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Abstract. In this manuscript, a generalized class of estimators has been developed for es-
timating �nite population means in a Ranked Set Sampling (RSS) scheme. The expressions
for bias and Mean Square Error (MSE) of the proposed class of estimators have been derived
up to the �rst order of approximation. Some estimators are shown to be a member of the
proposed class. The proposed class of estimators has been compared through the MSE
criterion over the other existing member estimators of the proposed class of estimators.
The theoretical conditions are obtained under which the proposed class of estimators has
performed better. E�ciency comparisons, empirical studies, and simulation studies also
delineate the soundness of our proposed generalized class of estimators under RSS.
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1. Introduction

To reduce the sampling error, many researchers at-
tempted to use additional information (highly corre-
lated with the character under study), which is known
as auxiliary information. This information is available
for each unit and may be known well in advance. If
it is not readily available for each population unit,
information on it may be collected through past sur-
veys. The study character, consider Y may be the
�eld in agriculture survey and auxiliary character X
may be the area under cultivation, Y may be the
income of households and X the number of earning
members in the household, Y may be the number of
patients is being treated in the hospital, and X may
be the number of doctors available in the hospital
and so on auxiliary information can be stated. It is
to be mentioned that Cochran [1] was the pioneer in
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using auxiliary information at the estimation stage.
He envisages the ratio estimator for estimating the
population mean or total of a variate under investi-
gation. The ratio and product estimation methods
are well-known methods for estimating the population
means of a study variable using auxiliary information.
When the correlation between the study variate and
auxiliary variate is positive, the ratio estimator can be
employed quite e�ectively. If the correlation between
the study variate and auxiliary variate is negative
(high), the product estimator envisaged by Robson [2]
and rediscovered by Murthy [3] is used. Keeping this
fact in view and also owing to the stronger intuitive
appeal, survey statisticians are more inclined towards
the use of ratio and product estimators in practice. The
estimator's unbiased, ratio, and product are as follows,
respectively:

�yn =
1
n

nX
i=1

yi = t0; (1)

�yR = �y
� �X

�x

�
= tR; (2)
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�yP = �y
� �x

�X

�
= tP ; (3)

where �y and �x are the sample means of the study
variable Y and the auxiliary variable X, respectively.
Also, �X is the mean of the auxiliary variable X.

Mean Square Error (MSE) of the corresponding
estimators in Eqs. (1) to (3) are, respectively, as:

MSE (t0) = f
�
S2
y
�

= V ar (t0) ; (4)

MSE (tR) = f
�
S2
y +R2S2

x + 2RSyx
�
; (5)

MSE (tP ) = f
�
S2
y +R2S2

x + 2RSyx
�
; (6)

where:

f =
�

1
n
� 1
N

�
;

S2
y =

1
(N � 1)

NX
i=1

�
yi � �Y

�2;
S2
x =

1
(N � 1)

NX
i=1

�
xi � �X

�2;
Sxy =

1
(N � 1)

NX
i=1

�
yhi � �Y

� �
xhi � �X

�
; and

R =
�Y
�X
:

Researchers are always keen to enhance their results;
for this, they develop new methods or techniques. In
�nding a better substitute for simple random sam-
pling, McIntyre [4] has propounded a Ranked Set
Sampling (RSS) technique, which is far better than
simple random sampling and economically e�cient,
too. Nowadays, RSS has been widely applied in medical
sciences, biology, agriculture, environmental science,
and many �elds of statistics. When the measurements
are cumbersome and extravagant, ranking the variables
comparable to other sampling schemes is analogously
easy and cost-e�ective. Ranking will be perfect if the
rank of the observations within each set does tally with
the numeric order of veiled X values; otherwise, it is
imperfect. In the explanation of RSS, many grantors
like Takahasi and Wakimoto [5], Dell and Clutter [6],
Stokes [7], Samawi and Muttlak [8], Al-Saleh and Al-
Omari [9], Bouza [10], Wolfe [11], Al-Omari et al. [12],
Ai-Omari [13], Mandowara and Mehta [14], Al-Omari
and Gupta [15], Pal and Singh [16], Vishwakarma et
al. [17], Jeelani et al. [18], Noor Ul Amin et al. [19],
Al-Omari and Haq [20], Saini and Kumar [21], and
Singh and Vishwakarma [22] have contributed through
di�erent estimation procedures and techniquesin the
various �elds of RSS for the estimation of population

parameters. Ahmed et al. [23] have given the predic-
tive estimation of population mean using RSS, which
shows that when natural (usual) unbiased, ratio and
regression estimators are used as predictors give the
corresponding predictive estimators same as natural
unbiased, ratio and regression estimators under the
RSS. Mehta et al. [24] introduced a general pro-
cedure for estimating �nite population mean using
RSS. Koyuncu and Al-Omari [25] developed general-
ized robust-regression-type estimators under di�erent
RSS. Vishwakarma and Singh [26,27] computed the
e�ect of measurement errors on RSS estimators of the
population mean and gave some applications to solar
energy data.

In the procedure of ranked set sample, we have l
bivariate random samples of size l from a population of
size N , and are ranked within each sample concerning
for ancillary variable X associated with Y . In the RSS
procedure, we take the �rst smallest unit of the �rst
data set size l, specify it for the �rst measurement
unit, and scrap the rest of the units. Similarly, we
take the second smallest observation of the second
data set size l, specify it for the second observation,
and scrap the rest. Proceeding this way, total l
bivariate units for up to lth term are counted, and
after k cycles of this procedure, total n = kl bivariate
RSS units are treated as Simple Random Sampling
(SRS) data, too (used for calculation in SRS). In the
extraction of RSS data, there are total kl2 units, but
only n = kl units are counted for actual computa-
tion.

�
Xj(i); Yj[i] ; j = 1; 2; 3; :::; k; i = 1; 2; 3; :::; l

�
are

the paired bivariate quanti�ed sets of the ith units in
the jth cycle. We have an unbiased estimator on the
basis of study variable under RSS along with MSE as:

T0 = �y[n] =
1
n

nX
i=1

y[i]; (7)

MSE (T0) = �Y 2 �f C2
y �W 2

y
�

= V ar (T0) : (8)

Employing the concept of auxiliary variables, Samawi
and Muttlak [8] and Bouza [28] have propounded ratio
and product estimators for population mean using RSS
as follows, respectively:

�y[R] = �y[n]

� �X
�x(n)

�
= T[R]; (9)

�y[P ] = �y[n]

�
�x(n)

�X

�
= T[P ]; (10)

where:

�y[n] =
1
n

nX
i=1

y[i]; �x(n) =
1
n

nX
i=1

x(i); and

R̂RSS =
�YRSS
�XRSS

=
�y[n]

�x(n)
:
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To obtain Bias and MSE, we have a ratio estimator
from Eq. (9) as:

T[R] = �y[R] =
�y[n]

�x(n)
�X = H

�
�x(n); �y[n]

�
: (11)

Using Taylor's series and from Eq. (11), we have:

T[R] = H
� �X; �Y

�
+H0

�
�y[n] � �Y

�
+H1

�
�x(n) � �X

�
+H2

�
�x(n) � �X

�2 +H3
�
�y[n] � �Y

�2
+H4

�
�y[n] � �Y

� �
�x(n) � �X

�
+ ::::; (12)

Eq. (13) is shown in Box I, and such that it satis�es
the following conditions:

(i) The function H
�
�x(n); �y[n]

�
is continuous and

bounded in D (dimension);
(ii) The �rst and second-order partial derivatives exist

and are continuous and bounded in D.

Therefore, from Eq. (12) and Appendix A, we have:

T[R] �= H
� �X; �Y

�
+H0 �Y e0 +H1 �Xe1 +H2 �X2e2

1

+H3 �Y 2e2
0 +H4 �Y �Xe0e1 +O (ei) : (14)

Taking expectation on both sides of Eq. (14) and from
Appendix A, we get:

E
�
T[R]

� �= H
� �X; �Y

�
+H2 �X2

�
fC2

x �W 2
x(i)

�
+H3 �Y 2

�
fC2

y �W 2
y[i]

�
+H4 �Y �X

�
fCyx �Wyx(i)

�
;

�= �Y +
� �Y

�X2

�
�X2
�
fC2

x �W 2
x(i)

�
+ (0) �Y 2

�
fC2

y �W 2
y[i]

�
+
�
� 1

�X

�
�Y �X

�
fCyx �Wyx(i)

�
; E
�
T[R] � �Y

�

�= �Y
�
fC2

x �W 2
x(i)

�� �Y
�
fCyx �Wyx(i)

�
:

Hence,

Bias
�
T[R]
�

= �Y
h
f
�
C2
x�Cyx���W 2

x(i)�Wyx(i)

�i
: (15)

From Eq. (14) we have:�
t[R] � �Y

� �= H
� �X; �Y

�
+H0 �Y e0 +H1 �Xe1

+O (ei)� �Y ;�
t[R] � �Y

� �= �Y e0 �R �Xe1 +O (ei) : (16)

Now, squaring and taking the expectation of both
sides of Eq. (16) and from Appendix A, we get:

E
�
T[R] � �Y

�2 �= E
� �Y e0

�2 +R2E
� �Xe1

�2
�2RE

� �Xe1
� � �Y e0

�
;

MSE
�
T[R]

� �= E
� �Y e0

�2 +R2E
� �Xe1

�2
�2RE

� �Xe1
� � �Y e0

�
;

�= �Y 2E(e0)2 +R2 �X2E(e1)2 � 2R �X �Y E (e1e0) ;

�= f
� �Y 2C2

y +R2 �X2C2
x � 2R �X �Y �yxCxCy

�
�� �Y 2w2

y[i] +R2 �X2w2
x(i) � 2R �X �Y wyx(i)

�
;

�= f
�
S2
y +R2S2

x � 2RSyx
�

� 1
l2r

 
lX
i=1

�2
y[i] +R2

lX
i=1

�2
x(i) � 2R

lX
i=1

�yx(i)

!
:

Hence,

MSE
�
T[R]

�
= f

�
S2
y +R2S2

x � 2RSyx
�

� �T 2
y +R2T 2

x � 2RTyx
�
: (17)

H
� �X; �Y

�
= �Y

�X
�X = �Y ; H0

� �X; �Y
�

= @(H(�x(n);�y[n]))
@�y[n]

= 1;

H1
� �X; �Y

�
= @(H(�x(n);�y[n]))

@�x(n)
= � �X

�x2
(n)

�y[n]

����
( �X; �Y )

= � �Y
�X = �R;

H2
� �X; �Y

�
= 1

2
@2(H(�x(n);�y[n]))

@�x2
(n)

= �X
�x3

(n)
�y[n]

����
( �X; �Y )

= �Y
�X2 ;

H3
� �X; �Y

�
= 1

2
@2(H(�x(n);�y[n]))

@�y2
[n]

= 0;

H4
� �X; �Y

�
= @2(H(�x(n);�y[n]))

@�x(n)@�y[n]
= � �X

�x2
(n)

����
( �X; �Y )

= � 1
�X :

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(13)

Box I
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Similarly, we have Bias and MSE of product estimator
as:
Bias (T[P ]) = f �Y

��
�yxCxCy � wyx(i)

��
; (18)

MSE
�
T[P ]

�
= f

�
S2
y +R2S2

x + 2RSyx
�

� �T 2
y +R2T 2

x + 2RTyx
�
: (19)

Also, the MSE of the product estimator can be
obtained by putting R = �R in Eq. (19).

In the context of auxiliary variables, Mandowara
and Mehta [14] have also given some ratio and product-
type estimators under RSS, which are as follows:

�yrss[mm1] = �YRSS
� �X + Cx

�XRSS + Cx

�
= T̂[1]; (20)

�yrss[mm2] = �YRSS
� �X + �2(x)

�XRSS + �2(x)

�
= T̂[2]; (21)

�yrss[mm3] = �YRSS
�

�2(x) �X + Cx
�2(x) �XRSS + Cx

�
= T̂[3]; (22)

�yrss[mm4] = �YRSS
�

Cx �X + �2(x)
Cx �XRSS + �2(x)

�
= T̂[4]; (23)

�yrss[mm5] = �YRSS
�
Cx �XRSS + �2(x)
Cx �X + �2(x)

�
= T̂[5]; (24)

and their Biases and MSEs correspondingly are as:

Bias
�
�yrss[mm1]

�
= �Y

�
f
�
C2

1C
2
x � C1�yxCyCx

�
� �C2

1W
2
x � C1Wyx

��
; (25)

MSE
�
�yrss[mm1]

�
=
�
f
�
S2
y +R2

1S
2
x � 2R1Syx

�
� �T 2

y +R2
1T

2
x � 2R1Tyx

��
; (26)

Bias
�
�yrss[mm2]

�
= �Y

�
f
�
C2

2C
2
x � C2�yxCyCx

�
� �C2

2W
2
x � C2Wyx

��
; (27)

MSE
�
�yrss[mm2]

�
=
�
f
�
S2
y +R2

2S
2
x � 2R2Syx

�
� �T 2

y +R2
2T

2
x � 2R2Tyx

��
; (28)

Bias
�
�yrss[mm3]

�
= �Y

�
f
�
C2

3C
2
x � C3�yxCyCx

�
� �C2

3W
2
x � C3Wyx

��
; (29)

MSE
�
�yrss[mm3]

�
=
�
f
�
S2
y +R2

3S
2
x � 2R3Syx

�
� �T 2

y +R2
3T

2
x � 2R3Tyx

��
; (30)

Bias
�
�yrss[mm4]

�
= �Y

�
f
�
C2

4C
2
x � C4�yxCyCx

�
� �C2

4W
2
x � C4Wyx

��
; (31)

MSE
�
�yrss[mm4]

�
=
�
f
�
S2
y +R4

2S2
x � 2R4Syx

�
� �T 2

y +R2
4T

2
x � 2R4Tyx

��
; (32)

Bias
�
�yrss[mm5]

�
= �Y

�
f (C4�yxCyCx)

� �C4Wyx(i)
��
; (33)

MSE
�
�yrss[mm5]

�
=
�
f
�
S2
y +R4

2S2
x + 2R4Syx

�
� �T 2

y +R2
4T

2
x + 2R4Tyx

��
: (34)

2. Proposed generalized class of estimators
under RSS

Motivated by Upadhyaya and Singh [29], Sisodia and
Dwivedi [30], we have suggested a class of estimators
under RSS as:

T = �YRSS
�

A �X +B
A �XRSS +B

��
: (35)

For various values of A, B, and C�, we can get a class
ratio and product type estimators, where �YRSS and
�XRSS are earlier mentioned in Section 1, and A and
B can be Cx (coe�cient of variation), �x (standard
deviation), �1(x) (skewness), �2(x) (kurtosis) and �
(correlation coe�cient).

To obtain Bias and MSE, we have proposed an
estimator as:

T = �YRSS
�

A �X +B
A �XRSS +B

��
= �y[n]

�
A �X +B
A�x(n) +B

��
= H�

�
�x(n); �y[n]

�
: (36)

Using Taylor's series on Eq. (36), we have:
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H�
� �X; �Y

�
= �Y ; H�0

� �X; �Y
�

= @(H�(�x(n);�y[n]))
@�y[n]

= 1;

H�1
� �X; �Y

�
= @(H�(�x(n);�y[n]))

@�x(n)
= � (A �X+B)��y[n]A�

(A�x(n)+B)�+1

���
( �X; �Y )

= � A� �Y
A �X+B = �RT ;

H�2
� �X; �Y

�
= 1

2
@2(H�(�x(n);�y[n]))

@�x2
(n)

= � 1
2

(A �X+B)��y[n]A�(�+1)
(A�x(n)+B)�+2

���
( �X; �Y )

= A2�(�+1) �Y
(A �X+B)2 ;

H�3
� �X; �Y

�
= 1

2
@2(H�(�x(n);�y[n]))

@�y2
[n]

= 0 ;

H�4
� �X; �Y

�
= @2(H�(�x(n);�y[n]))

@�x(n)@�y[n]
= � (A �X+B)�A�

(A�x(n)+B)�+1

���
( �X; �Y )

= � A�
A �X+B :

9>>>>>>>>>>>=>>>>>>>>>>>;
(38)

Box II

T = H�
� �X; �Y

�
+H�0

�
�y[n] � �Y

�
+H�1

�
�x[n] � �X

�
+H�2

�
�x[n] � �X

�2 +H�3
�
�y[n] � �Y

�2
+H�4

�
�y[n] � �Y

� �
�x[n] � �X

�
+ ::::; (37)

Eq. (38) is shown in Box II, and such that it satis�es
the following conditions:

(i) The function H�
�
�x(n); �y[n]

�
is continuous and

bounded in D (Dimension);
(ii) The �rst and second-order partial derivatives exist

and are continuous and bounded in D.

Therefore, from Eq. (37) and Appendix A, we
have:

T �= H�
� �X; �Y

�
+H�0 �Y e0 +H�1 �Xe1 +H�2 �X2e2

1

+H�3 �Y 2e2
0 +H�4 �Y �Xe0e1 +O (ei) : (39)

Taking expectation on both sides of Eq. (39) and from
Appendix A, we get:

E (T ) �= H�
� �X; �Y

�
+H�2 �X2

�
fC2

x �W 2
x(i)

�
+H�3 �Y 2

�
fC2

y �W 2
y[i]

�
+H�4 �Y �X

�
fCyx �Wyx(i)

�
:

�= �Y +

 
A2� (�+ 1) �Y
2
�
A �X +B

�2 ! �X2
�
fC2

x �W 2
x(i)

�
+ (0) �Y 2

�
fC2

y �W 2
y[i]

�
+
�
� A�
A �X +B

�
�Y �X

�
fCyx �Wyx(i)

�
;

E
�
T � �Y

� �= �Y
�
� (�+ 1)

2
C2

0

�
fC2

x �W 2
x(i)

��
� �Y

�
�C0

�
fCyx �Wyx(i)

��
:

Hence,

Bias (T ) �= �Y
��

� (�+ 1)
2

C2
0

�
f C2

x �W 2
x(i)

��
� ��C0

�
f Cyx �Wyx(i)

���
: (40)

From Eq. (39) we have:�
T� �Y

��=�H� � �X; �Y
�
+H�0 �Y e0+H�1 �Xe1+O (ei)� �Y

�
;�

T � �Y
� �= � �Y e0 �RT �Xe1 +O (ei)

�
:

(41)

Squaring and taking expectation on both sides of
Eq. (41) and from Appendix A, we get:

E
�
T̂ � �Y

�2 �= �Y 2E
�
e2

0
�� 2RT �X �Y E (e0e1)

+R2
T

�X2E
�
e2

1
�
;

MSE
�
T̂
� �= f

�
�Y 2C2

y +R2
T

�X2C2
x

�2RT �X �Y �yxCyCx
�
�
�

�Y 2W 2
y

+R2
T

�X2W 2
x � 2RT �X �YWyx

�
;

�= f
�
S2
y +R2

TS
2
x � 2RTSyx

�
� 1
l2r

 
lX
i=1

�2
y[i] +R2

T

lX
i=1

�2
x(i) � 2RT

lX
i=1

�yx(i)

!
:

MSE(T̂ ) �=
�
f
�
S2
y +RT 2S2

x � 2RTSyx
�

� �T 2
y +R2

TT
2
x � 2RTTyx

��
: (42)
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The optimum value of � to minimize the can easily be
found by equating its derivative to zero. i.e.:

@
@�

�
MSE(T̂ )

�
= 0 and

@2

@�2

�
MSE(T̂ )

�
> 0;

@
@�

�
f
�
S2
y +R2

TS
2
x � 2RTSyx

�
� �T 2

y +R2
TT

2
x � 2RTTyx

��
= 0;

@
@�
�
fS2

y � T 2
y
�

+
@
@�
�
fR2

TS
2
x �R2

TT
2
x
�

�2
@
@�

(fRTSyx �RTTyx) = 0;

i.e.: 0+
�
fS2

x�T 2
x
� @
@�

�
R2
T
��2 (fSyx�Tyx) @

@� (RT )=0,�
fS2

x � T 2
x
�� A �Y

A �X +B

�2

(2�)

�2 (fSyx � Tyx)
�

A �Y
A �X +B

�
= 0; (43)

where:

�=
(fSyx�Tyx)

(fS2
x�T 2

x )
�

A �Y
A �X+B

�=
(fSyx�Tyx)
(fS2

x�T 2
x )

�
A �X+B
A �Y

�
:

We denote the value of � as ��, therefore
��= (fSyx�Tyx)

(fS2
x�T 2

x )

�
A �X+B
A �Y

�
, and by di�erentiating

Eq. (43) with respect to � another time, we have
@2

@�2

�
MSE(T̂ )

�
= 2

�
fS2

x � T 2
x
� � A �Y

A �X+B

�2
> 0, which

proves optimality.
Therefore, we replace � with �� in the expression

of MSE in Eq. (43) and we obtain the minimum MSE
of the proposed estimator as follows:

MSEmin(T̂ ) =
�
f(S2

y +R�T 2S2
x � 2R�TSyx)

� �T 2
y +R�2T T 2

x � 2R�TTyx
��

= T̂[opt]; (44)

where R�T =
�
A�� �Y
A �X+B

�
= fSyx�Tyx

fS2
x�T 2

x
.

3. Particular cases of the proposed class of
estimators

Through Eq. (33) in the Section 2, we have:

T = �YRSS
�

A �X +B
A �XRSS +B

��
: (45)

Now, for di�erent values of A, B, and � we can get a
class of estimators, shown in Table 1. Hence, we obtain

a class of ratio and product estimators under RSS using
standard deviation �x, coe�cient of variation Cx, coef-
�cient of skewness �1(x), coe�cient of kurtosis �2(x),
auxiliary variable X, and coe�cient of correlation � of
both study and auxiliary variables. Also, we can obtain
the expression of Biases and MSEs of the above class of
estimators T̂i for i = 0; R; P; 1; 2; 3; :::; 13 and � = �1; 1
as:

Bias (Ti) = �Y
��

� (�+ 1)
2

C2
i

�
fC2

x �W 2
x(i)

��
� ��Ci �fCyx �Wyx(i)

���
; (46)

Table 1. Class of ratio and product estimators.

A B � Estimators
T̂[0] 0 0 0 �YRSS

T̂[R] 1 0 1 �YRSS
�

�X
�XRSS

�
T̂[P ] 1 0 {1 �YRSS

�
�XRSS

�X

�
T̂[1] 1 Cx 1 �YRSS

�
�X+Cx

�XRSS+Cx

�
T̂[2] 1 �2 (x) 1 �YRSS

�
�X+�2(x)

�XRSS+�2(x)

�
T̂[3] �2 (x) Cx 1 �YRSS

�
�2(x) �X+Cx

�2(x) �XRSS+Cx

�
T̂[4] Cx �2 (x) 1 �YRSS

�
Cx �X+�2(x)

Cx �XRSS+�2(x)

�
T̂[5] 1 � 1 �YRSS

�
�X+�

�XRSS+�

�
T̂[6] 1 �x {1 �YRSS

�
�XRSS+�x

�X+�x

�
T̂[7] �1 (x) �x {1 �YRSS

�
�1(x) �XRSS+�x
�1(x) �X+�x

�
T̂[8] �2 (x) �x {1 �YRSS

�
�2(x) �XRSS+�x
�2(x) �X+�x

�
T̂[9] 1 Cx {1 �YRSS

�
�XRSS+Cx

�X+Cx

�
T̂[10] 1 �2 (x) {1 �YRSS

�
�XRSS+�2(x)

�X+�2(x)

�
T̂[11] �2 (x) Cx {1 �YRSS

�
�2(x) �XRSS+Cx
�2(x) �X+Cx

�
T̂[12] Cx �2 (x) {1 �YRSS

�
Cx �XRSS+�2(x)
Cx �X+�2(x)

�
T̂[13] 1 � {1 �YRSS

�
�XRSS+�

�X+�

�
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MSE
�
T̂i
�

=
�
f
�
S2
y +R2

iS
2
x � 2RiSyx

�
� �T 2

y +R2
iT

2
x + 2RiTyx

��
: (47)

4. E�ciency comparisons

To show the performance of the proposed estimators,
we have compared theoretically in two cases:

- Case 1: Comparison with ratio estimator from
Eqs. (17) and (42):

MSE(T̂ ) < MSE(T[R]); if:

f
�
R2
TS

2
x � 2RTSyx

�� �R2
TT

2
x � 2RTTyx

�
< f

�
R2S2

x � 2RSyx
�� �R2T 2

x � 2RTyx
�
;

R2
T
�
f S2

x � T 2
x
�� 2RT (f Syx � Tyx)

< R2 �f S2
x � T 2

x
�� 2R (f Syx � Tyx) ;�

f S2
x � T 2

x
� �
RT 2 �R2�

< 2 (f Syx � Tyx) (RT �R) ;

2 (f Syx � Tyx)
(f S2

x � T 2
x )

�R < RT < R: (48)

- Case 2: Comparison with product estimator from
Eqs. (19) and (42):

MSE(T̂ ) < MSE(T[P ]); if:

f
�
R2
TS

2
x � 2RTSyx

�� �R2
TT

2
x � 2RTTyx

�
< f

�
R2S2

x+2RSyx
���R2

TT
2
x+2RTTyx

�
;

R2
T
�
f S2

x � T 2
x
�� 2RT (f Syx � Tyx)

< R2 �f S2
x � T 2

x
�

+ 2R (f Syx � Tyx) ;�
f S2

x � T 2
x
� �
RT 2 �R2�

< 2 (f Syx � Tyx) (RT +R) ;

�R < RT <
2 (f Syx � Tyx)

(f S2
x � T 2

x )
+R: (49)

The above e�ciency comparison clearly shows that
the proposed generalized class of estimators of the
population mean under RSS is more e�cient than
the ratio and product estimators of the population
mean under RSS. Also, the class of di�erent ratio
and product estimators will be more e�cient than
the correspondingly natural ratio estimator and

product estimators in RSS if both Cases 1 and 2
are satis�ed with the conditions. Empirical study
and simulation study will also clearly illustrate the
e�ciency.

5. Empirical study

Numerically, to explore the properties of the proposed
generalized class of the estimators over member esti-
mators of the proposed class of estimators for mean in
RSS and over unbiased estimator. We are compiling
two natural data sets from Singh [31;1111-1113]:

- Data set-I: Concerns the agricultural loans [in
thousand dollars ($000)] in di�erent states of the
USA in 1997 of all outstanding operating banks. y:
Farm loans (real estate), x: Farm loans (non-real
estate). The required values for the estimation of
means are as:

N = 50; X = 43908:0; Y = 27771:730;

�X = 878:160; �Y = 555:430;

S2
x = 1176526; S2

y = 342021:5;

C2
x = 1:52560; C2

y = 1:10860;

Sxy = 509910:410; �1(x) = 2:5914;

�2(x) = 4:6171; �xy = 0:8038:

Data set-II: Concerns the hypothetical situation of
a small village having only 30 old persons (aged over
50 years). y: Duration of the sleep (in minutes), x:
Age in years. The required values for the estimation
of means are as:

N = 30; X = 2018:0; Y = 11526:0;

�X = 67:2670; �Y = 384:20;

S2
x = 85:2370; S2

y = 3582:580;

C2
x = 0:01880; C2

y = 0:02430;

Sxy = �472:6070; �1(x) = 0:1982;

�2(x) = 3:7316; �xy = �0:8552:

We have taken 25 RSS samples from both the
population data sets. In Data set-I, we have taken set
size l = 4 with k = 3 replications, so that n = lk = 12.
Similarly, in Data set-II, we have taken set size l = 3
with k = 3 replications, so that n = lk = 9. Further,
for this 25 RSS sample data from both population data
sets, we have calculated MSEs (rounded to 0) of the
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Table 2. MSE of the ratio types estimators under RSS and t0.

Population 1, N = 50, �xy = 0:8038 7

MSE(t0) = 28502 MSE(tR) = 13972

Samples T 2
x T 2

y Tyx T̂[R] T̂[1] T̂[2] T̂[3] T̂[4] T̂[5] T̂[opt]

1 62424 15987 30598 11718 11648 11699 11714 11661 11706 8543

2 48927 8748 11861 654 652 653 654 652 653 650

3 26863 9019 15193 13426 13310 13395 13420 13332 13406 9014

4 21693 14955 17363 12301 12149 12260 12293 12178 12275 5275

5 29251 10525 16318 12387 12273 12356 12380 12294 12367 8017

6 83106 15782 35677 10073 10056 10069 10072 10059 10070 9609

7 53017 1012 22236 10769 10715 10755 10766 10725 10760 9268

8 24200 5451 11187 12990 12889 12963 12985 12908 12973 9779

9 40657 12535 21385 12222 12122 12195 12216 12141 12205 8202

10 38625 9313 16091 9561 9488 9541 9557 9501 9548 7457

11 31944 6107 13437 12083 12000 12061 12078 12015 12068 9623

12 36527 10419 13017 5406 5344 5389 5402 5355 5395 3959

13 72105 18408 34414 10251 10196 10236 10248 10207 10242 7577

14 30509 10624 17078 12745 12632 12715 12739 12653 12725 8313

15 74493 27343 45122 13906 13790 13875 13899 13812 13886 864

16 30734 9869 16268 12386 12278 12357 12379 12298 12367 8415

17 67055 13063 29246 11078 11036 11067 11076 11044 11071 9775

18 60603 19769 29675 7496 7425 7477 7492 7438 7484 4344

19 37511 11311 20253 13274 13168 13245 13268 13188 13255 9020

20 60893 12205 26437 10848 10799 10834 10845 10808 10839 9357

21 23460 9287 9229 6974 6883 6949 6969 6900 6958 4379

22 33326 15582 18815 8857 8744 8827 8851 8765 8837 4256

23 53109 16761 28830 12434 12337 12408 12429 12355 12417 7587

24 59025 3457 12803 3097 3130 3105 3098 3124 3102 2453

25 40336 9777 19515 12744 12655 12720 12738 12672 12728 9575

estimators for lighting the properties of estimators, and
results are shown in Tables 2 and 3, respectively.

Later, we took di�erent RSS samples with dif-
ferent set sizes with di�erent replications. We have
drawn, total n = lk = 6, 8, 10, 9, 12, and 15, RSS
data from Data set-I having set sizes l = 3, 4, 5 with
k = 2, 3 replications. Similarly, we have drawn, total
n = lk = 4, 6, and 9, RSS data from the Data set-II
having set sizes l = 2, 3 with k = 2, 3 replications.
Further, with this RSS data (having di�erent set sizes
and replications) from both population data sets, we
have calculated Relative E�ciencies (RE) for more

clearance on lighting the properties of the estimators.
The results through relative e�ciencies calculation are
shown in Tables 4 and 5.

6. Monte-Carlo simulation

We have carried out a Monte-Carlo simulation study
to highlight the properties of the proposed generalized
class of estimators in RSS over the unbiased estimator
and extracted estimators from the proposed estimators.
Monte-Carlo simulation is carried out in R Studio [32]
by taking a random bivariate unit from a population
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Table 3. MSE of the product types estimators under RSS and t0.

Population 2, N = 30, �xy = �0:8552

MSE(t0) = 236 MSE(tP ) = 63

Samples T 2
x T 2

y Tyx T̂[P ] T̂[6] T̂[7] T̂[8] T̂[9] T̂[10] T̂[11] T̂[12] T̂[13] T̂[opt]

1 2 55 10 49 52 69 49 50 49 49 69 48 48

2 4 188 27 44 41 36 43 42 44 44 36 45 35

3 3 60 12 32 39 64 33 35 32 32 64 31 17

4 3 97 15 34 37 53 35 35 34 34 53 33 30

5 4 227 28 31 24 11 29 27 31 31 11 32 4

6 3 43 8 30 37 64 32 33 30 30 64 29 19

7 3 53 12 45 51 74 46 48 45 45 73 44 36

8 3 82 14 49 51 64 49 49 49 49 64 48 48

9 4 153 23 34 34 40 34 34 34 34 40 34 34

10 5 157 26 31 35 45 32 33 32 32 45 31 10

11 4 143 22 49 48 51 49 49 49 49 51 49 48

12 2 77 11 42 43 57 42 42 42 42 56 42 42

13 4 176 25 43 41 38 42 42 43 43 38 44 38

14 1 137 13 24 19 19 22 21 24 24 19 25 17

15 2 71 8 11 17 40 13 14 12 11 39 11 7

16 2 63 10 62 61 70 61 61 62 62 70 62 61

17 3 143 18 39 37 37 38 38 39 39 37 40 35

18 3 52 11 59 62 80 60 60 59 59 79 59 57

19 4 210 27 35 29 18 33 32 35 35 18 36 15

20 3 91 15 37 42 59 39 40 38 37 59 37 32

21 3 213 26 42 35 20 40 38 42 42 20 43 14

22 3 118 21 62 62 68 62 62 62 62 68 62 62

23 1 79 10 54 52 59 53 53 54 54 59 55 52

24 3 140 20 50 48 49 49 48 50 50 49 50 47

25 4 204 29 52 47 36 50 49 52 52 36 52 29

Table 4. RE of the T̂[i] (ratio) and T̂opt under RSS over unbiased estimator t0.

Population 1, N = 50, �xy = 0:8038

k m T̂R T̂[R] T̂[1] T̂[2] T̂[3] T̂[4] T̂[5] T̂opt

2
3

2.04 2.85 2.87 2.85 2.85 2.86 2.85 3.25

3 2.04 3.93 3.96 3.93 3.93 3.95 3.93 4.78

2
4

2.04 2.93 2.95 2.94 2.93 2.95 2.93 4.36

3 2.04 4.87 4.88 4.87 4.87 4.88 4.87 5.06

2
5

2.04 3.57 3.62 3.58 3.57 3.61 3.57 6.12

3 2.04 5.19 5.27 5.21 5.19 5.25 5.20 8.44
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Table 5. RE of the T̂[i] (product) and T̂opt under RSS over unbiased estimator t0.

Population 2, N = 30, �xy = �0:8552
k m T̂P T̂[P ] T̂[6] T̂[7] T̂[8] T̂[9] T̂[10] T̂[11] T̂[12] T̂[13] T̂opt
2 2 3.71 4.60 4.39 3.58 4.55 4.50 4.60 4.60 3.59 4.63 4.74
3 3.71 3.82 3.93 3.68 3.86 3.89 3.82 3.82 3.69 3.79 3.94

2 3 3.71 5.38 5.63 4.74 5.48 5.56 5.38 5.38 4.76 5.32 5.64
3 3.71 6.67 8.02 12.64 7.01 7.33 6.28 6.31 12.58 6.20 12.85

Table 6. RE of the T̂[i] (ratio) and T̂opt under RSS over unbiased estimator t0.

�xy = 0:5
k m T̂R T̂[R] T̂[1] T̂[2] T̂[3] T̂[4] T̂[5] T̂opt
3 4 1.00 1.31 1.37 1.31 1.31 2.12 1.32 2.12
6 1.51 1.71 1.75 1.71 1.71 1.84 1.72 1.91

3 5 1.12 2.00 2.03 2.00 2.00 2.31 2.01 2.31
6 1.20 1.67 1.71 1.67 1.67 2.32 1.68 2.37

3 6 1.19 2.82 2.81 2.82 2.82 2.07 2.82 2.83
6 1.05 2.23 2.22 2.23 2.23 1.76 2.23 2.23

�xy = 0:7
3 4 1.50 1.87 1.88 1.87 1.87 1.64 1.87 1.90
6 1.41 1.70 1.72 1.70 1.70 1.44 1.70 1.75

3 5 1.58 2.77 2.82 2.78 2.77 3.08 2.79 3.14
6 1.40 1.77 1.96 1.77 1.77 2.86 1.80 2.97

3 6 1.83 3.31 3.36 3.31 3.31 3.11 3.33 3.52
6 2.61 2.70 2.75 2.70 2.70 2.65 2.71 2.88

�xy = 0:9
3 4 3.32 4.65 4.68 4.65 4.65 3.94 4.67 4.72
6 4.77 5.74 5.85 5.74 5.74 2.81 5.78 5.86

3 5 4.46 6.09 6.18 6.09 6.09 5.08 6.15 6.42
6 5.17 6.12 6.22 6.12 6.12 3.40 6.16 6.24

3 6 2.92 5.62 6.02 5.63 5.62 8.07 5.77 8.86
6 5.54 11.82 11.97 11.82 11.82 5.00 11.89 11.97

with (bivariate normal) means (50.0, 50.0) and covari-

ance matrix
�

1 �
� 1

�
(� = �0:9, �0:7, �0:5, 0.5, 0.7,

0.9). We have taken total bivariate RSS samples of sizes
n = lk = 12, 15, 18, 24, 30, and 36 (set sizes l = 4,
5, 6 with k = 3, 6 replications ) from the population
of size N = 100. We have replicated each simulation
study 5000 times to estimate means and MSEs, and
the results through relative e�ciencies calculation are
shown in Tables 6 and 7. The relative e�ciency formula
is as follows:

RE (V; t0) = MSE (t0)/MSE (V ); (50)

where V = tR; tP ; T̂[R]; T̂[P ]; T̂opt, and T̂[i] for i =
1; 2; 3; :::; 13.

7. Results and discussion

In the empirical study section, Table 2 presents the
MSEs of the ratio type estimators under RSS along
with MSEs of an unbiased estimator and ratio esti-
mator under SRS. We see that the ratio types member
estimators and the proposed estimator under RSS have
performed better over unbiased and ratio estimators
under SRS. Also, the proposed estimator under RSS
has the lowest MSEs in the table (has shown superior-
ity).

Table 3 exhibits the MSEs of the product type
estimators under RSS along with the MSEs of an
unbiased estimator and product estimator under SRS.
We see the product types member estimators and the
proposed estimator under RSS have performed better
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Table 7. RE of the T̂[i] (product) and T̂opt under RSS over unbiased estimator t0.

�xy = �0:5

k m T̂P T̂[P ] T̂[6] T̂[7] T̂[8] T̂[9] T̂[10] T̂[11] T̂[12] T̂[13] T̂opt

3
4

1.29 1.52 1.54 1.84 1.53 1.57 1.52 1.52 2.01 1.51 2.03

6 1.00 1.35 1.38 1.42 1.36 1.39 1.35 1.35 1.82 1.34 1.82

3
5

1.03 1.54 1.58 2.12 1.56 1.61 1.54 1.54 2.76 1.52 2.81

6 1.31 1.53 1.54 1.55 1.53 1.55 1.53 1.53 1.63 1.53 1.65

3
6

1.00 2.93 2.94 2.99 2.93 2.95 2.93 2.93 2.64 2.92 2.99

6 1.13 1.77 1.79 1.93 1.77 1.82 1.77 1.77 1.86 1.76 2.00

�xy = �0:7

3
4

1.09 1.54 1.60 2.05 1.57 1.62 1.54 1.54 3.00 1.51 3.10

6 1.62 1.69 1.70 1.71 1.69 1.72 1.69 1.69 1.74 1.68 1.85

3
5

1.46 2.13 2.16 2.27 2.14 2.2 2.13 2.13 2.53 2.11 2.61

6 2.48 2.86 2.91 2.95 2.88 2.97 2.86 2.86 2.96 2.82 3.46

3
6

3.15 3.52 3.51 2.35 3.51 3.49 3.52 3.52 2.52 3.53 3.59

6 2.40 3.64 3.65 3.65 3.65 3.66 3.64 3.64 3.02 3.63 3.66

�xy = �0:9

3
4

3.58 3.80 3.88 4.02 3.84 3.96 3.80 3.80 4.06 3.73 4.77

6 5.91 6.79 6.91 7.11 6.84 7.02 6.80 6.79 4.18 6.69 7.26

3
5

2.53 3.38 3.50 5.59 3.45 3.60 3.39 3.39 4.72 3.27 5.61

6 6.25 7.30 7.43 7.38 7.35 7.55 7.30 7.30 5.24 7.19 7.92

3
6

4.60 5.42 5.41 5.16 5.41 5.40 5.42 5.42 3.53 5.42 5.42

6 8.41 9.87 9.83 9.79 9.86 9.72 9.87 9.87 4.05 9.89 9.89

over unbiased and product estimators under SRS. Also,
the proposed estimator under RSS has the lowest MSEs
in the table (has shown superiority).

Similarly, in Tables 4 and 5, our proposed esti-
mator under RSS has shown superiority in terms of
relative e�ciencies over ratio and product type member
estimators under RSS and SRS. Also, the estimators
under RSS have increasing relative e�ciencies with the
increasing values of set sizes and replications.

Similar to the empirical study section, we com-
piled a Monte-Carlo simulation study, and the results
are in Tables 6 and 7 regarding relative e�ciencies.

Table 6 presents the relative e�ciency of the
proposed estimator, ratio type member estimators
under RSS, along with the RE of the ratio estimator
in SRS over the mean per unit estimator. We see that
the relative e�ciencies of the proposed estimator and

member estimators of the proposed estimator in RSS
have increased with increasing values of the correlation
coe�cient, set sizes, and replications.

Table 7 shows the relative e�ciency of the pro-
posed estimator, product type member estimators
under RSS, and the RE of the product estimator in
SRS over the mean per unit estimator. We see that
the relative e�ciencies of the proposed estimator and
member estimators under RSS have increased with
increasing values of the correlation coe�cient, set sizes,
and replications.

8. Conclusion

In this study, we developed a generalized class of
estimators for estimating �nite population means in
a ranked set sampling scheme. The simulation study
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shows that the proposed class of estimators performs
better than the others for all the cases and showed
�ndings on a real data example. These results are
also similar to the simulation study. Therefore, the
proposed methods in this manuscript can be considered
in many real applications, such as mean estimation
in case of missing data, quality control charts for
monitoring the process mean, and acceptance sampling
plans. In future studies, the proposed method can
be generalized by using di�erent types of ranked set
samplings to obtain more e�cient results for di�erent
cases.
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Appendix A

Notations and error terms obtained by Eq. (A.1) as
shown in Box A.I. We have another way of �nding Bias
and MSE of the proposed generalized class of estimator,
and the proposed class of estimator is as:

T = �YRSS
�

A �X +B
A �XRSS +B

��
= �y[n]

�
A �X +B
A�x(n) +B

��
:
(A.2)

Expressing the estimator from Eq. (A.2) in terms of e's
and taking approximating terms having up to degree 2,
we get:

T = �Y (1 + e0)
�

A �X +B
A �X (1 + e1) +B

��
;

�= �Y (1 + e0)
�

A �X +B
(A �X +B) +A �Xe1

��
;

�= �Y (1 + e0) [1 + C0e1]��;

where; C0 = A �X=
�
A �X +B

�
;

�= �Y
�

1+e0��C0e1+
� (�+1)

2
C2

0e
2
1��C0e1e0

�
:

Therefore,�
T � �Y

�
= �Y

�
e0 � �C0e1 +

� (�+ 1)
2

C2
0e

2
1

��C0e1e0

�
: (A.3)

Taking expectation on both side of Eq. (A.3) and from
appendix Eq. (A.1), we have:

E
�
T � �Y

�
= �Y E

�
e0 � �C0e1 +

� (�+ 1)
2

C2
0e1
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Box A.I
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@ (Bias (T ))
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Box A.II
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Optimality of the Bias

The optimum Bias can be obtained by minimizing Bias
with respect to � by taking @(Bias(T ))

@� = 0 , therefore
the equation also can be obtained as shown in Box A.II.
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replacing � by �1 in Eq. (A.4), we get:
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Squaring both sides of Eq. (A.3) and taking its expec-
tation of having a degree of not more than 2, we get:
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