp. 141-152, (1985). 



                                                                                                                                                                                                
[20]  Rumelhart, D. E., Smolensky, P., McClelland, J. L. et al., "Sequential thought processes in PDP models," 

Parallel distributed processing: explorations in the microstructures of cognition,  2, pp. 3-57, (1986). 

[21]  Ferrero Bermejo, J., Gómez Fernández, J. F., Olivencia Polo, F. et al., "A review of the use of artificial neural 

network models for energy and reliability prediction. A study of the solar PV, hydraulic and wind energy 

sources," Applied Sciences,  9, p. 1844, (2019). 

[22] Rosenblatt, F., "Rosenblatt solved the problem with his Perceptron," Psychological Review,  65, pp. 386-408, 

(1958). 

[23] Svozil, D., Kvasnicka, V., and Pospichal, J., "Introduction to multi-layer feed-forward neural networks," 

Chemometrics and intelligent laboratory systems,  39, pp. 43-62, (1997). 

[24] Bebis, G. and Georgiopoulos, M., "Feed-forward neural networks," Ieee Potentials,  13, pp. 27-31, (1994). 

[25] Aldakheel, F., Satari, R., and Wriggers, P., "Feed-forward neural networks for failure mechanics problems," 

Applied Sciences,  11, p. 6483, (2021). 

[26] Medsker, L. and Jain, L. C., Recurrent neural networks: design and applications. CRC press, (1999). 

[27] Yu, Y., Si, X., Hu, C. et al., "A review of recurrent neural networks: LSTM cells and network architectures," 

Neural computation,  31, pp. 1235-1270, (2019). 

[28] Hopfield, J. J., "Hopfield network," Scholarpedia,  2, p. 1977, (2007). 

[29] Ramsauer, H., Schäfl, B., Lehner, J. et al., "Hopfield networks is all you need," arXiv preprint 

arXiv:2008.02217, (2020). 

[30] Marullo, C. and Agliari, E., "Boltzmann machines as generalized Hopfield networks: a review of recent results 

and outlooks," Entropy,  23, p. 34, (2020). 

[31] Hinton, G., "Boltzmann machine. Scholarpedia, 2, 1668," ed, (2007). 

[32] Ackley, D. H., Hinton, G. E., and Sejnowski, T. J., "A learning algorithm for Boltzmann machines," Cognitive 

science,  9, pp. 147-169, (1985). 

[33] Fischer, A. and Igel, C., "An introduction to restricted Boltzmann machines," in Progress in Pattern 

Recognition, Image Analysis, Computer Vision, and Applications: 17th Iberoamerican Congress, CIARP 2012, 

Buenos Aires, Argentina, September 3-6, 2012. Proceedings 17, (2012), pp. 14-36: Springer. 

[34] Zhang, N., Ding, S., Zhang, J. et al., "An overview on restricted Boltzmann machines," Neurocomputing,  275, 

pp. 1186-1199, (2018). 

[35] Mitchell, T., "Reinforcement learning," Machine Learning, pp. 367-390, (1997). 

[36] Zhou, Z.-H., Machine learning. Springer Nature, (2021). 

[37] Singh, A., Thakur, N., and Sharma, A., "A review of supervised machine learning algorithms," in 2016 3rd 

international conference on computing for sustainable global development (INDIACom), (2016), pp. 1310-

1315: Ieee. 

[38] Sen, P. C., Hajra, M., and Ghosh, M., "Supervised classification algorithms in machine learning: A survey and 

review," in Emerging Technology in Modelling and Graphics: Proceedings of IEM Graph 2018, (2020), pp. 

99-111: Springer. 

[39]Liu, Y., Wang, Y., and Zhang, J., "New machine learning algorithm: Random forest," in Information Computing 

and Applications: Third International Conference, ICICA 2012, Chengde, China, September 14-16, 2012. 

Proceedings 3, 2012, pp. 246-252: Springer. 

[40] Charbuty, B. and Abdulazeez, A., "Classification based on decision tree algorithm for machine learning," 

Journal of Applied Science and Technology Trends,  2, pp. 20-28, (2021). 

[41] Maalouf, M., "Logistic regression in data analysis: an overview," International Journal of Data Analysis 

Techniques and Strategies,  3, pp. 281-299, (2011). 



                                                                                                                                                                                                
[42] Noble, W. S., "What is a support vector machine?," Nature biotechnology,  24, pp. 1565-1567, (2006). 

[43] Stulp, F. and Sigaud, O., "Many regression algorithms, one unified model: A review," Neural Networks,  69, 

pp. 60-79, (2015). 

[44] Maulud, D. and Abdulazeez, A. M., "A review on linear regression comprehensive in machine learning," 

Journal of Applied Science and Technology Trends,  1, pp. 140-147, (2020). 

[45] Zhang, T., Liu, Y., Rao, Y. et al., "Optimal design of building environment with hybrid genetic algorithm, 

artificial neural network, multivariate regression analysis and fuzzy logic controller," Building and 

Environment,  175, p. 106810, (2020). 

[46] Celebi, M. E. and Aydin, K., Unsupervised learning algorithms. Springer, (2016). 

[47] Rodriguez, M. Z., Comin, C. H., Casanova, D. et al., "Clustering algorithms: A comparative approach," PloS 

one,  14, p. e0210236, (2019). 

[48] Xu, R. and Wunsch, D., "Survey of clustering algorithms," IEEE Transactions on neural networks,  16, pp. 

645-678, (2005). 

[49] Kumbhare, T. A. and Chobe, S. V., "An overview of association rule mining algorithms," International Journal 

of Computer Science and Information Technologies,  5, pp. 927-930, (2014). 

[50] Hegland, M., "The apriori algorithm–a tutorial," Mathematics and computation in imaging science and 

information processing, pp. 209-262, (2007). 

[51] Borgelt, C., "Efficient implementations of apriori and eclat," in FIMI’03: Proceedings of the IEEE ICDM 

workshop on frequent itemset mining implementations, (2003), 90: Citeseer. 

[52]Shawkat, M., Badawi, M., El-ghamrawy, S. et al., "An optimized FP-growth algorithm for discovery of 

association rules," The Journal of Supercomputing, pp. 1-28, (2022). 

[53] Mathew, A., Amudha, P., and Sivakumari, S., "Deep learning techniques: an overview," Advanced Machine 

Learning Technologies and Applications: Proceedings of AMLTA 2020, pp. 599-608, (2021). 

[54] Li, Z., Liu, F., Yang, W. et al., "A survey of convolutional neural networks: analysis, applications, and 

prospects," IEEE transactions on neural networks and learning systems, (2021). 

[55] Van Houdt, G., Mosquera, C., and Nápoles, G., "A review on the long short-term memory model," Artificial 

Intelligence Review,  53, pp. 5929-5955, (2020). 

[56] Gui, J., Sun, Z., Wen, Y. et al., "A review on generative adversarial networks: Algorithms, theory, and 

applications," IEEE transactions on knowledge and data engineering,  35, pp. 3313-3332, (2021). 

[57] Montazer, G. A., Giveki, D., Karami, M. et al., "Radial basis function neural networks: A review," Comput. 

Rev. J,  1, pp. 52-74, (2018). 

[58] Rana, A., Rawat, A. S., Bijalwan, A. et al., "Application of multi layer (perceptron) artificial neural network in 

the diagnosis system: a systematic review," in 2018 International conference on research in intelligent and 

computing in engineering (RICE), 2018, pp. 1-6: IEEE. 

[59] Miljković, D., "Brief review of self-organizing maps," in 2017 40th international convention on information 

and communication technology, electronics and microelectronics (MIPRO), 2017, pp. 1061-1066: IEEE.. 

1061-1066: IEEE. 

[60] Rizk, Y., Hajj, N., Mitri, N. et al., "Deep belief networks and cortical algorithms: A comparative study for 

supervised classification," Applied computing and informatics,  15, pp. 81-93, (2019).. 

[61] Kaelbling, L. P., Littman, M. L., and Moore, A. W., "Reinforcement learning: A survey," Journal of artificial 

intelligence research,  4, pp. 237-285, (1996). 

[62] Mondal, A. K. and Jamali, N., "A survey of reinforcement learning techniques: strategies, recent development, 

and future directions," arXiv preprint arXiv:2001.06921, (2020). 



                                                                                                                                                                                                
[63] Zhifei, S. and Meng Joo, E., "A survey of inverse reinforcement learning techniques," International Journal of 

Intelligent Computing and Cybernetics,  5, pp. 293-311, (2012). 

[64] Li, H., Hu, Y., Yang, C. et al., "An improved fuzzy synthetic condition assessment of a wind turbine generator 

system," International Journal of Electrical Power & Energy Systems,  45, pp. 468-476, (2013). 

[65] Chen, B., Matthews, P. C., and Tavner, P. J., "Wind turbine pitch faults prognosis using a-priori knowledge-

based ANFIS," Expert Systems with Applications,  40, pp. 6863-6876, (2013). 

[66] Zimroz, R., Bartelmus, W., Barszcz, T. et al., "Diagnostics of bearings in presence of strong operating 

conditions non-stationarity—A procedure of load-dependent features processing with application to wind 

turbine bearings," Mechanical systems and signal processing,  46, pp. 16-27, (2014).  

[67] Inturi, V., Sabareesh, G., Supradeepan, K. et al., "Integrated condition monitoring scheme for bearing fault 

diagnosis of a wind turbine gearbox," Journal of Vibration and Control,  25, pp. 1852-1865, (2019). 

[68] Peeters, C., Antoni, J., and Helsen, J., "Blind filters based on envelope spectrum sparsity indicators for bearing 

and gear vibration-based condition monitoring," Mechanical Systems and Signal Processing,  138, p. 106556, 

(2020). 

[69] Joshuva, A. and Sugumaran, V., "A data driven approach for condition monitoring of wind turbine blade using 

vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study," ISA 

transactions,  67, pp. 160-172, (2017). 

[70] Nguyen, C.-U., Huynh, T.-C., and Kim, J.-T., "Vibration-based damage detection in wind turbine towers using 

artificial neural networks," Structural Monitoring and Maintenance,  5, p. 507, (2018). 

[71] Dibaj, A., Gao, Z., and Nejad, A. R., "Fault detection of offshore wind turbine drivetrains in different 

environmental conditions through optimal selection of vibration measurements," Renewable Energy,  203, pp. 

161-176, (2023). 

[72] Zhan, J., Wu, C., Ma, X. et al., "Abnormal vibration detection of wind turbine based on temporal convolution 

network and multivariate coefficient of variation," Mechanical Systems and Signal Processing,  174, p. 

109082, (2022). 

[73] Kia, S. H., Henao, H., and Capolino, G.-A., "Gear tooth surface damage fault detection using induction 

machine stator current space vector analysis," IEEE Transactions on industrial Electronics,  62, pp. 1866-

1878, (2014). 

[74] Lu, D., Qiao, W., and Gong, X., "Current-based gear fault detection for wind turbine gearboxes," IEEE 

Transactions on Sustainable Energy,  8, pp. 1453-1462, (2017). 

[75] Touti, W., Salah, M., Bacha, K. et al., "Condition monitoring of a wind turbine drivetrain based on generator 

stator current processing," ISA transactions,  128, pp. 650-664, (2022). 

[76] Liu, Z., Wang, X., and Zhang, L., "Fault diagnosis of industrial wind turbine blade bearing using acoustic 

emission analysis," IEEE Transactions on Instrumentation and Measurement,  69, pp. 6630-6639, (2020). 

[77] Zhang, Y., Lu, W., and Chu, F., "Planet gear fault localization for wind turbine gearbox using acoustic emission 

signals," Renewable Energy,  109, pp. 449-460, (2017). 

[78] Liu, Z., Yang, B., Wang, X. et al., "Acoustic emission analysis for wind turbine blade bearing fault detection 

under time-varying low-speed and heavy blade load conditions," IEEE Transactions on Industry Applications,  

57, pp. 2791-2800, (2021). 

[79] Pham, M. T., Kim, J.-M., and Kim, C. H., "Rolling bearing fault diagnosis based on improved GAN and 2-D 

representation of acoustic emission signals," IEEE Access,  10, pp. 78056-78069, (2022). 

[80] Malik, H. and Mishra, S., "Artificial neural network and empirical mode decomposition based imbalance fault 

diagnosis of wind turbine using TurbSim, FAST and Simulink," IET Renewable Power Generation,  11, pp. 

889-902, (2017). 



                                                                                                                                                                                                
[81] Wenyi, L., Zhenfeng, W., Jiguang, H. et al., "Wind turbine fault diagnosis method based on diagonal spectrum 

and clustering binary tree SVM," Renewable Energy,  50, pp. 1-6, (2013). 

[82] Murray, C., Asher, M., Lieven, N. et al., "Wind turbine drivetrain health assessment using discrete wavelet 

transforms and an artificial neural network," (2014). 

[83] Sun, W., Yao, B., Zeng, N. et al., "An intelligent gear fault diagnosis methodology using a complex wavelet 

enhanced convolutional neural network," Materials,  10, p. 790, (2017). 

[84] Janssens, O., Slavkovikj, V., Vervisch, B. et al., "Convolutional neural network based fault detection for 

rotating machinery," Journal of Sound and Vibration,  377, pp. 331-345, (2016). 

[85] Cheng, J.-s., Shi, M.-l., and Yang, Y., "Roller bearing fault diagnosis method based on LMD and neural 

network," Zhendong yu Chongji(Journal of Vibration and Shock),  29, pp. 141-144, (2010). 

[86] An, M.-S., Kim, G.-W., and Kang, D.-S., "An Efficient Method of Fault Detection and Classification for Wind 

Power Generator," (2015). 

[87] Hou, Z. R., "Rolling bearing fault diagnosis based on wavelet packet and improved BP neural network for wind 

turbines," Applied Mechanics and Materials,  347, pp. 117-120, (2013). 

[88] Quan, L. and Liu, Y.-q., "Yong-pingYang. Fault diagnosis method of wind turbine gearbox based on BP neural 

network trained by particle swarm optimization [J]," Acta Energiae Solaris Sinica,  33, (2012). 

[89]Ibrahim, R. K., Watson, S. J., Djurović, S. et al., "An effective approach for rotor electrical asymmetry detection 

in wind turbine DFIGs," IEEE Transactions on Industrial Electronics,  65, pp. 8872-8881, (2018). 

[90] Jin, X., Qiao, W., Peng, Y. et al., "Quantitative evaluation of wind turbine faults under variable operational 

conditions," IEEE Transactions on Industry Applications,  52, pp. 2061-2069, (2016). 

[91] Gao, Q., Liu, W., Tang, B. et al., "A novel wind turbine fault diagnosis method based on intergral extension 

load mean decomposition multiscale entropy and least squares support vector machine," Renewable energy,  

116, pp. 169-175, (2018). 

[92] Maraaba, L. S., Milhem, A. S., Nemer, I. A. et al., "Convolutional neural network-based inter-turn fault 

diagnosis in LSPMSMs," IEEE Access,  8, pp. 81960-81970, (2020). 

[93]Leahy, K., Hu, R. L., Konstantakopoulos, I. C. et al., "Diagnosing wind turbine faults using machine learning 

techniques applied to operational data," in 2016 ieee international conference on prognostics and health 

management (icphm), (2016), pp. 1-8: IEEE. 

[94] Bangalore, P. and Tjernberg, L. B., "An artificial neural network approach for early fault detection of gearbox 

bearings," IEEE Transactions on Smart Grid,  6, pp. 980-987, (2015). 

[95] Zhang, Z.-Y. and Wang, K.-S., "Wind turbine fault detection based on SCADA data analysis using ANN," 

Advances in Manufacturing,  2, pp. 70-78, (2014). 

[96] Dao, P. B., "Condition monitoring and fault diagnosis of wind turbines based on structural break detection in 

SCADA data," Renewable Energy,  185, pp. 641-654, (2022). 

[97] Chen, L., Xu, G., Zhang, Q. et al., "Learning deep representation of imbalanced SCADA data for fault detection 

of wind turbines," Measurement,  139, pp. 370-379, (2019). 

[98] Chatterjee, J. and Dethlefs, N., "Scientometric review of artificial intelligence for operations & maintenance of 

wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews,  144, p. 111051, 

(2021). 

 



Table of figures  
Figure 1:The most widely used and practical signal processing methods ..... Error! Bookmark not defined. 

Figure 2: Model-based CMFD by analyzing the residual signal [9] ................ Error! Bookmark not defined. 

Figure 3: Hieratical chart of Bayesian Network ............................................. Error! Bookmark not defined. 

Figure 4: fundamental architecture of a neural network ........................................................................... 24 

Figure 5: perceptron network ..................................................................................................................... 24 

 

Table of tables 
Table I: list of the early contributions to Artificial Neural Networks (ANNs)[21] ....................................... 25 

Table II: Comparison of Bayesian network methods with methods based on artificial intelligence ......... 26 

Table III: comparison of most populated signal processing methods ........................................................ 27 

Table IV: recent studies summarizing (monitored component, data, methods) ....................................... 28 

 

 

 

 



Bayesian

Network

Artificial 

Inteligence

Envelop 

Analyses

Statistical 

Signal 

Decomposition

Synchronous

Sampling

Mathematical

Modelling

Signal 

processing 

method

 

Figure 1: The most widely used and practical signal processing methods 
 

+Input

Fault

Wind Turbine

Model

-

output

Estimated output

Residual

 

Figure 2: Model-based CMFD by analyzing the residual signal [9] 
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Figure 3: Hieratical chart of Bayesian Network 



�

Xn

yf

X1

X2

W1 

W2 

W3 OutputActivation FunctionSummation

Inputs

Weight

 

Figure 4: fundamental architecture of a neural network 
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Figure 5: perceptron network 
 

 

 

 

 

 

 

 

 

 



  Table I: list of the early contributions to Artificial Neural Networks (ANNs)[21] 

Num ANN Model Creator Year Utilization 

1 Perceptron Networks Rosenblatt 1958 Prediction 

2 Adaline y Madaline Bernard Widrow 1960 Prediction 

3 Spatio-Temporal-Pattern 

Recognition (SPR) 

Grossberg 1960–

1970 

Association 

4 Adaptative Resonance Theory 

Networks (ART) 

Carpenter, Grossberg 1960–

1986 

Conceptualization 

5 Directed Random Search (DRS) 

Networks 

Maytas y Solis 1965–

1981 

Classification 

6 Brain State in a Box James Anderson 1970–

1986 

Association 

7 Self-organizing Maps (SOM) Kohonen 1979–

1982 

Conceptualization 

8 Hopfield Networks Hopfield 1982 Optimization 

9 Back-Propagation Rumelhart y Parker 1985 Prediction 

10 The Boltzmann Machine Ackley, Hinton y 

Sejnowski 

1985 Association 

11 Bi-Directional Associative 

Memory (BAM) Networks 

Bart Kosko 1987 Association 

12 Counter-Propagation Hecht-Nielsen 1987 Association 

13 Hamming Networks Lippman 1987 Association 

14 Delta Bar Delta (DBD) Networks Jacob 1988 Classification 

15 Learning Vector Quantization 

(LVQ) Networks 

Kohonen 1988 Classification 

16 Probabilistic Neural Network 

(PNN) 

Specht 1988 Association 

17 Recirculation Networks Hinton y McClelland 1988 Filtering 

18 Functional-link Networks (FLN) Pao 1989 Classification 

20 Digital Neural Networks 

Architecture (DNNA) 

Neural 

Semiconductor Inc. 

1990 Prediction 

 

 

 

 

 

 

 

 

 

 

 



 

 
Table II: Comparison of Bayesian network methods with methods based on artificial intelligence 

Methods advantages disadvantages 

AI useful and effective in complex, non-

linear, and high-dimensional 

problems 

Requires a lot of data for training, 

heavy computation 

Bayesian net Simplicity in managing ambiguous, 

noisy, and incomplete data 

Computational challenging in 

determining a prior unknown 

network 

Markov model Well-organized method, capable of 

modeling , various system designs 

and failure modes, capable of 

managing incomplete data sets, 

providing confidence limits as part of 

the RUL prediction 

Considering a single monotonic and 

no temporal failure degradation 

trend, cannot model previously 

unanticipated faults and/or root 

causes 

Kalman Filter Capable of accommodating 

incomplete and noisy measurements 

 

computationally intensive of variants 

for non-linear systems, easily 

divergence of some variants 

Particle Filter Suitable for state estimation in 

nonlinear dynamic systems with non-

Gaussian probability sources 

It requires a suitable number of 

samples and also more calculations 

than the Kalman filter 

 
 

 

 

 

 

 

 

 



Table III: comparison of most populated signal processing methods 

Methods Advantages disadvantages 

Model base Simplicity in implementation Accuracy depends on the model 

Bayesian Simplicity in managing ambiguous, 

noisy and incomplete data 

Knowing the basic network 

Need a lot of training data 

regarding hidden states 

Ai useful and effective in complex, non-

linear, and high-dimensional problems 

and has high accuracy 

Requires a lot of data & heavy 

computation 

Signal 

decomposition 

Implementation in time and frequency 

domain simultaneously computational 

efficiency, easy implementation 

Select the main signal Noise 

tolerance, mode integration 

Statistical 

Method 

computational efficiency, reliable 

results and easy implementation 

High noise sensitivity, can not 

to detect the fault location 

Envelope 

Analyses 

computational efficiency and easy 

implementation 

High noise sensitivity, can not 

to detect the fault location 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table IV: recent studies summarizing (monitored component, data, methods) 

Ref Monitored Component(s) Data Type(s) Methods(s) 

66 Bearing Vibration linear regression 

67 Bearing Vibration, Acoustic, 

Lubrication oil 

Wavelet  

68 Bearing, Gear Vibration Envelope Spectrum 

69 Blade Vibration Decision Tree 

70 Tower Vibration ANNs 

71 Drivetrains Vibration PCA-CNN 

72 Nacelles Vibration 

 

Spectrum-Embedded Temporal 

Convolutional Network 

73 Gear Tooth Surface  Stator Current Harmonics Analyses 

74 Gear box Stator Current Adaptive Signal Resampling 

75 Generator rotor and 

Gearbox pinion 

Stator Current Wavelet, Local Mean 

Decomposition 

76 Blade Bearing Acoustic Cepstrum, Morphological 

Envelope 

77 Gearboxes Acoustic Wavelet  

78 Blade Bearing Acoustic Auto-Regressive 

79 Rolling Bearing Acoustic |Generative Adversarial 

Network 

80 Main Shaft, Nacelle Stator Current ANN,EMD 

81 Bearing, Gearboxes Vibration Diagonal Spectrum, Binary 

Clustering Tree SVM 

82 Bearing, Gearboxes Vibration Wavelet , ANN 

83 Gearbox  Vibration Wavelet , CNN 

84 Main Shaft, Bearing Vibration CNN 

85 Bearing Vibration LMD,ANN 

86 Main Shaft, Bearing   Vibration Wavelet, ANN 

87 Bearing Vibration IBPNN 

88 Gearbox  Vibration BPNN,PSO 

89 Rotor Current winding Rotor Current EKF 

90 Rotor Generators 

Currents 

Resampling 

91 Bearing Vibration IELMDME, LSSVM 

92 Stator Winding Stator Current CNN 

93 Cooling System, Generator, 

Generator Excitations 

SCADA SVM 

94 Bearing SCADA Non-Linear Self-Regression of 

NN 

95 Bearing SCADA ANN 

96 Wind turbine SCADA Regression Coefficients 

97 Blade SCADA Deep NN 

https://www.sciencedirect.com/topics/computer-science/convolutional-network
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