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Abstract: This paper introduces a newly designed four-dimensional memristive chaotic system. The 

novel oscillator is chaotic regarding the findings that the system's dynamic has one positive Lyapunov 

exponent (LE). Also, due to the results of the equilibrium points analysis, it is shown that the oscillator has 

a line of equilibria, so the attractors of this system are hidden. Moreover, the study of energy dissipation 

of this system, power spectrum, and Poincaré sections are conducted to investigate the system's 

dynamics. The complex features of this system are investigated with the aid of bifurcation diagrams, LEs 

spectra, approximate entropy, and basin of attraction. 
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1 Introduction 

Chaotic behavior is one of the characteristics of complex and interactive systems [1]. 

Chaos theory is a branch of mathematics and physics investigating the behavior of 

dynamical systems whose temporal dynamics, despite not being unstable, are 

susceptible to initial conditions, making predicting their future impossible [2]. Dynamical 
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systems with these properties are called chaotic systems. Many systems in various 

fields show this behavior, and in recent decades, much attention has been focused on 

studying and investigating chaotic systems and signals [3]. Chaos can be considered a 

nonlinear and deterministic process that is not random but seems random in its time 

series [4]. The main reason for the output fluctuations, which seem unpredictable in the 

time series, is related to the internal mechanisms of the nonlinear data generator 

system and should not be misperceived by external shocks to the system, such as 

noise and changes in parameters [5].  

Memristive elements, known as memory elements, including memristor, memcapacitor, 

and meminductor, can be easily implemented, and their behavior can be simulated with 

electronic circuits [6]. A memory resistor or memristor is an element with a function 

similar to the resistor, which is known as the fourth element of electrical circuits and is 

made in nano dimensions [7]. The amount of this resistance depends on the amount of 

voltage and voltage polarity [8]. The hysteretic current-voltage curve in the memristor 

allows this element to act as a non-volatile resistive memory and remember information 

until a voltage with a different value and polarity is applied to it, even a year later [9]. In 

1971, Leon Chua proved the basis of this technology with mathematical and physical 

formulas [10]; but it took 37 years for its first technology to be practically registered [11]. 

Memristors can replace many transistors in some circuits and occupy less space [12]. A 

memristor has a voltage-dependent resistance, unlike an electrical resistor with a 

constant value [13]. The memristor material should be a reversible resistor with voltage 

change [14]. Ideal memristors are symmetrical, but the actual memristor's current-

voltage characteristic is usually skewed [15]. Memristive components are nonlinear and 

can exhibit chaotic behavior in electronic circuits [16]. In recent years, many 

researchers have worked on designing and implementing chaotic oscillators based on 

memory elements [17-19]. Considering that the memristor has many industrial and 

exciting applications, the application of the memristor in a chaotic system is 

investigated. 

From the computational standpoint, it is natural to propose the classification of attractors 

based on the basin of attraction: the attractor is called a hidden attractor whose basin of 
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attraction does not collide with the small neighborhoods of the equilibrium points; 

otherwise, it is called a self-excited attractor [20]. The self-excited attractor can be 

localized numerically by the standard computational methods [21, 22]. On the other 

hand, the numerical calculation of hidden attractors requires the development of unique 

analytical-numerical methods [23, 24]. For example, hidden chaotic attractors are 

attractors in systems with no equilibrium point [25], a stable equilibrium point [26], or a 

line of equilibrium points [25, 27]. 

A novel memristive chaotic system with hidden attractors is proposed in this paper. The 

rest of the article is divided into three more sections. The next part is focused on 

introducing the newly designed system and examining its properties. The third part is 

devoted to the outcomes of further numerical simulations of this system to look at it in 

more depth and discover more exciting behaviors. In the end, the paper is concluded in 

the last section. 

2 The Proposed Memristive System 

The mathematical description of the newly designed system is as System (1):  
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Where   2 41 0.24 0.0016Y y y y    is the memristor function introduced by Pham et al. 

in 2014 [28], and k  is the system parameter. This memristor function's complete 

analysis and characteristics were conducted before so that this part could be skipped. 

The rest of the paper is dedicated to studying the properties of the proposed system.  

2.1 Equilibrium Points and Stability Analysis 

For many years the equilibrium points were used in finding chaotic attractors [29]. 

Chaotic attractors were found in dynamical systems with unstable equilibrium points 
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(saddle points). However, later, some dynamical systems did not have an equilibrium 

point at all [30] or had a stable equilibrium point [31] and a chaotic attractor. As the first 

step in studying a dynamical system, calculating its equilibrium points and investigating 

their stability is essential. The equilibrium points of dynamical systems can be obtained 

by setting all velocity variables to zero. In other words, all the right-hand side 

expressions should be set to zero in the differential equations. By applying this 

procedure and solving the equations, the equilibrium points of System (1) are as 

  ,  ,  ,  | 0, x y z w x z w y    , which indicates that System (1) has a line of equilibria 

located on the y -axis. Thus, the attractors of this system belong to the group of hidden 

attractors. It is worth investigating whether this line of equilibria consists of stable or 

unstable points. The Jacobian matrix of System (1) should be formed to examine this 

issue. The Eigenvalues of this system for the equilibrium points indicate their stabilities. 

These Eigenvalues could be obtained by solving | 0Equilibrium  I J , leading to the 

characteristic equation. 

The equilibrium point is stable if the real part of every Eigenvalue is negative. In 

contrast, the equilibrium point is unstable if just one of them is positive. Zero Eigenvalue 

without a positive one requires in-depth investigations. Suppose the largest Eigenvalue 

of the Jacobian matrix is zero or has a zero real part. In that case, the equilibrium point 

is non-hyperbolic, and its stability cannot be determined from the sign of the 

Eigenvalues of the Jacobian matrix. Because the Jacobian matrix of this system has a 

zero column at the equilibrium points, it is singular and thus has a zero Eigenvalue. This 

procedure is shown in Eq. (2), Eq. (3), Eq. (4), and Eq. (5), step by step. 
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According to the Eigenvalues achieved in Eq. (5), System (1) has a zero, a pair of 

complex conjugate Eigenvalues with a negative real part, and one more Eigenvalue that 

its quantity depends on the state variable y  and the system parameter k . To analyze 

4  in detail, the extremums of the fourth-order function are obtained. If the maximum 

values of 4  are negative, then the negativity of 4  for all values of y  is guaranteed. To 

find the extremums of 4 , the derivative of it regarding y  should be achieved. Setting 

the derivative expression equal to zero and substituting the resulting answers in 4 , 

giving the extremum points that could be minimum or maximum. The extremums of 4  

are obtained in Eq. (6) and Eq. (7). 4  has three extremums, but the one corresponding 

to zero is a local minimum, so we are not interested in it. 

 3 24
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According to Eq. (7), the maximum value of 4  is a quadratic function of k . When the 

amount of k  is between the two roots of Eq. (7), the sign of the resulting value is 

negative (Since the sign of the coefficient of 2k  is positive). Solving this equation leads 

to an interval that, if k  falls in it, the maximum value of 4  is negative. However, 

because of the zero Eigenvalue, the stability of the equilibria needs more investigations 

carried out in future parts. The interval of k  to have a negative value is found in Eq. (8). 

2 1 1 36 1 1 36
9    –1  0   0.393 0.282

18 18
k k k k

     
          (8) 

Assume 0.0001,k   which is in the interval. To better show this result, the variation of 

4  concerning y  is shown in Fig. 1. It is perceived from Fig. 1 that for all values of y , 

4  is negative. 

2.2 Time Series and State Space 

Chaos is a bounded irregular behavior of a system. In chaotic behavior, the attractor is 

bounded and convergent but not periodic. The time series and the attractor of System 

(1) with 0.0001k   projected on X Y , Y Z , and Z W  planes after removing the 

transient parts are depicted in Fig. 2 (a)-(d), respectively. By observing Fig. 2, System 

(1)'s chaotic behavior in time series and state space can be recognized. The Lyapunov 

exponents (LEs) of this chaotic attractor are 1 2 3 40.1428,  0,  3.7978LE LE LE LE     . 

Since with 0.0001k  , System (1) has one positive LE; it has chaotic behavior.  

2.3 Energy Dissipating 

A simple analysis of any dynamical system determines how the system treats the 

energy. This feature can be determined by the sign of the system's divergence, the 

Jacobian matrix's trace [32]. If the divergence is negative, the system is dissipative; 

otherwise, the system is classified as conservative if the divergence is zero. If a 

dynamical system is bounded and has a positive LE, then the system is chaotic. Chaotic 

behavior can be observed in conservative and dissipative systems [33]. If the sum of the 
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absolute values of the negative exponents is greater than the sum of the positive 

exponents, or in other words, if the attraction is greater than the repulsion, the chaotic 

system is dissipative. However, suppose the sum of the absolute values of the negative 

exponents is equal to the sum of the positive exponents. In that case, the sum of its LEs 

becomes zero, and the chaotic system is conservative (chaotic sea). Sometimes the 

divergence computation does not lead to a number, but it depends on the system's state 

variables. In this case, its average (DC value) determines the divergence. After this 

substitution, the divergence is transformed into a number that indicates whether the 

chaotic system is conservative or dissipative. The divergence of System (1) is 

calculated in Eq. (9). 

 2 40.1 0.11 0.5 1 1 0.24 0.0016
x y z w

x w k y y
x y z w

   
             

   
  

2 41.1 0.11 0.5 0.24 0.0016  k x w ky ky State Dependent        

         2 41.1 0.11 0.5 0.24 0.0016 0k DC x DC w kDC y kDC y DC w           

     2 41.1 0.11 0.24 0.0016k DC x kDC y kDC y         

(9) 

The average value of all velocity variables must be zero to avoid resulting in unbounded 

behavior. In other words, the DC value of all right-hand side expressions in the 

differential equations describing the system's bounded dynamics is zero. Thus, 

regarding System (1), the DC value of the  z  and w  state variables is zero. However, 

the other expressions in Eq. (9) should be obtained by simulating the system for enough 

long time and calculating the DC value of x , 2y , and 4y , and replacing them in Eq. (9). 

Finally, the divergence of the system is achieved numerically. Eq. (9) also depends on 

the parameter k . Here, this parameter is fixed at 0.0001, and the numerical divergence 

values of System (1) are acquired over time. The result shown in Fig. 3 means that as 

time passes, the value of the divergence of System (1) leads to a negative amount, so 

System (1) is dissipative. 
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2.4 Power Spectrum 

Periodic signals have peaks in a fundamental component and harmonics in frequency 

space [34]. Also, the peak of quasiperiodic signals is located in linear combinations of 

two or more related frequencies [34]. Chaotic dynamics have wideband components in 

the spectrum [35]. This feature is used as a criterion to identify a dynamic as chaos [34, 

35]. The power spectrum of System (1) with 0.0001k   is demonstrated in Fig. 4. Since 

System (1) is four-dimensional, the power spectrum is calculated along four distinct 

variables and plotted in a different color. When a system is in its chaotic regime, the 

power spectrum of all system variables is broadband. Usually, the significant frequency 

interval in which the power spectrum components are prominent and cannot be 

neglected is similar for all system variables. Although in some unique systems like the 

well-known Rössler system, the significant power spectrum interval of the system 

variables is not the same and can be distributed in different ranges [36]. According to 

Fig. 4, the power spectrum of System (1) with this parameter is wideband and does not 

exhibit any peaks in specific frequencies. This spectrum is consistent with the results 

obtained in Fig. 3 and confirms the chaoticity of this newly designed system. 

2.5 Poincaré Section 

Another well-known tool to investigate dynamical systems is the Poincaré section. As a 

result of intersecting a plane or hyperplane with the attractor in the N-dimensional state 

space, the Poincaré section is obtained with a lower dimension. Dimension reduction by 

this method sometimes enables visualizing the attractors that could not be visualized in 

the N-dimensional state space. Regarding the fact that System (1) is a four-dimensional 

system and the most visualizable dimension is three, the Poincaré section of the 

attractors of System (1) on 0X  , 0Y  , 0Z  , and 0W   hyperplanes with 

0.0001k   are presented in Fig. 5 (a)-(d) respectively. The gray diagram depicts the 

three-dimensional attractors, and the colorful dots demonstrate the system trajectory's 

intersection with the previously mentioned hyperplanes. In plotting the intersection 

points, the transition from the negative side of the desired hyperplane to the positive 
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side is considered. The pattern of the dots shows that the attractor of System (1) with 

the selected parameter is chaotic. 

3 Dynamical Analysis of the Proposed System 

In this section, a further and more in-depth analysis of System (1) with varying system 

parameter k  and the initial conditions is carried out.  

3.1 The Effect of Parameter k  on the System Dynamics 

In dynamical equations, the solutions of the equations are strongly dependent on the 

value of the parameters. Studying the equations' behavior is possible by changing the 

parameters' values. The parameter whose effect of changing is examined is called the 

control parameter (parameter k  in System (1)). The bifurcation diagram of System (1), 

by changing k  using the final solution of the equations in the long term ( maxy ) and with 

constant initial conditions, is plotted in Fig. 6 (a). Periodic and chaotic behavior and 

periodic windows in the middle of chaos are observed in System (1). By decreasing 

parameter ,k  the period-doubling route to chaos is followed. If the bifurcation parameter 

changes, the geometrical structure of the phase space also changes, then a critical 

point occurs. These critical points are called bifurcation points; for instance, in 

00210k  , 00105k  , and 00083k   in Fig. 6 (a). 

Moreover, another applicable analytical criterion that can describe chaos is employed. 

This criterion is called the LE. The LEs describe how quickly a tiny gap between two 

initially closed states grows. There are various methods of determining LEs. In this 

work, the Wolf method with a runtime of 10000 seconds is applied [37, 38]. The LEs 

spectra of System (1) by varying parameter k  are shown in Fig. 6 (b). System (1) 

always has a negative and relatively large LE ( 4LE ) that assures the system's 

boundedness. Also, this system always has a zero LE. A system can be considered 

chaotic in the case of one positive LE.  

Previously, a strange attractor in System (1) was confirmed. According to this system's 

bifurcation diagram, it can also exhibit periodic behaviors. By choosing the system 
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parameter as 0.0025k  , 0.002k  , 0.0009k  , and 0.001,k   period one, two, three, 

and four attractors were achieved, respectively. The projection of these periodic 

attractors on the Y Z  plane is illustrated in Fig. 7. 

One of the time analysis methods for measuring the complexity of signals is to use 

approximate entropy. Approximate entropy is a statistical measure that quantifies order 

in a time series. The disorder of the signals in the chaotic dynamic increases, and its 

amount equals the approximate entropy. Approximate entropy is a parameter used to 

characterize the irregularity of the signal. This entropy's growth shows the signal's 

irregularity and complexity during parameter change. To measure this entropy, 

1N m   delayed subsets of the signal are extracted and named 1: 1N mY   , where m  is 

the embedding dimension, and  N is the number of samples in the signal. In the next 

step, each kY  is selected. The number of other iY s like it is calculated as iN  in Eq. 

(10). The similarity criterion is that the difference between attributes of the two subsets 

must be less than ,R  the similarity radius, and 1 is the indicator function. Then, as in 

Eq. (11), Φm  is calculated based on the iN s found in the previous step, and in the end, 

the approximate entropy is obtained by Eq. (12) [39-41]. 

1

1, 

1( )
N m

i i k

i i k

N Y Y R
 


 

     (10) 

1
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log

Φ
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N m

ii
m

N

N m

 


 


  (11) 

1   Φ Φm mApproximate Entropy     (12) 

The approximate entropy of the time series produced by System (1), while varying the 

parameter k  is calculated and shown in Fig. 8. Comparing this result with the 

bifurcation diagram, in the region of chaotic behavior, the quantity of approximate 

entropy is larger than the regions with periodic manner. This trend is because the 

chaotic signal is more irregular and complex than the ordered periodic ones. 
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3.2 The Effect of Initial Conditions on System Dynamics 

As the last part of the dynamical analysis of System (1), the basin of attractions of this 

system with varying two different initial conditions are depicted in Fig. 9. The results are 

obtained in 0 0x y , 0 0y z , and 0 0z w  planes with 0.0001k   in parts (a)-(c) of Fig. 9, 

respectively. A 300 300  grid of initial conditions is used to obtain this figure, and the 

two other initial conditions are constant. The light orange, red, and white regions 

correspond to chaotic, fixed points and unbounded solutions. A spectrum of other colors 

illustrates the periodic behavior; as the number of periods rises, the time series tend to 

be complex, and the color of these points changes. The black points are the projection 

of the line of equilibria of System (1). Regarding the equilibrium points stability analysis 

conducted in part 2.1, the line of equilibria of System (1) with 0.0001k   is stable, and 

all red zones converge to it. This system has a broad region of initial conditions that 

leads to chaotic behavior, so it is flexible in choosing the initial conditions. 

4 Discussion and Conclusion 

This paper studied a chaotic system that took advantage of the characteristics of a 

formerly introduced memristor. The system was not only able to bring up a strange 

attractor but also its attractor was hidden. According to the nature of chaotic signals, it is 

necessary to investigate the state and behavior of these systems with more analytical 

methods. To verify the possibility of this behavior, numerical simulations were used to 

check the system's behavior. Chaos can be recognized from the bifurcation diagrams 

and the largest LE. Some criteria to prove the presence of chaos in this system were 

investigated: the system's dissipation, time series, a strange attractor, a positive LE, 

Poincaré mapping, and a broad frequency spectrum. All these criteria showed the 

existence of chaos in this system, and they have been used to distinguish periodic and 

chaotic behaviors from each other. 

The system had a dissipative chaotic attractor and a line of equilibrium points. Its line of 

equilibria was located on the y -axis. The system had a zero, two complex conjugates 

(with negative real parts), and a real Eigenvalue whose value depends on both the 
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parameter k  and the y  value of the equilibria. Because of the appearance of a zero 

Eigenvalue, the stability of the equilibria cannot be obtained quickly and needs 

extensive investigations like basins of attraction. Besides, since the divergence of the 

system was state-dependent, and the average value of the state-dependent terms could 

not be algebraically calculated, the average values were computed numerically. After a 

sufficient run time, the divergence of the system converged to a negative value. It 

proved that the chaotic trajectories were strange attractors.  

The claimed properties of this system were evaluated with the help of powerful 

dynamical analysis tools like Poincaré sections, power spectrum, bifurcation diagram, 

LEs spectrum, the basin of attraction, and approximate entropy. The inverse route of 

period doubling and periodic windows were observed in the bifurcation diagram. 

Attraction basins verified the coexistence of fixed points, periodic, and chaotic 

attractors. Moreover, the basin of attractions confirmed that the previously calculated 

line of equilibria is stable. Due to the outcomes of these examinations and the fact that 

there has been a promising development in implementing memristor, the proposed 

system can have potential real-world applications. 
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Figure 1. The variation of 4  concerning y  with 0.0001k  . If k  is selected from the desired interval, 

the maximum value of 4  is negative. 

Figure 2. Time series and projection of attractors of System (1) with 0.0001k   and 

   0 0 0 0,  ,  ,  28, 0, 0, 0x y z w   . (a) Time series, (b) Projection of attractor on X Y , (c) Y Z , (d) 

Z W  planes. System (1) can exhibit chaotic time series and bounded but non-periodic cycles (strange 

attractors). It should be noted that different colors in the attractors do not have any special meaning, and 

such a colormap is used for better illustration. 

Figure 3. Numerical calculation of System (1)'s divergence over time with 0.0001k   and 

   0 0 0 0,  ,  ,  28, 0, 0, 0x y z w   . The divergence results in a negative value, meaning System (1) is 

dissipative. 

Figure 4. Power spectrum of System (1) with 0.0001k   and    0 0 0 0,  ,  ,  28, 0, 0, 0x y z w   . System 

(1) is a chaotic system due to the wideband spectrum. 

Figure 5. Poincaré sections and attractors of System (1) with 0.0001k   and 

   0 0 0 0,  ,  ,  28, 0, 0, 0x y z w    on (a) 0X  , (b) 0Y  , (c) 0Z  , and (d) 0W   hyperplanes. The 

gray diagram and colored dots correspond to the system trajectory and the Poincaré section.  

Figure 6. (a) Bifurcation diagram ( maxy ) and (b) Lyapunov exponents (LEs) spectra of System (1) while 

changing the parameter k  with    0 0 0 0,  ,  ,  28, 0, 0, 0x y z w   . Periodic solutions approach chaotic 

solutions along the period-halving route.  

Figure 7. The projection of limit cycles of System (1) on the Y Z  plane with 

   0 0 0 0,  ,  ,  28, 0, 0, 0x y z w    and (a) 0.0025k  , (b) 0.002k  , (c) 0.0009k  , and (d) 

0.001k  . System (1) can exhibit limit cycles with various periods. 

Figure 8. Approximate entropy of System (1) while changing the parameter k  with 

   0 0 0 0,  ,  ,  28, 0, 0, 0x y z w   . Approximate entropy in chaotic zones is more than that of periodic 

ones.  

Figure 9. Basins of attraction of System (1) with 0.0001k   in a 300 300  grid of initial conditions in 

(a)    0 0 0 0 0 0,  ,  ,  ,  , 0, 0x y z w x y , (b)    0 0 0 0 0 0,  ,  ,  28,  ,  , 0x y z w y z  , and (c) 
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   0 0 0 0 0 0,  ,  ,  28, 0,  , x y z w z w  . The red, light orange, and white regions correspond to the fixed point, 

chaotic, and unbounded solutions. The black points are the projection of System (1) equilibrium points in 

each plane. This system also has many initial conditions that lead to chaos. P1, P2, …, and P15 are 

periodic oscillations with different period numbers.   
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