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Abstract

In this article, two numerical approaches are presented to solve a system of three

fractional differential equations that express the pollution of lakes. In our recent

study, a new class of hat functions, called quasi-hat functions (QHFs), are con-

structed. The proposed approaches utilize modified hat functions (MHFs) and

quasi-hat functions (QHFs). Fractional-order operational of MHFs and QHFs

are used to build algorithms that transform the main problem into a system of

six equations with six unknowns and three equations with three unknowns, re-

spectively. Absolute errors of obtained approximate solutions and convergence

analysis of the utilized approach will be studied. Finally, three examples are

provided to illustrate the capabilities of these algorithms. The pollution mon-

itoring results are reported in some tables and figures for different values of

α.
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1. Introduction

Water pollution causes very destructive effects on the environment. Re-

searchers use mathematical modeling to monitor pollution and help plan ways

to protect the environment. Biazar et al. studied and solved the mathematical

model of lake pollution for the first time [1]. This model consists of a system of5

three lakes connected to each other by some channels. Mathematical modeling

of this problem leads to a system of three fractional differential equations. There

are several numerical methods for solving such systems of differential equations

(see [2, 3, 4, 5]). The model has been examined by many researchers using dif-

ferent approaches [6, 7, 8]. Khader et al. used the operational matrix method10

based on the shifted Chebyshev polynomials to solve the water pollution model

[9]. Prakasha and Veeresha inspected the model of pollution for a system of

lakes using the q-homotopy analysis transform method [10]. The Haar wavelet

collocation method has been suggested for solving a novel model for the con-

tamination of a system of three artificial lakes in [11]. Ghosh et al. established15

a new iterative method to solve the model of the amount of pollution in lakes

connected with some rivers [12]. Shiri et al. presented a high-order numerical

method to solve the pollution model[13]. Also, Yönet et al. applied a Taylor

series to solve the pollution system[14]. Figure 1 shows the three lakes with in-

terconnected canals. A pollutant enters the first lake from the indicated source,20

named by p(t). Suppose ui(t) and Vi express the amount of pollutant and the

water volume in the lake i for t ≥ 0, i = 1, 2, 3, respectively. Modeling the

dynamic behavior of pollution distribution in a system of lakes can be stated as

follows:

C
0 D

α
t u1(t) = p(t) +

F13

V3
u3(t)− F31

V1
u1(t)− F21

V1
u1(t),

C
0 D

α
t u2(t) =

F21

V1
u1(t)− F32

V2
u2(t), 0 < α ≤ 1, t ∈ [0, T ] ,

C
0 D

α
t u3(t) =

F31

V1
u1(t) +

F32

V2
u2(t)− F13

V3
u3(t), (1)

subject to the initial conditions u1(0) = λ1, u2(0) = λ2, and u3(0) = λ3. Here25

u1(t), u2(t), and u3(t) are unknown functions, λ1, λ2, λ3, F13, F31, F21, F32,
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V1, V2, and V3 are the appropriate parameters. The operator C0 D
α
t denotes the

Caputo fractional derivative [15]. Table 1 shows the meaning of parameters

and variables for the pollution problem in the system of lakes. The volume

of water in each lake is assumed to be constant and the flow into each lake30

must balance the outflow. The present study discusses some of the properties of

Riemann-Liouville integral operators based on the modified hat and quasi-hat

functions to solve a fractional distribution model of lakes (1) for the first time.

In Section 2, some characteristics and basic definitions of the fractional calculus

are explained. Section 3 is dedicated to introducing the operational matrices of35

MHFs and QHFs. Fourth section studies the absolute error of approximation of

a function by a truncated series of MHFs and QHFs. Fifth section presents two

numerical algorithms for problem (1). The principal problem will be reduced

to several simple linear algebraic equations by applying the operational matrix

methods of MHFs and QHFs. The convergence analysis of the proposed schemes40

is discussed in Section 6. As evidence of the validity and accuracy of the utilized

approach, three numerical examples are provided in Section 7, and a conclusion

and discussion are provided in Section 8.

2. Basic concepts and definitions

Here, several definitions and properties are explained that will be used in45

this manuscript. In this research the Riemann-Liouville integral operator of the

α-th order (Iαt ), and the Caputo fractional differential operator of order α (c0D
α
t )

will be used. They are well addressed in [15]. The Riemann–Liouville integral

and the Caputo fractional derivative operators satisfies the following properties:

Iαt (Iβt u(t)) = Iβt (Iαt u(t)) = Iα+β
t u(t),

Iαt (C0 D
α
t u(t)) = u(t)−

n−1∑
i=0

u(i)(0)
ti

i!
, n− 1 < α ≤ n, t > 0. (2)

2.1. Recalling of MHFs50

Hat functions are defined on a closed interval [0, T ] and have shapes similar

to hats[16, 17]. The interval is segregated into n number of sub-intervals of
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equal length, as [ih, (i+ 1)h], i = 0, 1, 2..., n− 1, where h = T
n , and n ≥ 2, n =

2K, K ∈ N. Modified hat functions are defined as follows [16]:

ψ0(t) =

 1
2h2 (t− h)(t− 2h), 0 ≤ t ≤ 2h,

0, otherwise,
(3)

if i is odd, and 1 ≤ i ≤ n− 1;55

ψi(t) =

 −1
h2 (t− (i− 1)h)(t− (i+ 1)h), (i− 1)h ≤ t ≤ (i+ 1)h,

0, otherwise,
(4)

if i is even, and 2 ≤ i ≤ n− 2;

ψi(t) =


1

2h2 (t− (i− 1)h)(t− (i− 2)h), (i− 2)h ≤ t ≤ ih,
1

2h2 (t− (i+ 1)h)(t− (i+ 2)h), ih ≤ t ≤ (i+ 2)h,

0, otherwise,

(5)

and at the last point

ψn(t) =

 1
2h2 (t− (T − h))(t− (T − 2h)), T − 2h ≤ t ≤ T,

0, otherwise.
(6)

2.2. Definition of QHFs

The concept of quasi-hat functions (QHFs) on a closed interval [0, T ] is

derived based on the idea of the hat functions [18]. The domain of the quasi-hat60

functions is the same as those of the hat functions that were introduced right

now. Quasi-hat functions are defined as follows for i even, and 0 ≤ i ≤ n;

φi(t) =

 1
2h2 (t− (i+ 1)h)(t− (i+ 2)h), ih ≤ t < (i+ 2)h,

0, otherwise,
(7)

when i is odd, and 1 ≤ i ≤ n− 1;

φi(t) =

 − 1
2h2 (t− (i− 1)h)(t− (i+ 2)h), (i− 1)h ≤ t < (i+ 1)h,

0, otherwise,
(8)

wherein n ≥ 2 is an even positive integer, h = T
n . The Matlab package is used

to plot quasi-hat functions on the interval [0, 1] for n = 4 (Figure 2).65
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The following properties can be achieved by using the MHFs and QHFs defini-

tions, respectively [16, 18];

ψi(jh) =

 1, i = j,

0, i 6= j,

n∑
i=0

ψi(t) = 1, (9)

and

φi(jh) =

 1, i = j,

0, i 6= j,

n∑
i=0

φi(t) = 1. (10)

2.3. MHFs & QHFs expansion

An arbitrary function u(t), can be approximated by a linear combination of70

MHFs or QHFs as the following, respectively:

u(t) ' un(t) =

n∑
i=0

aiψi(t) = ATΨ(t), (11)

u(t) ' un(t) =

n∑
i=0

aiφi(t) = A
T

Φ(t), (12)

so that

Ψ(t) = [ψ0(t), ψ1(t), ..., ψn(t)]
T
, Φ(t) = [φ0(t), φ1(t), ..., φn(t)]

T
, (13)

and

A = [a0, a1, ..., an]
T
, A = [ai, ai, ..., ai]

T
, (14)

where75

ai = ai = u(ih), i = 0, ..., n. (15)

3. Operational matrices of MHFs & QHFs

The purpose of this section is to present the fractional-order integral opera-

tional matrices based on the modified hat and quasi-hat functions.
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3.1. Fractional order operational matrix of integration

Let us to state the following theorems:80

Theorem 1. Suppose Ψ(t) is given by (13) and α > 0, then

Iαt Ψ(t) ' PαΨ(t). (16)

Pα is the (n+ 1)× (n+ 1) operational matrix of the Riemann-Liouville integral,

illustrated as follows:

P (α) =
hα

2Γ(α+ 3)



0 ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ... ζn−1 ζn

0 β1 β2 β3 β4 β5 β6 ... βn−1 βn

0 η1 η2 η3 η4 η5 η6 ... ηn−1 ηn

0 0 0 β1 β2 β3 β4 ... βn−3 βn−2

0 0 0 η1 η2 η3 η4 ... ηn−3 ηn−2

0 0 0 0 0 β1 β2 ... βn−5 βn−4

0 0 0 0 0 η1 η2 ... ηn−5 ηn−4

0 0 0 0 0
...

...
...

...

0 0 0 0 0 0 0 ... β1 β2

0 0 0 0 0 0 0 ... η1 η2



,

(17)

where

ζ1 = α (2α+ 3) ,

ζk =
(
kα+1(2k − 3α− 6) + 2kα(α+ 1)(α+ 2) + (k − 2)

α+1
(2− 2k − α)

)
,

k = 2, 3, ..., n,

β1 = 4(α+ 1)

βk = 4
(

(k − 2)
α+1

(k + α) + kα+1(2 + α− k)
)
, k = 2, 3, ..., n,

ηk = −αδ1k + (2)α+1(2− α)δ2k + ((3)α+1(4− α)− 6(2 + α))δ3k, k = 1, 2, 3,

ηk = (k − 4)α+1(6− 2k − α)− 6(k − 2)α+1(2 + α) + (k)α+1(2k − 2− α),

k = 4, ..., n,

(18)

where δij is the Kronecker delta.85

Proof. For the poof and more details see [16].

6



Theorem 2. Let Φ(t) be given by (13) and α > 0, then

Iαt Φ(t) ' QαΦ(t). (19)

So that Qα is the (n + 1) × (n + 1) operational matrix of order α, which is

resulted by defining the Riemann-Liouville integral, and is generally represented

as follows90

Q(α) =
hα

2Γ(α+ 3)



0 ρ1 ρ2 ρ3 ρ4 ... ρn−1 ρn

0 σ1 σ2 σ3 σ4 ... σn−1 σn

0 0 0 ρ1 ρ2 ... ρn−3 ρn−2

0 0 0 σ1 σ2 ... σn−3 σn−2

0 0 0 0 0 ...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 ... ρ1 ρ2

0

0

0

0

0

0

0

0

0

0
...

σ1

0

σ2

0



, (20)

where

ρ1 = α (2α+ 3) ,

ρk =
(
kα+1(2k − 3α− 6) + 2kα(α+ 1)(α+ 2) + (k − 2)

α+1
(2− 2k − α)

)
,

k = 2, 3, ..., n,

σ1 = 3α+ 4,

σk = (k − 2)α+1(2k + α− 2)− 2(k − 2)α(2 + α)(1 + α)− (k)α+1(2k − 6− 3α),

k = 2, 3, ..., n.

(21)

Proof. For the poof and more details see [18].

If we approximate a function with MHFs and QHFs, we can use (16) and (19),

to obtain the following result:

Iαt u(t) ' Iαt

(
n∑
i=0

aiψi(t)

)
' Iαt

(
ATΨ(t)

)
' ATPαΨ(t). (22)

95

Iαt u(t) ' Iαt

(
n∑
i=0

aiφi(t)

)
' Iαt

(
A
T

Φ(t)
)
' A

T
QαΦ(t). (23)
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4. Error analysis

In this section, quasi-hat and modified hat functions are proposed to estimate

the absolute errors for approximating an arbitrary function.

According to reference [18], the absolute error when approximating an arbitrary

function using QHFs (12), can be written as100

|u(t)− un(t)| ' h

2

∣∣∣(j − k)(2 + (−1)
k

+ k − j)u′(kh)
∣∣∣ ,

(24)

wherein j = t/h, t ∈ (kh, (k + 1)h), k = 0, 1, 2, ..., n.

An analysis is performed to approximate an arbitrary function with MHFs (11),

as follows [16]:

un(t) ' u(kh) + (t− kh)u′(kh) +
(t− kh)

2

2
u′′(kh). (25)

Also, the absolute error at the points t ∈ (kh, (k + 1)h) is as follows

|u(t)− un(t)| '

∣∣∣∣∣u(t)− u(kh)− (t− kh)u′(kh)− (t− kh)
2

2
u′′(kh)

∣∣∣∣∣ . (26)

For t ∈ (kh, (k + 1)h), k = 0, 1, 2, ..., n, h→ 0, obtain105

|u(t)− un(t)| ' 1

2

∣∣∣(jh− kh)
2
u′′(kh)

∣∣∣ =
h2

2

∣∣∣(j − k)
2
u′′(kh)

∣∣∣ . (27)

where j = t/h. The absolute error of QHFs and MHFs for j → k, k = 0, ..., n,

results

|u(kh)− un(kh)| ' 0, (28)

thus ∀k, while h→ 0 or n→∞, result in

|u(t)− un(t)| → 0. (29)

5. Numerical process

In this section, two numerical approaches are presented for the solution of110

Eq.(1). As well recalling, the definition of Riemann-Liouville integral operator
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of order α is as follows [15]

Iαt u(t) =
1

Γ(α)

∫ t

0

(t− τ)
α−1

u(τ)dτ. (30)

We apply Eq.(30) to both sides of the original equation Eq.(1). Then, using the

properties of the Riemann-Liouville integral operator and the Caputo fractional

differential operator, and the initial conditions of Eq.(1), we obtain115

u1(t) = λ1 + Iαt p(t) +
F13

V3
Iαt u3(t)− F31

V1
Iαt u1(t)− F21

V1
Iαt u1(t),

u2(t) = λ2 +
F21

V1
Iαt u1(t)− F32

V2
Iαt u2(t),

u3(t) = λ3 +
F31

V1
Iαt u1(t) +

F32

V2
Iαt u2(t)− F13

V3
Iαt u3(t). (31)

5.1. Description of numerical algorithm based on MHFs

As described in Section 2, we can approximate all the functions in Eqs (31)

with MHFs (11), as follows:

uv(t) '
n∑
i=0

aviψi(t) = Av
TΨ(t), v = 1, 2, 3, (32)

λv ' λv
n∑
i=0

ψi(t) = λvE
TΨ(t), v = 1, 2, 3, (33)

p(t) '
n∑
i=0

p(ih)ψi(t) = GTΨ(t), (34)

so that120

Av = [av0, av1, ..., avn]
T
, v = 1, 2, 3, (35)

E = [1, 1, ..., 1]
T
, (36)

G = [p(0), p(h), ..., p(nh)]
T
. (37)

Combining (16), (22) and substitution (32-34) into Eqs.(31) results in

A1
TΨ(t) = λ1E

TΨ(t) +GTPαΨ(t) +
F13

V3
A3

TPαΨ(t)− F31

V1
A1

TPαΨ(t)

− F21

V1
A1

TPαΨ(t),

A2
TΨ(t) = λ2E

TΨ(t) +
F21

V1
A1

TPαΨ(t)− F32

V2
A2

TPαΨ(t),
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A3
TΨ(t) = λ3E

TΨ(t) +
F31

V1
A1

TPαΨ(t) +
F32

V2
A2

TPαΨ(t)

− F13

V3
A3

TPαΨ(t). (38)

Also, we can write

A1
T − λ1E

T −GTPα − F13

V3
A3

TPα +
F31

V1
A1

TPα +
F21

V1
A1

TPα = 0,

A2
T − λ2E

T − F21

V1
A1

TPα +
F32

V2
A2

TPα = 0,

A3
T − λ3E

T − F31

V1
A1

TPα − F32

V2
A2

TPα +
F13

V3
A3

TPα = 0. (39)

This system contains 3 (n+1) equations with 3 (n+1) unknown MHFs coeffi-

cients. Assume Pα = [µ]ij , i, j = 0, ..., n, the following results are obtained

from the arrangement of elements in the operational matrix (17):125

[µij ]
n
i=0 = 0, j = 0,

[µij ]
n
i=j+2 = 0, j = 1, 3, ..., n− 1,

[µij ]
n
i=j+1 = 0, j = 2, 4, ..., n. (40)

Based on (15), we get

a10 = λ1, a20 = λ2, a30 = λ3. (41)

As a result of the properties of the operational matrix of MHFs, Eqs (17) and

(40), we introduce a recursive system(k/2), k = 2, 4, ..., n. To define system(1),

take Pα = [µ]ij , i = 0, 1, k, j = 1, k, and k = 2, so Eq.(39) is expressed as

follows:130

system(1) :



a11 − F13

V3

[
2∑
i=0

µi1a3i

]
−
[

2∑
i=0

p(ih)µi1

]
+
(
F31+F21

V1

)[ 2∑
i=0

µi1a1i

]
− λ1 = 0,

a12 − F13

V3

[
2∑
i=0

µi2a3i

]
−
[

2∑
i=0

p(ih)µi2

]
+
(
F31+F21

V1

)[ 2∑
i=0

µi2a1i

]
− λ1 = 0,

a21 − F21

V1

[
2∑
i=0

µi1a1i

]
+ F32

V2

[
2∑
i=0

µi1a2i

]
− λ2 = 0,

a22 − F21

V1

[
2∑
i=0

µi2a1i

]
+ F32

V2

[
2∑
i=0

µi2a2i

]
− λ2 = 0,

a31 − F31

V1

[
2∑
i=0

µi1a1i

]
− F32

V2

[
2∑
i=0

µi1a2i

]
+ F13

V3

[
2∑
i=0

µi1a3i

]
− λ3 = 0,

a32 − F31

V1

[
2∑
i=0

µi2a1i

]
− F32

V2

[
2∑
i=0

µi2a2i

]
+ F13

V3

[
2∑
i=0

µi2a3i

]
− λ3 = 0.

(42)
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Solving system(1) which includes 6 equations, coefficients of {a11, a12, a21, a22, a31, a32}

can be calculated. Then for k = 4, one has

system(2) :



a13 − F13

V3

[
4∑
i=0

µi3a3i

]
−
[

4∑
i=0

p(ih)µi3

]
+
(
F31+F21

V1

)[ 4∑
i=0

µi3a1i

]
− λ1 = 0,

a14 − F13

V3

[
4∑
i=0

µi4a3i

]
−
[

4∑
i=0

p(ih)µi4

]
+
(
F31+F21

V1

)[ 4∑
i=0

µi4a1i

]
− λ1 = 0,

a23 − F21

V1

[
4∑
i=0

µi3a1i

]
+ F32

V2

[
4∑
i=0

µi3a2i

]
− λ2 = 0,

a24 − F21

V1

[
4∑
i=0

µi4a1i

]
+ F32

V2

[
4∑
i=0

µi4a2i

]
− λ2 = 0,

a33 − F31

V1

[
4∑
i=0

µi3a1i

]
− F32

V2

[
4∑
i=0

µi3a2i

]
+ F13

V3

[
4∑
i=0

µi3a3i

]
− λ3 = 0,

a34 − F31

V1

[
4∑
i=0

µi4a1i

]
− F32

V2

[
4∑
i=0

µi4a2i

]
+ F13

V3

[
4∑
i=0

µi4a3i

]
− λ3 = 0,

(43)

unknown parameters {a13, a14, a23, a24, a33, a34} are obtained by solving system(2).

Then we continue the successive process
...135

eventually, for k = n, result in

system (n2 ) :



a1n−1 − F13

V3

[
n∑
i=0

µi n−1a3i

]
−
[
n∑
i=0

p(ih)µi n−1

]
+
(
F31+F21

V1

)[ n∑
i=0

µi n−1a1i

]
− λ1 = 0,

a1n − F13

V3

[
n∑
i=0

µi na3i

]
−
[
n∑
i=0

p(ih)µi n

]
+
(
F31+F21

V1

)[ n∑
i=0

µi na1i

]
− λ1 = 0,

a2n−1 − F21

V1

[
n∑
i=0

µi n−1a1i

]
+ F32

V2

[
n∑
i=0

µi n−1a2i

]
− λ2 = 0,

a2n − F21

V1

[
n∑
i=0

µi na1i

]
+ F32

V2

[
n∑
i=0

µi na2i

]
− λ2 = 0,

a3n−1 − F31

V1

[
n∑
i=0

µi n−1a1i

]
− F32

V2

[
n∑
i=0

µi n−1a2i

]
+ F13

V3

[
n∑
i=0

µi n−1a3i

]
− λ3 = 0,

a3n − F31

V1

[
n∑
i=0

µi na1i

]
− F32

V2

[
n∑
i=0

µi na2i

]
+ F13

V3

[
n∑
i=0

µi na3i

]
− λ3 = 0,

(44)

by solving system(n2 ) and finding the six unknown coefficients of this system, all

coefficients are completely determined, and we can get the approximate solutions

u1(t), u2(t), u3(t), (32). The proposed approach reduces the original system to140

n
2 systems, which includes six algebraic equations.
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5.2. Description of numerical algorithm based on QHFs

To obtain numerical solutions of Eqs. (31) using QHFs (12), we have

uv(t) '
n∑
i=0

aviφi(t) = Av
T

Φ(t), v = 1, 2, 3, (45)

λv ' λv
n∑
i=0

φi(t) = λvE
TΦ(t), v = 1, 2, 3, (46)

p(t) '
n∑
i=0

p(ih)φi(t) = GTΦ(t), (47)

wherein145

Av = [av0, av1, ..., avn]
T
, v = 1, 2, 3, (48)

E = [1, 1, ..., 1]
T
, G = [p(0), p(h), ..., p(nh)]

T
.

By applying (19-20) and (45-47) in Eqs. (31) the following results are obtained:

A1
T − λ1E

T −GTQα − F13

V3
A3

T
Qα +

F31

V1
A1

T
Qα +

F21

V1
A1

T
Qα = 0,

A2
T − λ2E

T − F21

V1
A1

T
Qα +

F32

V2
A2

T
Qα = 0,

A3
T − λ3E

T − F31

V1
A1

T
Qα − F32

V2
A2

T
Qα +

F13

V3
A3

T
Qα = 0, (49)

the dimension of this system is 3(n+ 1)× 3(n+ 1).

Suppose Qα = [θ]ij , i, j = 0, ..., n. As shown in the operational matrix (20), we

have

[θij ]
n
i=0 = 0, j = 0,

[θij ]
n
i=0 = 0, j = n,

[θij ]
n
i=j+1 = 0, j = 1, 3, ..., n− 1,

[θij ]
n
i=j = 0, j = 2, 4, ..., n. (50)

Using Eq. (15) and initial values, we get the following results:150

a10 = λ1, a20 = λ2, a30 = λ3. (51)

12



According to Eqs. (20) and (50), we introduce recursive system(k/2), k =

2, 4, ..., n. Thus, the following system is an appropriate representation to write

(49) based on (50).

system(1) :



a11 − F13

V3

[
1∑
i=0

θi1a3i

]
−
[

1∑
i=0

p(ih)θi1

]
+
(
F31+F21

V1

)[ 1∑
i=0

θi1a1i

]
− λ1 = 0,

a21 − F21

V1

[
1∑
i=0

θi1a1i

]
+ F32

V2

[
1∑
i=0

θi1a2i

]
− λ2 = 0,

a31 − F31

V1

[
1∑
i=0

θi1a1i

]
− F32

V2

[
1∑
i=0

θi1a2i

]
+ F13

V3

[
1∑
i=0

θi1a3i

]
− λ3 = 0,

(52)

by solving system(1) which includes 3 equations, coefficients of {a11, a21, a31}

can be calculated, then we get {a12, a22, a32}, as follows155

a12 = F13

V3

[
1∑
i=0

θi2a3i

]
+

[
1∑
i=0

p(ih)θi2

]
−
(
F31+F21

V1

)[ 1∑
i=0

θi2a1i

]
+ λ1,

a22 = F21

V1

[
1∑
i=0

θi2a1i

]
− F32

V2

[
1∑
i=0

θi2a2i

]
+ λ2,

a32 = F31

V1

[
1∑
i=0

θi2a1i

]
+ F32

V2

[
1∑
i=0

θi2a2i

]
− F13

V3

[
1∑
i=0

θi2a3i

]
+ λ3,

then, for k = 4, one has

system(2) :



a13 − F13

V3

[
3∑
i=0

θi3a3i

]
−
[

3∑
i=0

p(ih)θi3

]
+
(
F31+F21

V1

)[ 3∑
i=0

θi3a1i

]
− λ1 = 0,

a23 − F21

V1

[
3∑
i=0

θi3a1i

]
+ F32

V2

[
3∑
i=0

θi3a2i

]
− λ2 = 0,

a33 − F31

V1

[
3∑
i=0

θi3a1i

]
− F32

V2

[
3∑
i=0

θi3a2i

]
+ F13

V3

[
3∑
i=0

θi3a3i

]
− λ3 = 0,

(53)

unknown parameters {a13, a23, a33} are calculated by solving system(2), then

we find {a14, a24, a34}, as follows

a14 = F13

V3

[
3∑
i=0

θi4a3i

]
+

[
3∑
i=0

p(ih)θi4

]
−
(
F31+F21

V1

)[ 3∑
i=0

θi4a1i

]
+ λ1,

a24 = F21

V1

[
3∑
i=0

θi4a1i

]
− F32

V2

[
3∑
i=0

θi4a2i

]
+ λ2,

a34 = F31

V1

[
3∑
i=0

θi4a1i

]
+ F32

V2

[
3∑
i=0

θi4a2i

]
− F13

V3

[
3∑
i=0

θi4a3i

]
+ λ3,

then we continue the process160

...
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finally, for k = n, result in

system(n2 ) :



a1n−1 − F13

V3

[
n−1∑
i=0

θi n−1a3i

]
−
[
n−1∑
i=0

p(ih)θi n−1

]
+
(
F31+F21

V1

)[n−1∑
i=0

θi n−1a1i

]
− λ1 = 0,

a2n−1 − F21

V1

[
n−1∑
i=0

θi n−1a1i

]
+ F32

V2

[
n−1∑
i=0

θi n−1a2i

]
− λ2 = 0,

a3n−1 − F31

V1

[
n−1∑
i=0

θi n−1a1i

]
− F32

V2

[
n−1∑
i=0

θi n−1a2i

]
+ F13

V3

[
n−1∑
i=0

θi n−1a3i

]
− λ3 = 0,

(54)

having the coefficients {a1n−1, a2n−1, a3n−1} from solving this system, the co-

efficients {a1n, a2n, a3n} are found as follows

a1n = F13

V3

[
n−1∑
i=0

θina3i

]
+

[
n−1∑
i=0

p(ih)θin

]
−
(
F31+F21

V1

)[n−1∑
i=0

θina1i

]
+ λ1,

a2n = F21

V1

[
n−1∑
i=0

θina1i

]
− F32

V2

[
n−1∑
i=0

θina2i

]
+ λ2,

a3n = F31

V1

[
n−1∑
i=0

θina1i

]
+ F32

V2

[
n−1∑
i=0

θina2i

]
− F13

V3

[
n−1∑
i=0

θina3i

]
+ λ3.

Once we determine the three unknown coefficients for system(n2 ), all the coef-165

ficients are determined, and we can get the approximate solutions u1(t), u2(t),

and u3(t) (45). In this method, there is a need to solve n
2 systems, each of them

consists of three linear algebraic equations, that can be done easily by direct

methods. The computations are handled using the MATLAB package.

6. Convergence analysis of MHFs and QHFs approachers.170

In this section, the convergence of the system (1) is examined based on the

approximation of functions using MHFs and QHFs. Consider the system (31),

which is equivalent to the system (1). The resulting equations must approximate

the following equation.

Eα1nu(t) =

∣∣∣∣u1(t)− Iαt p(t)−
F13

V3
Iαt u3(t) +

F31

V1
Iαt u1(t) +

F21

V1
Iαt u1(t)− λ1

∣∣∣∣ ' 0,

Eα2nu(t) =

∣∣∣∣u2(t)− F21

V1
Iαt u1(t) +

F32

V2
Iαt u2(t) − λ2

∣∣∣∣ ' 0,

Eα3nu(t) =

∣∣∣∣u3(t)− F31

V1
Iαt u1(t)− F32

V2
Iαt u2(t) +

F13

V3
Iαt u3(t)− λ3

∣∣∣∣ ' 0. (55)

Here, two cases can be considered as follows:175

(1) - Utilizing (27) to approximate the absolute error based on the functions

14



MHFs, results in

e(uv(t)) '
h2

2

∣∣∣(j − k)
2
u′′v(kh)

∣∣∣ , v = 1, 2, 3. (56)

(2)- As a result of approximating the absolute error using (24), we obtain

e(uv(t)) '
h

2

∣∣∣(j − k)(2 + (−1)
k

+ k − j)u′v(kh)
∣∣∣ , v = 1, 2, 3, (57)

where j = t/h, and t ∈ (kh, (k + 1)h), k = 0, 1, 2, ..., n.

For MHFs, utilizing (55) and (56), we get180

Eα1ne(t) ≤
dh2

2

(
|u1
′′(t)|+ b

(
|p′′(t)|+

∣∣∣∣F13

V3
u3
′′(t)

∣∣∣∣+

∣∣∣∣F31

V1
u1
′′(t)

∣∣∣∣+

∣∣∣∣F21

V1
u1
′′(t)

∣∣∣∣)) ≤ C1h
2,

Eα2ne(t) ≤
dh2

2

(
|u2
′′(t)|+ b

(∣∣∣∣F21

V1
u1
′′(t)

∣∣∣∣+

∣∣∣∣F32

V2
u2
′′(t)

∣∣∣∣)) ≤ C2h
2,

Eα3ne(t) ≤
dh2

2

(
|u3
′′(t)|+ b

(∣∣∣∣F31

V1
u1
′′(t)

∣∣∣∣+

∣∣∣∣F32

V2
u2
′′(t)

∣∣∣∣+

∣∣∣∣F13

V3
u3
′′(t)

∣∣∣∣)) ≤ C3h
2,

wherein

d = sup
{

(j − k)
2
}

, b = sup
t,τ∈[0,T ]

∣∣∣ (t−τ)α−1

Γ(α)

∣∣∣, and as h→ 0, Eαvne(t)→ 0,

v = 1, 2, 3.

For QHFs, when we take (55) and (57), we get

Eα1ne(t) ≤
d̄h

2

(
|u1
′(t)|+ b

(
|p′(t)|+

∣∣∣∣F13

V3
u3
′(t)

∣∣∣∣+

∣∣∣∣F31

V1
u1
′(t)

∣∣∣∣+

∣∣∣∣F21

V1
u1
′(t)

∣∣∣∣)) ≤ C1h,

Eα2ne(t) ≤
d̄h

2

∣∣∣∣|u2
′(t)|+ b

(∣∣∣∣F21

V1
u1
′(t)

∣∣∣∣+

∣∣∣∣F32

V2
u2
′(t)

∣∣∣∣)∣∣∣∣ ≤ C2h,

Eα3ne(t) ≤
d̄h

2

∣∣∣∣|u3
′(t)|+ b

(∣∣∣∣F31

V1
u1
′(t)

∣∣∣∣+

∣∣∣∣F32

V2
u2
′(t)

∣∣∣∣+

∣∣∣∣F13

V3
u3
′(t)

∣∣∣∣)∣∣∣∣ ≤ C3h,

wherein185

d = sup
{

(j − k)(2 + (−1)
k

+ k − j)
}

, b = sup
t,τ∈[0,T ]

∣∣∣ (t−τ)α−1

Γ(α)

∣∣∣, and while h→ 0,

Eαvn(t)→ 0, v = 1, 2, 3.

7. Numerical experiments and discussions

In this section, three different pollution input models are considered to eval-

uate the effectiveness of the presented methods.190
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Example 1. Periodic Input Model

The model considers pollutants enter periodically into Lake 1. Let us consider

p(t) = asin(ωt) + c, where a and ω denote amplitude and frequency of the

variation, respectively, and the average concentration of pollutants is represented

by c. We assume Eq.(1) with, a=ω=c=1,195

C
0 D

α
t u1(t) = 1 + sin(t) +

38

1180
u3(t)− 20

2900
u1(t)− 18

2900
u1(t),

C
0 D

α
t u2(t) =

18

2900
u1(t)− 18

850
u2(t), 0 < α ≤ 1, t ∈ [0, T ] ,

C
0 D

α
t u3(t) =

20

2900
u1(t) +

18

850
u2(t)− 38

1180
u3(t), (58)

with the initial conditions u1(0) = 0, u2(0) = 0, and u3(0) = 0.

There have been several studies of this problem (58). For the pollution

monitoring, results of the presented methods and some other methods for one

year are shown in Tables 2-5. Similar numerical results are obtained from the

two proposed methods in Table 2 clarifying that water pollution in all three200

lakes rises as time progresses. Figure 3(a) demonstrates the sinusoidal behavior

of lake 1. In this case, in analyzing Tables and plots, we find that lake 2 has

low pollution levels compared to lake 3, and both lakes’ pollution levels are

increasing exponentially.

Example 2. Exponential input model205

In this example, we will consider a system of fractional order differential equa-

tions (1) with p(t) = aebt with a = 1, b = 1, u1(0) = 0, u2(0) = 0, and u3(0) =

0, and other parameters the same as in example 1.

A numerical analysis is done for this case using MHFs and QHFs with α =

0.5, 1, (see Tables 6, 7). It seems that as alpha decreases from 1 down to210

0.5, contamination increases on the time interval [0, 1]. The results show that

the pollution in all three lakes exhibit exponential behavior. As expected, the

pollution levels in all three lakes are increasing, although lake 2 appears to be

lower pollution.
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Example 3. Impulse Input Model215

In this case, the contaminant has been released directly into lake 1, (input im-

pact method). In this example, we will consider a system of fractional order

differential equations (1) with p(t) = 100 and other parameters the same as in

example 1.

Figure 4 shows the contamination results for different values of α based220

on MHFs and QHFs. According to Figure 4, the pollution behaviors of the

three lakes using the MHFs and QHFs approaches are similar. When α = 1,

lake 1 behavior would reflect the effects of a constant concentration of pollution

increasing over time. Also, for α = 1, lakes 2 and 3 exhibit exponential pollution

growth.225

8. Conclusion

In this paper, two algorithms are implemented to solve a fractional model of

pollution in a system of lakes. Applying the modified hat functions and quasi-hat

functions, algorithms have been developed for monitoring lakes’ water pollution

for the first time. Analyzing the method’s absolute errors and convergence are230

addressed. A comparison of the numerical results of two proposed algorithms

with the results of other numerical approaches confirms both their efficiency

and accuracy. This fractional system is solved using MHFs and QHFs with n/2

algebraic systems with dimensions of 6× 6 and 3× 3, respectively. This is one

of the benefits of these two algorithms, so the methods proposed are simple235

and computationally efficient for large values of n. The amount of pollution in

lake 1 is much higher than in lakes 2 and 3 because it is the principal source of

pollutants. Generally, the contamination levels are inversely related to alpha at

the beginning, and over time, the pollution levels and alpha values become di-

rectly related. A variety of similar problems can be addressed with the proposed240

methods, especially QHF, and we intend to investigate these issues.
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Figure 1: Aerial map of the arrangement of lakes with interconnecting channels.
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Figure 2: Plots of the QHFs, up to n = 4, T = 1.
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Figure 3: Distribution of pollution in the three Lakes by MHFs and QHFs, for example 1.

23



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0

50

100

150

200

250

300

350

400

450

500

u
1
(t

)

MHFs, =1

MHFs, =0.75

MHFs, =0.5

QHFs, =1

QHFs, =0.75

QHFs, =0.5

(a) Lake 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0

1

2

3

4

5

6

7

8

u
2
(t

)

MHFs, =1

MHFs, =0.75

MHFs, =0.5

QHFs, =1

QHFs, =0.75

QHFs, =0.5

(b) Lake 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0

1

2

3

4

5

6

7

8

9

u
3
(t

)

MHFs, =1

MHFs, =0.75

MHFs, =0.5

QHFs, =1

QHFs, =0.75

QHFs, =0.5

(c) Lake 3

Figure 4: The behavior of Pollution in each lake using MHFs and QHFs, for example 3.
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Table 1: Nomenclature section of the paper.

Parameters Explanation Unit

and variables

u1(t) The amount of the pollutant in lake 1 at any time t ppm

u2(t) The amount of the pollutant in lake 2 at any time t ppm

u3(t) The amount of the pollutant in lake 3 at any time t ppm

p(t) The rate at which the pollutant enters the first lake per unit of time t ppm

V1 The volume of water in the lake 1 m3

V2 The volume of water in the lake 2 m3

V3 The volume of water in the lake 3 m3

F13 The flow rate from lake 3 into lake 1 m3/year

F21 The flow rate from lake 1 into lake 2 m3/year

F31 The flow rate from lake 1 into lake 3 m3/year

F32 The flow rate from lake 3 into lake 2 m3/year

t time year

T period of time year

λ1 The initial amount of the pollutants in the lake 1 ppm

λ2 The initial amount of the pollutants in the lake 2 ppm

λ3 The initial amount of the pollutants in the lake 3 ppm

Table 2: Numerical results of Example 1 for three lakes, α = 1, n = 32.

Time (in year) MHFs QHFs

t Lake 1: u1(t) Lake 2: u2(t) Lake 3: u3(t) Lake 1: u1(t) Lake 2: u2(t) Lake 3: u3(t)

0.0 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000

0.125 0.13269583 0.5044× 10−4 0.5606× 10−4 0.13205645 0.4602× 10−4 0.5115× 10−4

0.250 0.28064517 0.2094× 10−3 0.2329× 10−3 0.27937983 0.1996× 10−3 0.2220× 10−3

0.375 0.44346046 0.4886× 10−3 0.5433× 10−3 0.44159249 0.4724× 10−3 0.5254× 10−3

0.500 0.62051910 0.8986× 10−3 0.9997× 10−3 0.61808134 0.8755× 10−3 0.9738× 10−3

0.625 0.81097317 0.1450× 10−2 0.1613× 10−2 0.80800747 0.1418× 10−2 0.1578× 10−2

0.750 1.01376264 0.2152× 10−2 0.2396× 10−2 1.01031920 0.2112× 10−2 0.2351× 10−2

0.875 1.22763196 0.3014× 10−2 0.3356× 10−2 1.22374664 0.2975× 10−2 0.3312× 10−2

1.0 1.45114965 0.4044× 10−2 0.4504× 10−2 1.44690889 0.3994× 10−2 0.4449× 10−2
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Table 3: Numerical results of the proposed and some other methods for the sinusoidal input

of Lake 1 with α = 1.

Time (in year) MHFs QHFs Bessel polynomials VPM

t n=10 n=10 See[7], n=10 See[8]

0.2 0.219654473 0.216408198 0.219654467 -

0.4 0.477756712 0.471445300 0.477756680 -

0.5 0.620522784 0.614912667 − 0.62051

0.6 0.771858751 0.762787012 0.771858670 -

0.8 1.098057381 1.086641630 1.098057233 -

1.0 1.451149882 1.437901320 1.451149651 1.45115

Table 4: Numerical results of the proposed and some other methods for the sinusoidal input

of Lake 2 with α = 1.

Time (in year) MHFs QHFs Bessel polynomials VPM

t n=10 n=10 See[7], n=10 See[8]

0.2 0.1321026× 10−3 0.1092542× 10−3 0.1320999× 10−3 -

0.4 0.5597490× 10−3 0.5062570× 10−3 0.5597436× 10−3 -

0.5 0.8986229× 10−3 0.8493274× 10−3 − 0.898× 10−3

0.6 0.1327956× 10−2 0.1236559× 10−2 0.1327949× 10−2 -

0.8 0.2477604× 10−2 0.2341872× 10−2 0.2477594× 10−2 -

1.0 0.4043740× 10−2 0.3858345× 10−2 0.4043728× 10−2 0.4043× 10−2

Table 5: Numerical results of the proposed and some other methods for the sinusoidal input

of Lake 3 with α = 1.

Time (in year) MHFs QHFs Bessel polynomials VPM

t n=10 n=10 See[7], n=10 See[8]

0.2 0.1468580× 10−3 0.1214503× 10−3 0.1468549× 10−3 -

0.4 0.6225887× 10−3 0.5630246× 10−3 0.6225828× 10−3 -

0.5 0.9997562× 10−3 0.9448416× 10−3 − 0.999× 10−3

0.6 0.1477775× 10−2 0.1375878× 10−2 0.1477766× 10−2 -

0.8 0.2758474× 10−2 0.2606978× 10−2 0.2758463× 10−2 -

1.0 0.4504327× 10−2 0.4297170× 10−2 0.4504314× 10−2 0.4504× 10−2
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Table 6: Numerical results of exponential input for three lakes, α = 0.5, n = 10.

Time (in year) MHFs QHFs

t Lake 1: u1(t) Lake 2: u2(t) Lake 3: u3(t) Lake 1: u1(t) Lake 2: u2(t) Lake 3: u3(t)

0.0 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000

0.1 0.38034144 0.5862× 10−3 0.6525× 10−3 0.38303751 0.6187× 10−3 0.6889× 10−3

0.2 0.57477572 0.1346× 10−2 0.1500× 10−2 0.55180692 0.1114× 10−2 0.1240× 10−2

0.3 0.75333265 0.2125× 10−2 0.2369× 10−2 0.75026575 0.2070× 10−2 0.2307× 10−2

0.4 0.93190143 0.2991× 10−2 0.3336× 10−2 0.89904555 0.2712× 10−2 0.3023× 10−2

0.5 1.11720443 0.3944× 10−2 0.4400× 10−2 1.10960000 0.3834× 10−2 0.4277× 10−2

0.6 1.31353450 0.4997× 10−2 0.5576× 10−2 1.26999927 0.4642× 10−2 0.5179× 10−2

0.7 1.52400197 0.6157× 10−2 0.6873× 10−2 1.51170788 0.5989× 10−2 0.6987× 10−2

0.8 1.75156787 0.7438× 10−2 0.8305× 10−2 1.69561933 0.6987× 10−2 0.7800× 10−2

0.9 1.99882170 0.8852× 10−2 0.9886× 10−2 1.98126556 0.8616× 10−2 0.9619× 10−2

1.0 2.26867203 0.1041× 10−1 0.1163× 10−1 2.19794126 0.9843× 10−2 0.1099× 10−1

Table 7: Numerical results of exponential input for three lakes, α = 1, n = 10.

Time (in year) MHFs QHFs

t Lake 1: u1(t) Lake 2: u2(t) Lake 3: u3(t) Lake 1: u1(t) Lake 2: u2(t) Lake 3: u3(t)

0.0 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000

0.1 0.10509874 0.3203× 10−4 0.3560× 10−4 0.10605399 0.3835× 10−4 0.4263× 10−4

0.2 0.22112299 0.1325× 10−3 0.1473× 10−3 0.21729710 0.1096× 10−3 0.1218× 10−3

0.3 0.34654789 0.3084× 10−3 0.3429× 10−3 0.34920205 0.2907× 10−3 0.3234× 10−3

0.4 0.49062641 0.5674× 10−3 0.5693× 10−3 0.48213712 0.5119× 10−3 0.5738× 10−3

0.5 0.64677541 0.9180× 10−3 0.1021× 10−2 0.63972225 0.8667× 10−3 0.9642× 10−2

0.6 0.81922527 0.1021× 10−2 0.1524× 10−2 0.80504959 0.1270× 10−2 0.1413× 10−2

0.7 1.00966072 0.1933× 10−2 0.2151× 10−2 0.99724405 0.1835× 10−2 0.2043× 10−2

0.8 1.22000692 0.2619× 10−2 0.2915× 10−2 1.19889530 0.2461× 10−2 0.2739× 10−2

0.9 1.45232162 0.3441× 10−2 0.3831× 10−2 1.43336338 0.3284× 10−2 0.3656× 10−2

1.0 1.70895624 0.4412× 10−2 0.4914× 10−2 1.67938243 0.4178× 10−2 0.4653× 10−2
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