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Abstract 23 

In this study, a simple and efficient dispersive liquid-liquid microextraction procedure (DLLME) 24 

was developed to remove diclofenac sodium (DF) from water samples. Various parameters such 25 

as diclofenac concentration in aqueous phase (10-50 mg/L), process time (2-10 min), extraction 26 

solvent concentration (0.005-0.025 M), and centrifuge speed (1000-5000 rpm) were investigated. 27 

The experimental design was performed by the Response Surface Methodology (RSM) 28 

according to the central composite design to reduce the number of experiments and determine the 29 

optimal extraction conditions. The effect of the single and simultaneous operational parameters 30 

was evaluated. In this regard, the extraction concentration of 0.01 M, the initial diclofenac 31 

concentration in aqueous phase 20 mg/L, the rotation speed of the centrifuge 4000 rpm, and the 32 

residence time of 8 min were obtained as the optimum operating conditions. According to the 33 

other studies and available findings, the ratio of two-phase organic and aqueous discharges 34 

(Qorg⁄Qaq) was set to 1:9. The diclofenac extraction from the aqueous phase was 77.91% in 35 

optimum operating conditions.  36 

 37 

Keywords: Dispersive Liquid-liquid microextraction; Solvent extraction; Diclofenac; Response 38 

Surface Methodology. 39 

 40 
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1. Introduction 44 

Diclofenac sodium is a non-steroidal anti-inflammatory medicine that has been used in humans 45 

since the 1970s. By blocking the effect of the enzyme cyclooxygenase, this drug reduces the 46 

production of a prostaglandin chemical in the body, responsible for causing pain and 47 

inflammation in the affected area [1–5]. In present days, one of the most crucial environmental 48 

problems is the emerging contaminant from the pharmaceutical industry, hospitals, and home 49 

drains in aquatic environments because of their persistence and potentially harmful effects on 50 

any form of aquatic life. Diclofenac accumulates in edible fruits and vegetables, having a direct 51 

effect on human health. Additionally, several research on the toxicity of diclofenac on birds, 52 

mammals, aquatic species, and plants have been published [6–10].  53 

The sample preparation phase is an extremely important part of the analysis process. In this step, 54 

a desired component will be extracted from purified and concentrated. There are a variety of 55 

preparation methods available, each with its own advantages in terms of speed and ease [11]. 56 

The selection of each technique is dependent on the analyte conditions, both physical and 57 

chemical [12–17]. Liquid-Liquid extraction has long been one of the most common methods of 58 

separating contaminants. The long process time, high solvent and extraction solvent 59 

consumption, the possibility of emulsion formation, and the need for intense mixing have made 60 

the use of this method difficult. To address the limitations of liquid-liquid extraction, liquid-61 

phase microextraction methods (LPME) have been developed. 62 

LPMEs may be classified into four broad categories: (a) single drop microextraction (SDME); 63 

(b) continuous flow microextraction (CFME); (c) hollow fiber liquid-phase microextraction (HF-64 

LPME); and (d) dispersive liquid-liquid microextraction (DLLME). These are different in how 65 

the solvent contacts the aqueous phase [18–27]. 66 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aquatic-environment
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In this research, a dispersive liquid-liquid microextraction method has been applied to separate 67 

the diclofenac from an aqueous solution. DLLME system consists of three components: water is 68 

a common part (aqueous sample), and about the other two components, one of them is insoluble 69 

in water (extraction solvent), and the other one is soluble in the other two components 70 

(dispersive solvent). 71 

DLLME protocols are typically composed of the following steps: an extraction solvent is 72 

combined with a dispersive solvent, and the solvent mixture is then quickly injected into an 73 

aqueous sample. An aqueous sample is rapidly injected with an extraction-dispersive solvent 74 

mixture, resulting in the formation of a cloudy solution composed of microdroplets of extraction 75 

solvent scattered throughout the sample. Cloudy solution production allows for the immediate 76 

partitioning of analytes from the aqueous sample into the extraction phase, which is 77 

advantageous in some cases (a major advantage of this technique). Using centrifugation, the hazy 78 

solution is separated into two phases, allowing for the simple recovery of the extraction solvent 79 

for subsequent examination of the results [28]. This method, for its very simple texture, is well 80 

compatible with most instrumental methods. For example, in gas chromatography, liquid 81 

chromatography, Ultraviolet-visible spectrometry, and flame atomic absorption spectrometry, 82 

the organic solvent can be inducted directly into the analysis instrument [29,30]. 83 

 84 

2. Materials and methods 85 

2.1. Material 86 

Diclofenac sodium (Sodium 2-[2-[(2,6dichlorophenyl)amino]acetate, C14H10C12NNaO2), a white 87 

powder with more than 98% purity, was supplied by Sigma-Aldrich (Steinheim, Germany) 88 



5 
 

(Table 1). n-Butanol as an organic solvent and Tetra-n-butylammonium bromide (TBAB) was 89 

provided by Merck Co.(Germany). TBAB is added to the solvent phase, and its cationic form is 90 

complexed with the anionic form of the diclofenac. In the dispersive liquid-liquid 91 

microextraction, the extraction solvent was selected from solvents that, in addition to being 92 

insoluble in water and having a higher density than water, could extract the desired compound 93 

[30,31]. Also, the base of the dispersive solvent is its solubility in both the aqueous phase of the 94 

sample and the organic phase of the extractor. Due to the physical and chemical properties, 95 

TBAB was selected as the dispersive solvent with the highest recycling rate. 96 

 97 

2.2. Instrumental 98 

The ultraviolet-visible (UV-vis spectrophotometry (Shimadzu UV-1800, Japan)) method was 99 

applied to measure and determine the concentration of diclofenac in the aqueous sample. 100 

Centrifuged (EBA 20-Hettich, Germany) was used to centrifuge the sample. In order to measure 101 

and control the pH during the experiments related to this research, a pH meter (PL-700PV 102 

model, Taiwan) was used.  103 

 104 

2.3. Procedure 105 

n-Butanol as an extraction solvent and TBAB as a dispersive solvent were considered. We 106 

experimented with the preconcentration of diclofenac according to the dispersive liquid-liquid 107 

microextraction method. The influential factors such as diclofenac concentration in aqueous 108 

phase (10-50 mg/L), process time (2-10 min), extraction solvent concentration (0.005-0.025 M), 109 

and centrifuge speed (1000-5000 rpm) were also considered for the focus of determining optimal 110 

values. During the process, diclofenac concentrations in the aqueous phase ranged from 10 to 50 111 

https://en.wikipedia.org/wiki/Tetra-n-butylammonium_bromide
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mg/L with a constant 1:9 ratio of organic to aqueous phases including butanol and at 1000 to 112 

5000 rpm were evaluated at various times. The calibration curve of diclofenac was prepared 113 

based on 1, 5, 10, 15, 20, 30, and 40 mg/L concentrations. 5 mL of each sample was taken and 114 

analyzed by spectrometry (Fig. 1(a)). In general, the maximum absorption of diclofenac occurs at 115 

275 nm wavelength. By linear fitting of the points obtained from the visible-ultraviolet 116 

spectrometry analysis, the calibration curve with the coefficient of determination close to 1 (R²= 117 

0.998) was obtained (Fig. 1(b)). Using this line equation, the concentration of diclofenac in 118 

unknown samples can be calculated.  119 

 120 

The extraction efficiency (EE (%)) was used for determining the mass transfer performance, and 121 

the Eq. (1) can be used for the calculation of EE%. 122 

100(%)
,
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EE

 

(1) 

inaqC , outaqC ,  (mg/L) are input concentration and output concentration, respectively. 123 

Response surface approach based on the central composite design was used to optimize the 124 

independent factors that influenced the process efficiency in the evaluation of extraction 125 

efficiency in the dispersive liquid-liquid microextraction method. Independent variables, namely 126 

diclofenac concentration in aqueous phase (A), process time (B), extraction solvent 127 

concentration (C), and centrifuge speed (D), were selected in five levels with three replicable 128 

center points. The selected ranges and levels of each factor are shown in Table 2. Also, 27 tests 129 

as per the central composite design (CCD) to evaluate the effect of variables and optimize them 130 

for diclofenac extraction were performed, as shown in Table 3 [32,33].  131 

 132 
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 133 

 134 

3. Results and discussion 135 

3.1. The pH effect 136 

The effect of solution pH on the rate of diclofenac extraction from the aqueous phase by 137 

extractor with a concentration of 0.01 M, diclofenac concentration in 20 mg/L, the rotation speed 138 

of the centrifuge 3000 rpm, and the residence time of 6 min have been investigated as a single 139 

factor, which is shown in Fig. 2. As can be observed in Fig. 2, the pH of the diclofenac samples 140 

was adjusted by using NaOH or HNO3 solutions. The extraction efficiency is reduced by 141 

decreasing the pH to less than 4. Given that the ionization constant of diclofenac is 4.16, 142 

diclofenac is protonated at a pH less than 4.16, resulting in an acidic form, which is reduced to 143 

form complexes with TBAB. As pH increased, the ionized form of diclofenac increased, which 144 

resulted in an increase in complex formation, so extraction efficiency increased. The decreases in 145 

extraction efficiency at alkaline pH can be attributable to OH and diclofenac ions competing with 146 

one another for bonds with extractant molecules [34]. In all experiments performed, the aqueous 147 

phase pH was set to 5 because the maximum extraction rate was obtained at pH 5. 148 

 149 

3.2. Statistical design 150 

After performing experiments with the surface response method, the concentration of the 151 

aqueous phase after each experiment was analyzed to calculate the extraction efficiency of 152 

diclofenac. As a function of factors independent of the process used for diclofenac extraction by 153 

liquid-liquid microextraction method, a quadratic polynomial model is derived as Eq. (2): 154 
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EE(%) = +36.38 -11.94A +2.79B +2.10C +4.50D -7.53AC 

 -10.65AD +2.18BD -11.31CD +1.96A
2
 +0.0828B

2
 +3.10C

2
  

(2) 

According to Eq. (2), E indicates the percentage of diclofenac extracted; A, B, C, and D also 155 

represent the diclofenac concentration in aqueous phase, process time, extraction solvent 156 

concentration, and centrifuge speed the extraction, respectively. Also, the laboratory values for 157 

diclofenac extraction efficiency obtained by Eq. (1) and predicted by Eq. (2) were summarized in 158 

Table 4. A maximum laboratory value (80.88) and predicted value (78.81) for diclofenac 159 

extraction efficiency can be found in run7, which includes diclofenac concentration in aqueous 160 

phase 20 mg/L, process time 8 minutes, extraction solvent concentration 0.02 M, centrifuge 161 

speed 4000 rpm. 162 

An analysis of variance (ANOVA) was carried out to determine the impact of process variables 163 

on diclofenac extraction efficiency, and the results are listed in Table 5. The values of F and p for 164 

each factor are expressed. The analysis considers the 95% confidence interval, so each factor's p-165 

value indicates the significance or insignificance of that factor in the model [35]. In accordance 166 

with the analysis of variance, the p-value for the selected model for diclofenac extraction is less 167 

than 0.05; it indicates that the chosen model is statistically significant. In contrast, the value of 168 

the model coefficient for the fitted model was 0.9751. The values of the adjusted coefficient of 169 

determination and the predicted coefficient of determination were 0.9461 and 0.8590, 170 

respectively, which shows that the selected model is able to cover laboratory data relatively well 171 

[36]. Also, based on Fig.3, there is a good correlation between the predicted and laboratory 172 

values of extraction efficiency, respectively. 173 

 174 

 175 
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3.3. Interaction of operational parameters on diclofenac extraction 176 

In order to investigate the interaction of variables, contour plots and three-dimensional diagrams 177 

of the effect of parameters on the efficiency of diclofenac extraction by DLLME were drawn by 178 

changing the values of two parameters and maintaining the other parameter constant. As shown 179 

in Fig. 4(a), the extraction efficiency has increased with increasing time and decreasing the feed 180 

phase's initial concentration. In fact, initial increase in extraction time promotes the solute 181 

transfer, thereby increasing the extraction performance. Experiments by many previous 182 

researchers indicated that the emulsion breakage increases with increase in extraction time due to 183 

gradual increase of swelling [37–39]. In Fig. 4(b), as the concentration of the extraction solvent 184 

increases, the extraction efficiency of diclofenac increases more than the concentration of the 185 

aqueous phase. Also, the extraction efficiency has increased by increasing the extraction 186 

concentration and decreasing the feed phase's initial concentration. This can be due to the 187 

organic phase being saturated with a diclofenac complex. Initially, at low concentrations of the 188 

feed phase, the transfer of diclofenac depends on the activity of the extraction, but at high 189 

concentrations, the activity coefficient is due to the colombian interaction between anion and 190 

cation. Due to the increase in ionic strength, it leads to low salt activity and thus reduces 191 

extraction [40]. Fig. 4(c) shows that the effect of centrifuge rotation speed on diclofenac 192 

extraction efficiency is greater than the initial diclofenac concentration in aqueous phase. Also, 193 

the extraction efficiency has increased by increasing the centrifuge's rotation speed and 194 

decreasing the initial concentration of the feed phase. In fact, an increase in mixing speed would 195 

increase interfacial area and the mass transfer coefficient, thereby increasing overall enrichment 196 

and extraction [41]. Fig. 5(a) shows that the effects of both factors on diclofenac extraction 197 

efficiency are very close to each other. Also, with increase the extraction concentration and 198 
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increasing the extraction time, the extraction efficiency has increased.  According to Fig. 5(b), 199 

the effect of both factors on diclofenac extraction efficiency is relatively similar. Also, the 200 

extraction efficiency has increased with increasing the centrifuge's rotation speed and increasing 201 

the extraction time. Finally, in Fig. 5(c), it is apparent that the extraction efficiency increases 202 

with increasing the extractor concentration and centrifuge rotation speed.  203 

 204 

3.3. Determination of the values of the parameters in the optimum state 205 

After investigating the effect of process variables on diclofenac extraction in the organic solvent, 206 

these variables' values can be obtained in the optimal state to achieve maximum efficiency. For 207 

this purpose, the optimization part of Design-Expert software was used. The diclofenac 208 

extraction process's optimal conditions were included 20 mg/L initial concentration of the 209 

aqueous phase, 0.01 M extraction concentration, the centrifuge rotation speed of 4000 rpm, and 210 

residence time of 8 min (Table 6). The extraction percentage of diclofenac is predicted to be 211 

78.78% based on these values. Under optimal conditions, the extraction percentage was 77.91%, 212 

which indicates that the fitted model is accurate. 213 

 214 

 215 

4. Conclusion 216 

In this study, the DLLME method was successfully applied to the extraction of diclofenac from 217 

aqueous samples. The effect of parameters such as initial aqueous phase concentration, extractor 218 

concentration, centrifuge rotation speed, and residence time under test design and pH at the 219 

optimum point as a single factor was investigated. An analysis of variance was performed to 220 

determine whether operational parameters affected the rate of diclofenac extraction. A quadratic 221 
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mathematical model with a reliability coefficient of 0.975 was developed to predict the amount 222 

of diclofenac extraction from the aqueous phase by dispersive-liquid-liquid microextraction. 223 

Based on the results, 0.01 M extraction concentration, 20 mg/L initial aqueous phase 224 

concentration, 4000 rpm centrifugation speed, 8-minute residence time, and pH 5 were 225 

determined to be the optimal conditions for the extraction. Under these conditions, the extraction 226 

efficiency was 77.91%.  Since diclofenac effluents create environmental issues, the micro-227 

aqueous organic system may be a viable solution due to the smaller organic phase than aqueous 228 

extraction, as well as the quick extraction time. 229 

 230 
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Fig. 1. (a) Visible spectrum – ultraviolet of diclofenac sodium at the various concentration (1-50 390 

mg/L) and (b) diclofenac sodium calibration curve. 391 

Fig. 2. The effect of feed phase pH on extraction efficiency. 392 

Fig. 3. Correlation between predicted and laboratory values of extraction efficiency. 393 

Fig. 4. The response levels simultaneously interaction between initial diclofenac concentration in 394 
aqueous phase (a) process time, (b) solvent concentration, and (c) centrifuge speed on the DF 395 
extraction. 396 

Fig. 5. The response levels simultaneously interaction between (a) process time and solvent 397 
concentration, (b) process time and centrifuge speed, and (c) solvent concentration and 398 
centrifuge speed on the DF extraction. 399 

 400 

 401 
 402 
Table captions 403 

Table 1. Physical and chemical properties of diclofenac sodium. 404 

Table 2. The selected ranges and levels in diclofenac extraction efficiency. 405 

Table 3. Central composite design. 406 

Table 4. Calculated and predicted results of diclofenac extraction efficiency. 407 

Table 5. analysis of variance for diclofenac liquid-liquid microextraction. 408 

Table 6. Optimal values of parameters and percentage of predicted and experimental extraction. 409 
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Fig. 1. (a) Visible spectrum – ultraviolet of diclofenac sodium at the various concentration (1-50 420 

mg/L) and (b) diclofenac sodium calibration curve. 421 
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Fig. 2. The effect of feed phase pH on extraction efficiency. 423 
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 437 

Fig. 3. Correlation between predicted and laboratory values of extraction efficiency. 438 
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Fig. 4. The response levels simultaneously interaction between initial diclofenac concentration in 449 

aqueous phase (a) process time, (b) solvent concentration, and (c) centrifuge speed on the DF 450 

extraction.  451 
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 453 

Fig. 5. The response levels simultaneously interaction between (a) process time and solvent 454 

concentration, (b) process time and centrifuge speed, and (c) solvent concentration and centrifuge 455 

speed on the DF extraction.  456 
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Table 1. Physical and chemical properties of diclofenac sodium [31]. 465 

Common name Diclofenac sodium 

Melting point 283-285 

Molecular weight (g/mol) 318.13 

Ionization constant, pKa 3.99 

Molecular structure 

 

 466 

 467 

Table 2. The selected ranges and levels in diclofenac extraction efficiency. 468 

Independent variable 

Range and levels 

-2 -1 0 1 2 

Diclofenac concentration in aqueous 

phase (mg/L) 
10 20 30 40 50 

Process time (min) 2 4 6 8 10 

Extraction solvent concentration (M) 0.005 0.01 0.015 0.02 0.025 

Centrifuge speed (rpm) 1000 2000 3000 4000 5000 

 469 

 470 

 471 
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Table 3. Central composite design. 472 

Run 

Diclofenac 

concentration in 

aqueous phase 
(mg/L) 

Process time 

(min) 

Extraction solvent 

concentration (mg/L) 

Centrifuge speed 

(rpm) 

1 10 6 0.015 3000 

2 40 4 0.01 2000 

3 30 2 0.015 3000 

4 20 8 0.02 4000 

5 30 6 0.025 3000 

6 40 8 0.02 2000 

7 40 4 0.02 2000 

8 40 4 0.02 4000 

9 40 8 0.01 4000 

10 20 8 0.02 2000 

11 50 6 0.015 3000 

12 20 8 0.01 2000 

13 40 8 0.01 2000 

14 20 4 0.01 2000 

15 20 4 0.02 2000 

16 20 4 0.01 4000 

17 30 6 0.005 3000 

18 30 6 0.015 3000 

19 40 4 0.01 4000 

20 20 4 0.02 4000 

21 30 10 0.015 3000 

22 30 6 0.015 3000 

23 40 8 0.02 4000 

24 30 6 0.015 5000 

25 20 8 0.01 4000 

26 30 6 0.015 3000 

27 30 6 0.015 1000 

 473 
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Table 4. Calculated and predicted results of diclofenac extraction efficiency. 480 

Run 
Variables Extraction efficiency (%) 

A B C D Experimental Predict 

1 10 6 0.015 3000 68.096 64.86 

2 40 4 0.01 2000 31.13 32.87 

3 30 2 0.015 3000 34.50 31.16 

4 20 8 0.02 4000 77.75 75.52 

5 30 6 0.025 3000 53.33 53.03 

6 40 8 0.02 2000 38.76 41.61 

7 40 4 0.02 2000 39.75 44.55 

8 40 4 0.02 4000 8.26 5.29 

9 40 8 0.01 4000 46.24 44.47 

10 20 8 0.02 2000 65.88 63.46 

11 50 6 0.015 3000 25.87 20.39 

12 20 8 0.01 2000 19.00 21.50 

13 40 8 0.01 2000 27.39 29.77 

14 20 4 0.01 2000 14.38 16.11 

15 20 4 0.02 2000 56.63 57.92 

16 20 4 0.01 4000 68.02 64.68 

17 30 6 0.005 3000 46.58 44.63 

18 30 6 0.015 3000 34.53 36.42 

19 40 4 0.01 4000 33.49 38.84 

20 20 4 0.02 4000 60.72 61.25 

21 30 10 0.015 3000 41.24 42.33 

22 30 6 0.015 3000 36.50 36.42 

23 40 8 0.02 4000 9.87 11.07 

24 30 6 0.015 5000 47.08 51.13 

25 20 8 0.01 4000 80.88 78.81 

26 30 6 0.015 3000 38.12 36.42 

27 30 6 0.015 1000 39.38 33.09 

 481 
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Table 5. Analysis of variance for diclofenac liquid-liquid microextraction. 489 

Source Sum of 

Squares 

df Mean 

Square 

F-value p-value  

Model 14 9364.54 668.9 33.58 < 0.0001 significant 

A-Feed 1 3409.36 3409.36 171.15 < 0.0001  
B-Time 1 191.08 191.08 9.59 0.0092  

C-TBAB 1 102.87 102.87 5.16 0.0423  

D-Speed 1 480.23 480.23 24.11 0.0004  

AB 1 75.6 75.6 3.8 0.0752  

AC 1 897.3 897.3 45.05 < 0.0001  

AD 1 1798.4 1798.4 90.28 < 0.0001  
BC 1 0.1208 0.1208 0.0061 0.9392  
BD 1 79.48 79.48 3.99 0.069  
CD 1 2064.79 2064.79 103.66 < 0.0001  
A² 1 82.28 82.28 4.13 0.0649  
B² 1 0.1166 0.1166 0.0059 0.9403  
C² 1 204.27 204.27 10.25 0.0076  
D² 1 42.3 42.3 2.12 0.1707  
Residual 12 239.04 19.92    
Lack of Fit 10 232.57 23.26 7.2 0.1281 not significant 
Pure Error 2 6.46 3.23    
Cor Total 26 9603.57     

*df: Degree of fredom 490 

 491 

Table 6. Optimal values of parameters and percentage of predicted and experimental extraction. 492 

Operational parameters The optimal amount Units 

Extractor concentration 0.01 M 

The initial concentration of the aqueous phase 20 mg/L 

Centrifuge rotation speed 4000 rpm 

stay time 8 min 

Extraction efficiency 
Predicted (%) Experimental (%) Error (%) 

78.78 77.91 1.12 
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