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Abstract 

Portfolio optimization studies have traditionally assumed that portfolio managers manage only 

one portfolio. However, in reality, managers often manage multiple portfolios that can impact each 

other. This creates a need for fairness to all customers, which has led to the emergence of a new topic 

called "multiportfolio optimization". Previous studies have paid little attention to this issue, and the 

models used were not developed using real stock market data. These models were also limited to the 

selection phase and did not consider the ordering phase. 

This research provides a comprehensive process for addressing the multiportfolio problem, 

covering all sections from selection to ordering. It also implements the process using real stock 

market data. During this process, the market impact function is estimated using the I-STAR model for 

different stocks. The proposed model for market impact costs includes both permanent and temporary 

sections. The proposed models were tested using the Tehran Stock Exchange data in 2019. 

A comparison of the MPO model output with classical models indicates that the proposed model 

improves utility by an average of 15%. In the next phase, comparing the proposed ordering model 

with other models shows a reduction in market impact costs by an average of 26%. 

Keywords: Multiportfolio selection, optimization, Market impact, Fair allocation, Optimal 

execution 
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1. Introduction  

To date, regarding the financial computations and stock selection for creating a portfolio, the 

existing investments are taken into account in terms of risk degree and return rate so that the investor 

can create his desirable portfolio according to his financial resources and other policies. 

However, most previous studies on portfolio optimization assume that the portfolio manager 

(PM) manages only one account. In reality, PMs often manage multiple accounts simultaneously.  

optimizing each account independently and isolated from the others means disregarding the market 

dynamics and correlation between decisions on one account and the outcome and performance of 

other accounts [1]. 

One of the most significant advancements in modern portfolio optimization theory is the focus on 

maximizing the interests of multiple accounts under a single management. Joint portfolio 

optimization, which is known as a multiportfolio optimization (MPO), considers the effectiveness and 

mutual dependency of the accounts and imports the optimal portfolio determination problem from an 

independent optimization space to a multi-component space. In traditional models, it was assumed 

that a PM would implement an optimization model for each account independently. However, MPO 

models take into account the effectiveness of decisions and market realities. 

Although MPO models attempt to capture the reality of mutual dependency, a crucial aspect of 

these models is often ignored - modeling the transaction costs resulting from the effect of a trade on 

the market. Market impact cost (MI), a specific type of transaction cost, is defined as the change in an 

asset's market price due to a trade in that asset. MI can impact the return of all portfolios under 

management that hold that asset as part of their portfolio (in this study, the "assets" included in the 

portfolio are stocks). 

Recent studies have highlighted the problem of MPO, but there are still weaknesses, particularly 

the lack of a suitable model for the MI function that can accurately estimate this cost while 

considering the characteristics of different stocks. All previous studies have considered the MI 

function for all stocks to be the same as a linear or quadratic function of the trading volume. Since the 

different stock MI functions are considered to be the same, no real data is used and, consequently, the 
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financial market conditions under study are not included in the study results. So, the results are not 

reliable enough for policy-making and evaluation.  

This study estimates the MI function using the I-STAR model proposed by Kissel in 2013 for 

each stock and has entered the MPO model. The problem of MI arises from the study of market 

microstructure. So, it is very important to pay attention to the depth of the market. The I-STAR model 

considers not only trading volume but also the depth of orders and risk (variance) to bring the model 

closer to reality. 

The proposed model is based on a framework developed by Iancu and Trichakis in 2014 and has 

been modified to solve the MPO problem. For estimating the MI functions and solving the MPO 

model, the real data of Tehran Stock Exchange (TSE) in 2019 has been used and then the proposed 

model has been evaluated and validated. 

This article provides a comprehensive process that includes optimal ordering in addition to 

portfolio optimization. The process encompasses all stages from selection to ordering and 

implementation using real stock market data. Since market impact costs are important factors in 

transaction execution, the model is designed based on minimizing these costs. This study considers 

the total market impact, including permanent and temporary impacts, in the optimal ordering model. 

For this purpose, these impacts and parameters must first be estimated using real data. It is worth 

noting that other studies consider the parameter of temporary impact as a range of different values or 

scenarios, leading to serious ambiguity in the results. Finally, the results of the model implementation 

are compared with other widely-used ordering models (one-time ordering and splitting the order 

equally) to evaluate the effectiveness of the proposed model. 

The results of the present study and the proposed integrated decision-making process from 

selection through execution can be helpful to financial institutions such as portfolio management 

companies in optimizing their customers' portfolios. The efficiency of the transaction strategy 

increases profitability, while its inefficiency brings about costs. 
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2. Literature Review   

This section includes studies on the MI models and ordering strategies, in addition to researches 

in the field of portfolio optimization and MPO. Finally, an evaluation and conclusion to seek out 

research gap has been provided.   

 

2.1. Portfolio Optimization 

Harry Markowitz [2] proposed a basic portfolio optimization model, which has become the 

foundation of modern portfolio theory. While the basic Markowitz model is recognized as the starting 

point of portfolio optimization modeling, it lacks in some respects.   

Moon and Yao [3], using a robust optimization approach, solved the problem with the mean 

absolute deviation (MAD) risk measure, while Huang [4] and Guastaroba [5] solved it with a 

conditional value at risk (CVaR) measure.   

Many researchers, including Xidonas [6], Hadavandi [7], Yunusoglu [8], Kamley [9], Dymova 

[10], and Amin Naseri [11], have employed rule-based expert systems for optimal portfolio selection. 

These systems attempt to select portfolios by considering the degree of risk tolerance of the investors 

and employing both fundamental and technical indices.  

Bermudez [12] proposed a genetic algorithm that was constrained by a maximum number of 

stocks included in the portfolio. He modeled the uncertainty of the return rates as a trapezoidal fuzzy 

number and applied low risks for the decision-maker's risk aversion criterion. Chen [13], by 

considering the return rates of the problem as fuzzy, solved the problem using the ABC algorithm. 

Rostami [14] applied the entropy criterion, which is not dependent on the assets' return distribution 

symmetry, in contrast to the variance, as the risk measure to optimize the fuzzy portfolio.  

Sun [15], Davari Ardakani [16] and Liu [17] have addressed the problem from a different 

perspective. They addressed the problem as a multi-period one. Furthermore, Mehlawat [18] has 

solved the problem as a multi-period multi-objective fuzzy problem and Lezmi et al. [19] added 

several formulations of the objective function, constraints and coupling relationships to multi-period 

portfolio optimization problem.  
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Kaucic et al. [20] introduced a strategy for portfolio selection. They used semi-variance, 

conditional value-at-risk, and a combination of both as the risk criteria for loss-averse investors.  

Yeh and Liu [21] considered the challenges of a weight-scoring approach in stock selection 

models. Their study employed a mixture of experimental designs to collect the weights of stock-

picking concepts and portfolio performance data to predict portfolio performance.  

Rahiminezhad et al. [22] developed a method for applying multiple criteria to evaluate and select 

portfolios. The FANP approach was used to rank portfolios in consideration of uncertain conditions 

and decision-makers’ judgments. Ghahtarania et al. [23] developed a mathematical model transformed 

into an integer linear programming. The novelty of the research is risk criteria which is measured 

based on the difference between fundamental value and the market value of stocks.  

Memarpour et al. [24] created the optimal portfolios of two players in the banking system in two-

level game, based on the Markowitz model. Optimal investment portfolios of the players were first 

determined using GAMS and genetic algorithm. Next, the problem was solved again using the meta-

heuristic algorithms of PSO and IWO. 

 

2.2.  Market Impact Models and ordering Strategies  

There are variety of studies focusing on transaction costs in the market microstructure literature. 

Some include MI cost models. For example, the primary theoretic models introduced by Kyle and 

Hasbrouck [25] focused on microstructure models that describe the MI of asymmetric information. 

Patzelt and Bouchaud [26] investigated whether the basic MI functions can explain the concavity and 

nonlinearity of the MI.  

Kissell et al. [27] introduced the I Star model, an approach which is a top-to-bottom allocation of 

the costs. The I-Star function includes liquidity, fluctuations, imbalances, and in-day transactions. 

Lin et al. [28] in their research solved the problem of trading by controlling the cost of 

transactions and in situations where the transaction must be completed within a certain time.  

Rastegar and Eghbalreihani [29] aimed at offering an order splitting strategy to divide a large 

order into a number of smaller orders to reduce Market Impact cost and imbalances created by Large 

orders in the market.  
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Yamada and Mizuno [30] analyzed the Tokyo Stock Exchange and confirmed through a simple 

statistical test that the market impact depends on each stock.  

Emilio Said [31] proposed a theory of the market impact of metaorders based on a coarse-grained 

approach where the microscopic details of supply and demand is replaced by a single parameter ρ ∈ 

[0,+∞] shaping the supply-demand equilibrium and the market impact process during the execution of 

the metaorder.  

 

2.3.  Multiportfolio Optimization  

The MPO problem was first proposed by O’Cinneide et al. [32]. In their model, the cost of MI is 

considered as a linear function of trading volume and no method is provided for its division, but they 

argue that the introduced multiple optimization is able to solve the problem of joint trading and also 

fairness is observed;  

Stubbs and Vandenbussche [33], Savelsbergh [34], and Yang et al. [35] conducted 

comprehensive investigations of the issues surrounding the MPO techniques. They discussed the 

advantages and disadvantages of the Cournot-Nash equilibrium economic approach and the collusive 

solution and, thereby, presented an integrated framework that could solve the problem using both 

methods.  

Iancu and Trichakis [1] proved that the Cournot-Nash equilibrium method not only isn't suitable 

for the establishment of fairness but, also, it doesn't necessarily yield the optimal solution, because the 

accounts participate in a fake game in which the Securities and Exchange Commission's rules are 

violated and, thus, the obtained results cannot be reliable. In their model, the cost of market impact is 

not exogenous as in previous studies and is considered as a variable in the model. Yang et al. [35] also 

developed the Nash equilibrium problem and modeled the generalized Nash equilibrium. 

Jing Fu [36] proposed an information pooling game for MPO with a key distinction of allowing 

the clients to decide whether and to what extent their private trading information is shared with others, 

which directly affects the MI cost split ratio.  

Zhang et al. [37] presented a 5-step model for the MPO problem, which in the steps there is 

linear, nonlinear programming and multi-objective optimization models. They considered max-min 
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objective function with both variance and Conditional Value at Risk (CvaR) risk measures. MI 

function for all the stocks in this model is the same and in quadratic form of trading volume. 

Yu et al. [38] developed a target-oriented framework that optimizes the rebalancing trades and 

the MI costs incurred by trading jointly with consideration of target and distributional uncertainty.  

Lampariello et al. [39] analyzed a Nash equilibrium problem arising when trades from different 

accounts are pooled for execution. They state conditions for the monotonicity of the underlying Nash 

equilibrium problem.  

Tamoor Khan et al. [40] proposed a variant of Beetle Antennae Search (BAS) known as Distributed 

Beetle Antennae Search (DBAS) to solve MPO problems without violating the privacy of individual 

portfolios. DBAS is a swarm-based optimization algorithm that solely shares the gradients of 

portfolios among the swarm without sharing private data or portfolio stock information.  

        Khalil Moghadam et al. [41] solved the MPO problem for two accounts and four stocks using the 

max-min model. The model of market impact implemented in the present study was based on the Istar 

model (with some modifications). The study went as far as the stock selection step, and the ordering 

step was not considered. 

 

2.3.  Sum-up of literature review  

Developments in the field of MPO can be classified as follows:  

 Diversity in solution methods of the optimization problem.  

 Development of models that take the market microstructure into consideration.  

 Diversity in risk and return estimation indices. 

 Diversity in modeling constraints or other indices that can be determined 

proportionate to the behavior of investors and markets.  

A review of the literature in MPO indicates a serious gap in modelling the MI as a key factor in 

the MPO problem. Accordingly, the MI is generally based on simplifying assumptions and is 

considered similar for all stocks in the form of a linear or quadratic function of the trading volume. 

Moreover, assuming the same MI functions eliminates the possibility of examining the efficiency of 
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the MPO model in real markets. This study aims to provide a more practical MPO model by 

estimating MI costs with the I-STAR model. Another difference between current article and previous 

ones is the comprehensive view of decision-making in the field of portfolio management. MI costs are 

important in all phases of MPO problem and should be given special attention. So, this research 

attempts to conduct transactions in such a way that MI costs are minimized and, consequently, the 

utility is increased. 

The general framework of the research, which is presented in the continuation of the article, is 

illustrated in Figure 1. 

 

3. Modeling  

In this section, a MPO model with 4-step optimization schemes, based Iancu and Trichakis 

[1], will be introduced; in the proposed model, market impact function is I-Star model (The model 

is proposed by Robert Kissell [27]. Moreover, optimal ordering model is presented in the end of 

the section.   

 

3.1. Market Impact Model  

I-Star model is a cost allocation approach where participants incur costs based on the size of their 

order and the overall participation with market volumes. The idea behind the model follows from 

economic supply-demand equilibrium starting at the total cost level. The model is broken down into 

two components: Instantaneous Impact denoted as I-Star or I* and Total Market Impact which 

denoted as MI which represents impact cost due to the specified trading strategy. This impact function 

is broken down into a temporary and permanent terms.  

 

The models used in this study are as follows: 

(1)  1( )* ( / )
ayI Q ADV   

(2) 2( )
. . (1 ).

a
MI b Istar POV b Istar    
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Q= imbalance is defined as the difference between volume of buy-initiated and sell-initiated 

trades in the trading interval (Based on the Lee & Ready tick rule).  

𝐼∗ = The difference between the execution price and midpoint of the bid-ask spread when the 

order was released to the market. 

ADV = The average daily volume of the trades in T days (during transactional hours).  

σ (Annualized volatility) = The standard deviation of the close-to-close logarithmic price change 

scaled for a full year using a factor of 240 days (number of working days in the whole year). 

POV = percentage of volume trading rate 

b= temporary impact parameter 

, y= model parameters (via non-linear regression analysis). 

According to a research (Kiesel Research Group 2015) parameters "𝑎1" and "𝑎2"   in the stock 

market of all countries are numbers very close to 1. So in this research are assumed to be 1 and 

therefore, the relationship between MI and POV can be considered linear. 

 

3.2. Multiportfolio Optimization Model 

To construct the MPO model, the following assumptions and symbols are considered:  

 The problem is considered and executed in a single-period framework.  

 Short selling is not possible.  

k: index of portfolio or user account, k=1,2, …, m 

i.j: index of stocks 

n: number of stocks  

xki: a volume of the ith stock, which is selected for the kth account 

Xki: vector of the volume of the selected stocks (xki) 

Ck: capital of the kth user account 

𝑟̅𝑖: expected return of the ith stock  

𝑟̅𝑝𝑘: expected return of the kth individual’s portfolio  

R: vector of the expected return  
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pi: price of the ith stock 

𝜎𝑖: annualized volatility of the ith stock 

𝜌𝑘: lowest risk level for kth account that its value is the result of solving the first step  

𝑘𝑘: risk-aversion coefficient of the kth account (individual)  

𝜃𝑖: MI coefficient  

𝑦𝑖: MI parameter 

𝐴𝐷𝑉𝑖: average daily volume of the ith stock 

𝑢𝑘: utility of the kth account  

𝑓(𝑈1, 𝑈2, … , 𝑈𝑚): welfare function 

 

A. Market Impact Cost  

According to the function of market impact that has been introduced in section 3.1, the market 

impact cost of the whole volume of the ith stock, which has been purchased by all portfolios, is equal 

to: 

(3) 

1 1

( ) ( / ) j

m m
y

i ki i i ki i

k k

t x x ADV
 

   

So the total MI cost of all the stocks is obtained from eq.4: 

(4) 

1 1

( / ) j

n m
y

T i i ki i

i k

t x ADV
 

    

B. Method of Cost Division Among the Accounts   

In the proposed model, the total MI cost is divided among all the accounts using the pro-rata 

method. Thus, the total MI cost imposed on the kth account is:  

(5) 

1 1 1

( / ) ( / ) j

n m m
y

k ki ai i i ai i

i a a

t x x x ADV
  

    

 

C. Utility Functions  

The most common description for the quantification of utility is to consider the return. Thus, 

utility of the kth account is:  
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(6) T

k ku R X 

The net expected utility (Uk) for the kth account is equal to the total expected return (uk) for the kth 

account that an amount of it is deducted as MI cost. 

(7) 
k k kU u t   

D. The Final Model 

The MPO model used in this study has been designed in four steps, at the end, the results of each 

step are compared. In this model, the variance is used as the risk measure.  

 

Step-1: The portfolio optimization problem is solved for each account independently, and the 

objective function is the variance of the account that is minimized. 

(8) 1

1 1

(( ) / ( ) / ( , ))( )
n n

i jki i k kj j k

i j

minZ x p C x p C cov r r
 

                  k  

 𝑠. 𝑡: 

 

 
k 

1

n

iki i kp

i

kx p r r C


  

 

 1

n

ki i k

i

x p C


  

 

 

0kix   

The first step is the same as the classic Markowitz model, based on which the minimization of 

the account's variance considering three constraints, including the minimum expected return, available 

capital, and the minimum value of the variable. At this step MI costs are ignored and each account is 

optimized independently. 

Step-2: At this step, again, the accounts are optimized independently, and the utility of each 

account is maximized individually.  

(9)   k  2

1 1

(( ) / ( / )) j

n n
y

i ki i k i i ki i

i i

maxZ r x p C x ADV
 

    

  s.t: 
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 k  (( ) / ( ) )/ ( , ))( i jki i k kj j k k kx p C x p C cov r r k   

  
1

n

ki i k

i

x p C


  

 

 

0kix   

The model is executed based on three constraints, including the maximum portfolio risk, 

available capital and minimum value of the variable. At this step, the MI cost is estimated, but it is 

assumed that the transactions of different accounts are independent of each other, and the MI cost of 

each account is considered in the utility of that account. 

The implementation output of the model at this step is the optimal vector x𝑖, which is represented by 

𝑋𝑘𝑖
𝐼𝑁𝐷 due to the independence of the accounts.  

 

Step-3. At this step, despite the independent optimization of the accounts, the effect of the 

transactions of different accounts on each other is taken into account. To do this, the total MI (eq.4) is 

distributed among all the accounts using the pro-rata method (eq.5), and the net utility calculated at 

the previous step becomes more real due to the correction of the costs. The net utility for the kth 

account is calculated using eq. (10): 

(

10) 
k 

1 1 1 1

)(( ) / ( / ) ( / ) i

n n m m
IND IND IND IND IND

ik ki i k ki ai i i ai i

i i a

y

a

U r X p C X X X ADV
   

      

Step-4. At this step, MPO is carried out through integrating the MI costs that have been modified 

at the third step. This step is aimed at the jointly optimization of the accounts and at the same time 

split the MI cost across all the accounts. A max-min function (objective function, eq11) describes the 

trade-off between social welfare (sum of utilities) and fairness (fair allocation of the utilities). 

(11)  1 2( , ,..., ) ( ) /IND IND

m k k Kf U U U min U U U   

Uk
IND is the net utility of the kth account, which has been derived from the independent 

framework while 𝑈𝑘 is the net utility determined from the framework of joint optimization. Variance 

is considered as risk measure. The MPO model is in the form of the eq.12. 
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(12)  

1 1 1 1 1

1 1 1 1

1 1 1 1

( (( ) / ( / ) ( / ) ) / ,...,

( )

(( (( ) / () / ) ( / ) )

)

/

i

i

n n m m
IND IND

i i i i ai i i ai i

i i a a

n n m m
IND IND

i mi i mi ai i i ai i m m

i

y

i

y

a a

r x p C x x x ADV U U

maxf max min

r x p C x x Um x ADV U





   

   

 







 


  
  
  

   

   

 

  s.t:                                                                                         k   

 
k

 
1 1

( ()( )( ) / ( ) / , )
n n

i jki i k kj j k k k

i j

x p C x p C cov r r k
 

   

 

 1 1 1 1

(( ) / ( / ) ( /) ) i

n n m m
IND

ki ki i ki ai i i ai i k

i i a a

y
r x p C x x x ADV U

   

      

  
1

n

ki i k

i

x p C


  

 

 

𝑥𝑘𝑖 ≥ 0 

The model's constraints include the risk level of each account regarding the minimum risk level 

and the increase in the utility compared to the utility in its independent mode. 

 

3.3 Optimal Ordering Model 

The results of solving the problem presented in the previous section determine the optimal 

amount of each stock. In this stage, an optimization model is presented by having information about 

the required amount of each stock in such a way that the lowest possible cost is imposed on customers 

by splitting the order into several parts. 

To this end, the total MI function of Eq.2, which was introduced in Section 3.1 and includes both 

permanent and temporary impact is used. The optimization problem can be expressed as eq.13: 

(13) 
2

1 1

1

( ) ( . / ( ). ) (1 )..

.

T T

i i it i it i

t t

T

i it

t

MinMI X b Istar x X V b Istar

st

X x

 



  



 


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Assuming t is the order period, xit is the order amount of ith stock in period t, Xi The total order 

amount of ith stock, and Vt is the expected trading volume of ith stock in the period.  

(14) 

1

m

i ki

k

X X


  

1,...,i n       1,...,k m         1,...,t T   

     

For each stock i, Xki is obtained from solving the MPO model. 

 

4. Numerical Analysis 

In this section, first, characteristics of the sample used to implement the models are introduced. 

Then the MI functions are estimated and using these functions and real data of the TSE, the MPO 

model introduced in the third section is implemented and the relevant results are extracted under 

different assumptions. Afterwards, the results obtained from different models are analyzed and 

compared. 

At the end, the output of the previous stage is considered as the input of the ordering model and 

after estimating the variables and implementing the model, the results are presented. Finally, the 

results of the proposed model are compared with the results of other widely-used models. 

 

4.1. Input Data 

The present work was conducted using the data of the transactions of TSE in 2019. On this basis, 

initially, 50 stocks with the highest liquidity during the research period were extracted. Characteristics 

of the used sample along with the data of average return, and standard deviation are presented in 

Table1.  

 

Due to the large volume of the data of the market microstructure (tick-by-tick transactions), the 

estimation of the parameters utilized in the MI model, MPO model and ordering model were carried 
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out by using merely the data of the first six months of the given year. Also, the data related to before 

9:00:00 (pre-opening time) and after 12:00:00 were not taken into account.  

The price used in this study was the closing price of the last trading day, and the logarithmic 

average of the closing prices was assumed as the average return. The number of working days in the 

first 6 months of the year was T = 116 and that of the whole year was 240. Given these values, the 

average daily volume of each stock will be as given in Table 2.  

 

In the present work, to achieve results with higher reliability, the data of the final step were 

monitored and the case data events were excluded from the study. For this purpose, the filters 

proposed in Kissell’s [27] were used: 

(15)    3*Daily volume ADV  

(16) 4 4
log ( )

240 240
pricechange close to close


 





  

 

4.2. Market Impact Function Estimation  

Once the average daily volume of each stock was obtained, the data of imbalance (Q) and market 

impact (I*) of different stocks were prepared regarding the explanations given in Section 3 and the 

function was estimated using the ordinary least square (OLS) method in EVIEWS software.  

 

4.3. Implementation of MPO Model  

The MPO model presented in Section 3 was implemented assuming 3 accounts (m) and 10 stocks 

(n). The total capital (Ck) and risk-aversion coefficient (Kk) of each customer were assumed as the 

model's inputs. The input parameters are presented in Table 3. The input values for the risk-aversion 

coefficient and the initial capital of the account holders are selected by the customer or PM within a 

certain range. In the present work, these values were determined randomly in GAMS. 

 



16 

 

In this research, the model was implemented using GAMS software, which is an exact solution 

method, the obtained results of which are presented and analyzed below. Tables 4,5 and Figures 2-5 

show the variations of risk, return, market impact, and utility from Step 1 to Step 4.  

 

Analysis of Results  

The variance values for each account have been calculated separately at different steps, which are 

given in Table 4 and Figure2. Also, the values of return, MI, and utility are presented in Table 5 and 

Figures 3-5.  As mentioned earlier, at the first step, for calculating the variance and return, the 

accounts were considered independent and the MI was ignored. The computational variance at this 

step is, indeed, the minimum variance in the independent optimization of each account. This can be 

also inferred from the smaller values in the first step of Figure2.  

At the second step, since the mutual effects of different accounts were not considered, the results 

seem to be different from what happens in reality, and the obtained utility is unreal and deviated due 

to the underestimation of costs and ignoring the correlation of accounts, and since the MI has been 

taken into account, the risk is increased compared to the previous step; on the other hand, since the 

effects of the transactions of different accounts on each other have been ignored, the MI cost is 

underestimated and the return and, consequently, the utility are overestimated in comparison the 

reality. These results are represented in Tables 4 and 5.  

In the third step, the effects of transactions of different accounts on each other were taken into 

account despite the independent optimization of the accounts. The total MI was split among all the 

accounts using the pro-rata method, and the obtained value was subtracted from the return of the 

independent transactions calculated in the second step. As shown in Table 5, the utility decreased as 

the MI cost increased, while the return remained unchanged, and the results were closer to reality 

since the effects of transactions of the accounts on each other were considered. 

At the fourth step, the problem of the simultaneous optimization of the accounts (MPO) has been 

discussed, and the proposed max-min function represents the trade-off between welfare (sum of 

utilities) and fairness (fair allocation of utilities). As indicated by the obtained results, the final utility 

of all accounts in this method has been increased compared to the utility of the independent mode 
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(third step). The increased utility confirms the better performance of the proposed model and MPO 

model compared to the independent optimization of the accounts (classic portfolio optimization). The 

main reason for such a change is the reduced MI for the case of aggregated transactions.  

Furthermore, the increase in utility for all accounts based on their initial conditions indicates 

fairness in this method. Based on these results, optimizing multiple accounts by one portfolio manager 

in the proposed framework can lead to more appropriate and fair results for all customers. 

 

4.4 Implementation of Ordering Model 

In this section the optimal ordering model introduced in Section 3-3, is implemented to know 

how place the orders of the values obtained from solving the MPO model proposed in the previous 

section. The values obtained can be seen in Table 6. 

 

The whole day will be divided into half-hour intervals (T =7), and the total MI function will be 

minimized, with limit of completing orders. 

Forecasting trading volumes 

The Vit values in the model indicate the expected trading volume in the period. To this end, the 

data for the first 6 months of 2019 are used and the trading volume at half-hour intervals per day is 

separated. Finally, the trading volume in each interval is forecasted by the available historical data 

using the exponential smoothing method. 

Estimation of temporary impact parameter (b) 

In this research, the value of “b” has been estimated with high accuracy and is not limited to 

determining the specific range or scenario analysis like previous studies.  

By obtaining the values of MI and POV and their regression (eq.2), the value of “b” can be 

estimated for each stock (Table 7). 

 

Results of implementation 
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The proposed optimization problem is solved by the Lagrange multiplier technique and 

MATLAB program. Table 8 provides the results. 

 

In this way, the total order is split into 7 parts (half-hour intervals) and ordering is done at the 

beginning of each interval. Amounts of the order that are not executed in each interval will be added 

to the next interval. 

Comparison of the proposed model with other patterns 

In this section, the results are compared with two widely-used and common patterns to evaluate 

the performance of the proposed model. The first one is one-time ordering, so that the total specified 

amounts of each stock will be ordered as a lump sum at the beginning of the trading day. The second 

one is splitting the order equally in such a way that the total values are equally split into several daily 

intervals and ordered in each interval (7 half-hour intervals are considered here). Table 9 shows the 

results. 

 

According to Table 9 and Figure 6, proposed model performs better than the others, leading to 

lower MI costs. So, the proposed model has high validity and splits large orders well based on the 

market behaviour and stock characteristics.  

5. Conclusion   

Multiportfolio problem is a relatively new issue, and there are still shortcomings in relevant 

studies, and accordingly. The main challenge in this regard is modeling the MI function as a basic 

factor of MPO models. Past studies generally modeled the MI function with simplified assumptions 

and a function of the trading volume is equally considered for all stocks. The mentioned function is 

estimated to be linear or quadratic form with lab data, so the results of models based on these 

assumptions cannot be generalized to real stock market conditions. 

Accordingly, this study focuses on modeling the MI function and providing a comprehensive 

process of MPO from selection to execution. As an operational tool for PMs, the proposed process 
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can provide a good reflection of market realities. Proposed models are implemented using GAMS and 

MATLAB software programs with TSE data in 2019.  

The results indicate that, portfolio selection with the proposed model will reduce MI costs and 

increase utility compered to classical models (15% on average). The increase in utility proportional to 

the initial conditions of each account indicates the observance of fairness in account management. The 

process takes a comprehensive view of the MPO problem, considers MI costs from the beginning of 

the stock selection phase to ordering and execution, and proposes a model to split orders to reduce MI 

costs.  

It should be noted that both permanent and temporary impacts are considered in decision-making 

at this stage. Similar studies do not estimate the exact value of temporary impact and only provide the 

final analysis for a range of values of this parameter or use the scenario analysis model and determine 

the final strategy based on different scenarios on this parameter. This study, however, estimates the 

exact value of temporary impact. Finally, after implementing the model, the results are compared with 

other common and widely-used patterns and it is concluded that the proposed model performs better 

than the others in reducing costs and increasing utility (26% on average). 
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Figure1.  Research Framework 

 

Table1 Characteristics of the research sample  

No. Company Name Stock Symbol Standard Deviation Average Return 

1 Saipa Automotive Group Khesapa 0.442836358 0.004167274 

2 Melat Bank Vabemelat 0.35805007 0.004820278 

3 Isfahan Mobarakeh Steel Foolad 0.376654044 0.005135377 

4 Pars Khodro Khepars 0.39716239 0.00176162 

5 National Iran Cooper Industries Femeli 0.507297023 0.003383883 

6 Isfahan Oil Refinery Shepna 0.432466584 0.004372896 

7 Tamin Petroleum & Petrochemical Investment Tapiko 0.361901142 0.001699412 

8 Zamyad Khezamiya 0.43624912 0.001897637 

9 Iran Khodro Khodro 0.359222547 0.000940988 

10 Kharazmi Investment Vekharazm 0.355608557 0.001986713 

 

Table2 Average daily value of each stock  

Stock Symbol ADV Stock Symbol ADV 

Foolad 65422172.5 Khesapa 74844547 

Khepars 33068266.8 Vabemelat 59840242 

Vekharazm 26371710.8 Khodro 11541061.2 

Khezamiya 36039549.2 Femeli 46801703.3 

Tapiko 31547762.8 Shepna 21719012.8 

 

Table3 Model's inputs  

Initial Capital (Rial) Risk Tolerance Initial Capital (Rial) 

C1 120,000,000 K1 5 R1 8% 

C2 100,000,000 K2 16 R2 12% 

C3 140,000,000 K3 8 R3 10% 

 

 

Ordering Model Optimization 
Comparing the Results with 

Other Models 
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Table4 Variance of different accounts in modelling steps (To make the table easier to read, all data is multiplied by 10
7) 

Account 
Variance 

Step1 Step2 Step3 

1 9.297514 55.78508 55.78508 

2 30.47395 365.6874 365.6874 

3 19.50333 175.5299 175.5299 

  

Figure2.  Variance of different accounts in modelling steps 

 

Table5 Outputs of the model in different steps  

 

account 
Return MI Utility Improve 

(%) Step2 Step3 Step4 Step2 Step3 Step4 Step2 Step3 Step4 

1 13.104 13.104 11.955 0.661 3.737 1.659 12.443 9.367 10.296 9% 

2 31.142 31.142 34.110 0.683 3.840 1.210 30.359 27.302 32.9 20% 

3 21.546 21.546 22.542 0.519 2.827 0.974 21.047 18.719 21.569 15% 
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Figure3.  Return of different accounts in modelling steps      Figure4.  Market Impact of different accounts in modelling steps 

 

 

                              Figure5.  Utility of different accounts in modelling steps 

 

Table 6 Various stock values to determine the optimal portfolio for all accounts 

Stock Symbol Account 1 Account 2 Account 3 

Khesapa 2870 - - 

Vabemelat 24910 12195 21156 

Foolad 1356 2031 4932 

Khepars - - - 

Femeli 2104 1217 - 

Shepna 1702 3970 2517 

Tapiko - - - 

Khezamiya - - - 

Khodro - - - 

Vekharazm - - - 

 

 

Table7 estimated temporary MI parameter 

Stock Symbol 𝐶(1) 𝐶(2) 𝑏̂ 

Khesapa 0.0028 0.0312 0.917647059 

Vabemelat 0.0007 0.0429 0.983944954 

Foolad 0.0008 0.0269 0.971119134 

Femeli 0.00017 0.0222 0.992400536 

Shepna 0.000969 0.030776 0.969475508 

 

Table 8 The number of orders for each stock in half-hour intervals and MI cost 
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MI 𝑥7 𝑥6 𝑥5 𝑥4 𝑥3 𝑥2 𝑥1 
Stock 

symbol 

1.774187474 476 420 414 358 400 431 371 
Khes

apa 

5.677201038 
955

7 

879

2 

704

4 

788

2 

750

3 

834

8 

913

4 

Vabe

melat 

1.477313773 
121

9 

107

6 

119

5 

117

9 

117

7 

118

7 

128

6 

Foola

d 

0.494933802 451 496 455 398 419 480 623 
Feme

li 

2.901522602 
114

6 
346 

122

0 

115

4 
717 

136

0 

224

6 

Shep

na 

 

 

Table 9 Comparing the performance of the proposed model and other patterns 

Stock symbol 

Proposed model One-time ordering Splitting the order equally 

MI  MI  
Percentage 

Reduction 
MI Percentage Reduction 

Khesapa 1.774187474 2.162210151 17.95% 1.77463431 0.025% 

Vabemelat 5.677201038 17.38819871 67.33% 5.719106175 0.733% 

Foolad 1.477313773 3.434888225 56.99% 1.478522187 0.082% 

Femeli 0.494933802 1.195414122 58.60% 0.49748647 0.513% 

Shepna 2.901522602 5.078542766 42.87% 3.182543367 8.83% 
 

 

Figure6.  Comparing the performance of the proposed model and other patterns 
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