
1 

 

Minimum stiffness and optimal position of intermediate elastic support to 

maximize the fundamental frequency of a vibrating Timoshenko beam 

 

Hossein Ebrahimi 

Department of Mechanical Engineering, Takestan Branch, Islamic Azad University, Takestan, Iran, 

E-mail: Hossein_ebrahimi11@yahoo.com, Tel. No:  

 

Farshad Kakavand* 

Department of Mechanical Engineering, Takestan Branch, Islamic Azad University, Takestan, Iran, 

E-mail: F.kakavand@gmail.com, Tel. No:  

 

Hassan Seidi 

Department of Mechanical Engineering, Takestan Branch, Islamic Azad University, Takestan, Iran, 

E-mail: Hseidi@yahoo.com, Tel. No:  

 

*Correspondence information: Farshad Kakavand, Department of Mechanical Engineering, 

Takestan Branch, Islamic Azad University, Takestan, Iran, e-mail: F.kakavand@gmail.com, Tel. 

no:  

 

Abstract: The optimal position and minimum support stiffness of a vibrating Timoshenko beam are 

investigated to maximize the fundamental frequency. The Finite element method is employed. 

According to the maximum-minimum theorem of Courant, the optimum position is at the zero of 

the second mode shape function. The intermediate support's position and minimal stiffness for a 

wide variety of slenderness proportions were achieved. It was observed that the ideal position of 

intermediate support and its minimum stiffness are sensitive to the slenderness ratio. Also, for thick 

cantilever beams with intermediate support at the optimal location, the minimum support stiffness is 

less than 266.9, which was reported in the literature for the Euler-Bernoulli beam. The minimum 

stiffness of familiar end conditions of an optimally located beam is presented for a wide range of 

slenderness ratios. Since, in many practical applications, it is impossible to locate support at the 

optimal position, the minimum support stiffness for a beam in which its intermediate support is not 

located at the optimal position is obtained for various boundary conditions and slenderness ratios. 

Furthermore, empirical evaluations were carried out, and the findings were contrasted with 

hypothetical estimates of the initial two natural frequencies. 

 

Keywords: Euler-Bernoulli; Intermediate support; Optimal position; Minimum stiffness; Finite 

element method. 

 

 

1. Introduction 

 

A beam is applied in several engineering structures, such as industrial mixers and robotic 

manipulators, particularly in bridges, buildings, and supporting structures. Understanding the modal 

characteristics of the beam is essential for avoiding resonance. By adding intermediate support, we 

can improve its modal characteristics.  
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In addition to being required to maintain a structure solidly, supports can be extremely important to 

the stability and understanding of structural dynamics. A slight change to the stiffness or position of 

intermediate support can dramatically influence the natural frequencies and critical buckling load, 

significantly improving the structural performance. 

Courant [1] stated that the addition of n kinematic limitations to a system will result in new 

eigenvalues which satisfy the following inequalities:  

1i n i i n       

i is the i
th

 eigenvalue of the constrained system, and i is the i
th

 eigenvalue of the unconstrained 

system [2]. The maximum-minimum theorem of Courant indicated how n kinematical constrained 

should be applied in order for the upper limit of the above inequality to be reached. 

When the optimal position of an intermediate support is determined, according to Courant and 

Hilbert [3], the optimal point of the intermediate support is at the zero of the unrestricted beam's 

second mode shape function (ZSMS). Concerning a cantilever beam, it is 0.7834L. Based on the 

maximum-minimum theorem of Courant using intermediate support located at the optimal position, 

the constrained beam's first natural frequency equals the unconstrained cantilever beam's second 

natural frequency. 

Because constructing support containing infinite stiffness is unachievable, the lowest stiffness of 

support necessary for maximizing natural frequency is of tremendous importance in engineering 

applications. Akesson and Olhoff [4] have shown that for an Euler-Bernoulli cantilever beam that 

was imposed by an optimally located elastic support, i.e., at 0.7834L , the increasing of support 

stiffness yields the increase of the fundamental frequency, but After passing a critical value which 

they called minimum stiffness, increasing of support stiffness does not affect fundamental 

frequency. They obtained this non-dimensionalized minimum stiffness with numerical methods as 

266.9. Wang [5] obtained a minimum value of 266.87 by the analytical method and assumed a zero 

slope of mode shape at the optimal position. 

The effect of intermediate supports on critical buckling loads and dynamic response are studied in 

many published papers response of beams. Åkesson and Olhoff [6] investigated the influence of 

different elastic support positions and stiffness on the frequency of the column buckling loads' 

greatest value. Rao [7] provided accurate and precise frequency and mode shape equations of the 

clamped both ends uniform beams with intermediate elastic support.  The ideal support locations for 

a cantilever beam and a rectangular cantilever plate were determined using sensitivity analysis of 

eigenvalues by Won and Park [8].  With the endpoints elastically restricted against rotation and 

translation, Albaracin et al.'s [9] investigation focused on the uniform beam problem with 

intermediate restrictions. The support designs for layouts that relates to the optimization of 

boundary conditions were proposed by Zhu and Zhang [10] after their study to increase 

the structures' natural frequency. In order to reduce the maximum bending moment and increase the 

natural frequency, Wang examined the best designs of structural support placements [11, 12]. 

Support position optimization involving minimal stiffness regarding plate systems, such as support 

mass, was investigated by Wang and Friswell [13] in addition to the least support stiffness 

necessary to increase the plate systems' basic natural frequency. The basic frequency of plate was 

maximized by Kong [14] by analyzing the vibration of plates under different boundary and 

intermediate support positions. He then determined the best position and stiffness of discrete elastic 

supports. Wang et al. [15] discovered how to adjust the basic natural frequency of rectangular plates 
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by locating the lowest possible stiffness of point support. Aydin studied cantilever beams backed up 

by optimum elastic springs to reduce dynamic deviations and surges [16] and the most effective 

distribution of elastic springs wherever a cantilever beam is mounted and minimizing the impact of 

shear force on the beam supporting [17]. For Euler-Bernoulli beams containing elastic support, 

Roncevic et al. [18] investigated the frequency equation and mode forms. Abdullatif [19] analyzed 

the effect of intermediate support on the critical stability of a cantilever with non-conservative 

loading.  

Due to the importance of the dynamic response of the beams with intermediate supports, some 

studies have been done on forced and natural vibrations on multi-span beams. Researchers studied 

the multi-span beams’ axial vibrations having concentrated masses [20], multi-span beams’ 

unconstrained vibration having flexible constraints [21], and the free and forced vibration 

characteristics of a Bernoulli-Euler multi-span beam carrying several different concentrated 

elements [22]. 

Among the studies performed to optimize the fundamental frequency and obtain the minimum 

stiffness of the intermediate support, providing an accurate solution method for determining the 

natural frequency and modes shape of the beam with intermediate supports for different boundary 

conditions has been the subject of interest to researchers. These methods have been performed for 

Euler-Bernoulli and Timoshenko beams. Laplace transform method [23], dynamic stiffness matrix 

method [24], and series expansion approach [25], the Green’s function method (GFM) [26] 

implemented to confront the beams’ vibration assessment having elastic supports or attachments 

include these methods.  To determine the Euler-Bernoulli beams' natural frequencies and mode 

shapes, recent research by Roncevic et al. [27] compared the effectiveness of two analytical 

techniques (Laplace transform and GFM). They expanded the investigation by thoroughly 

addressing fifty-nine different boundary-setting combinations for beams backed up by translational 

springs [18]. Given an unpredictable frequency of intermediate elastic constraint, Luo et al. [28] 

propose a precise closed-form solution for unconstrained vibration of discretely supported Euler-

Bernoulli and Timoshenko beams. The generalized function approach is employed to determine the 

accurate eigenvalue equations and mode shapes, extending the universal solution of mode forms as 

a blend of typical trigonometric/hyperbolic functions with incorporation constants expanded to 

generalized functions.  

Most of the research on optimizing fundamental frequencies by adding intermediate support is 

founded on the Euler-Bernoulli beam theory. In addition, in many industrial applications, it is 

impossible to add support in the optimal location; hence the designer has to add support at other 

points. It is clear that the maximum limit of the first frequency, in this case, is the frequency 

corresponding to applying for the rigid support at that point. 

This paper aims to study the effect of placing elastic supports at any location in thick and thin 

beams on the required stiffness and first natural frequency to optimize the fundamental frequencies 

of a C-F Timoshenko beam. The FEM is applied to free vibration. The validity and accuracy of the 

results are evaluated through comparison to an analytical method and previous works. The 

optimization of the fundamental frequency was carried out by exploring the impact of the 

intermediate elastic support’s position and stiffness on the fundamental frequency. This is clear that 

if we add support at a non-optimal position, the minimum stiffness will not exist. Therefore we 

considered a 5% tolerance zone to determine the minimum stiffness. The design curve is presented 

through the minimum stiffness and optimum frequency at different mass ratios. 
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This paper is organized as follows. In sections 1, 2, and 3, we have established analytical models of 

the Euler-Bernoulli, Timoshenko, and FE models, respectively. In section 4 optimum position of 

intermediate support based on the Timoshenko model was found. In section 5, the minimum 

stiffness of internal support was found, and a comprehensive discussion about changing mode shape 

and variation of the second mode is presented. In section 6, we suggest a tolerance zone to 

introduce a minimum stiffness for a beam with a non-optimally located internal support. 

 

2. Euler-Bernoulli analytical model 

 

A cantilever beam with intermediate elastic support is located at a distance kx from the clamp end, 

as shown in Figure 1. Based on Euler-Bernoulli theory, the governing Equation for the vibration of 

the beam is as follows [29]: 

 

(1) 
4 2

4 2

( , ) ( , )
0

w x t w x t
EI A

x t


 
 

 
 

 

Where E, I, A, ρ, and w(x,t) represent the elastic modulus, inertia moment, cross-section domain, 

density, and the deflection of the beam at cross-section x at time t, respectively. Considering simple 

harmonic motion, the solution of Eq. (1) is assumed as follows: 

(2) ( , ) ( ) i tw x t W x e   

Where ( )W x represents the mode shape function, and is the natural beam frequency. After 

replacing Eq. (2) with Eq. (1), the corresponding eigenvalue problem can be formulated as follows: 

(3) 
(4) 4( ) ( ) 0W x W x   

Where 
4 2 /A EI    is the dimensionless frequency parameter; the sub-functions in Equation 

(3), the general solution of mode shapes can be written as: 
 

(4) 
1 1 2 3 4( ) sin( ) cos( ) sinh( ) cosh( )W x C x C x C x C x       ,  0 kx x   

(5) 
2 5 6 7 8( ) sin( ) cos( ) sinh( ) cosh( )W x C x C x C x C x       ,  kx x L   

The non-dimensionalized natural frequencies as  are defined throughout the paper either in the 

Timoshenko model or the Euler-Bernoulli model. To obtain constant coefficients 1C to 8C and 

natural frequencies, we have four boundary settings at both ends of the beam and four continuity 

and jump conditions at the junction point kx . At the clamped end, the deflection and the slope are 

zero. The shear force and the bending moment are zero at the free end. As a result, the end 

boundary conditions of the beam will be as follows: 

1 1 2 2(0) (0) ( ) ( ) 0W W W L W L       (6) 

At point kx , where the elastic support is located, the deflection, slope, and bending moment are 

continuous, and the shear force has a jump. Four boundary conditions at the junction point are: 
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1 2( ) ( ),k kW x W x    
1 2( ) ( )k kW x W x    

1 2( ) ( ),k kW x W x      1 2 1( ) ( ) ( )k k k

k
W x W x W x

EI
    

(7) 

Appling eight boundary conditions (6) and (7) to Eqs. (4) and (5) and establishing the 

corresponding characteristics equation, the natural frequencies and mode shapes will be found. For 

known values of and b, natural frequencies can be obtained from the characteristic Equation. 

 

3. Timoshenko model 

 

The following are Timoshenko beam's unrestricted vibration equations [29]: 

(8-a) 
2 2

2 2

( , ) ( , )
0

w x t w x t
A AG

t x x


 

   
   

   
 

(8-b) 
2 2

2 2

( , ) ( , ) ( , )
( , ) 0

x t x t w x t
I EI AG x t

t x x

 
  

   
    

   
 

Where  the shear correction factor, w and ψ is indicate the beam axis’s deflection and bending 

slope, respectively. Appling separation of the variable method, the mode shapes lead to: 

 

(9) 
31 2 4

31 2 4

( )
sin( ) cos( ) sinh( ) cosh( )

( )

CC C CW x
ax ax bx bx

DD D Dx

       
          

        
 

Where ( )W x and ( )x indicate the modal functions explaining the deflection and flexion slope, 

respectively. The coefficients  and b are related to , given by [29]: 

 

1/2
2

2 2
2

2 2
a

G G

 


 

 
 

    
  
 

 

(10) 

1/2
2

2 2
2

2 2
b

G G

 


 

 
 

     
  
 

 

The sub-functions of the spatial solution can be written as: 

31 1 2 4

31 1 2 4

( )
sin( ) cos( ) sinh( ) cosh( ),

( )

CW x C C C
ax ax bx bx

Dx D D D

        
           

        
  0 kx x   

 

5 6 7 82

5 6 7 82

( )
sin( ) cos( ) sinh( ) cosh( ),

( )

C C C CW x
ax ax bx bx

D D D Dx

        
           

         
   kx x L   (11) 

The coefficients iC and iD are related to each other. Similar to the previous section, eight boundary 

conditions can be written as follows: 
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 1 1 2 2 2(0) (0) ( ) ( ) ( ) 0W L AG W L L        

(12) 

1 2( ) ( ),k kW x W x   

1 2( ) ( ),k kx x   

1 2( ) ( ),k kx x     

   1 1 2 2 1( ) ( ) ( ) ( ) ( )k k k k kAG W x x AG W x x kW x        

Consequently, the characteristic Equation can be derived by imposing boundary conditions (12) to 

mode shape functions (11). The natural frequency and mode shape are obtained by solving the 

characteristic Equation. 

 

4. Finite element model 

 

In this section, the finite element method is used to evaluate natural frequencies. For the Euler-

Bernoulli beam, the deformation vector and shape functions are as follows [2, 30]: 

 1 1, , ,
T

e e e e eq w w    
(13) 

 

2

1 1

2

1

3 2

1

2

1

( ) (2 3 )

( )( )1

( ) (2 3 )

( ) ( )

e e e

e e e

w

e e e e

e e e

x x x x x

h x x x x
N

h x x x x x

h x x x x

 







   
 

  
    
 

   

 (14) 

1e e eh x x   (15) 

ew , e , 1ew  , and 1e   are deflection and slope at node “e ” and “ 1e  ” respectively. For 

Timoshenko Beam, deformation vector and shape functions are [30]: 
 

 1 1, , ,
T

e e e e eq w w    (16) 

 
2 2

1 1 1 1

2 2

1 1 1

2

1 1 1 1

2 2

1 1 1

2 2

1

( ) (2 12) 3 ( )

( ) ( 2 12)

( )( )( 6)

( )( 2 12)

( ) (2 12) 3

( )

e e e e e

e e e e e e

e e e e e e e

e e e e e e

w

e e e e

e e

x x x xx x x x x

x x x x x x

x x x x xx xx x x x

x x x x x x
N

x x x xx x x

x x

   

  

   

  

   

   

  

   

  



     


   

     


   


    



1

2 2

1 1

2

1 1 1

2 2

1 1 1

( )

( 2 12)

( )( )( 6)

( )( 2 12)

e

e e e e

e e e e e e e

e e e e e e

x x

x x x x

x x x x xx x xx x x

x x x x x x

  

   

  



 

  

  

 
 
 
 
 
 
 
 

   
 

      
     

 (17) 
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1

2 2

1 1 1

1 1

2 2

1 1 1

1

2 2

1 1 1

1

1

6 ( )( )

( )( 2 12)

( ) 3 ( )( )

( ) ( 2 12)

6 ( )( )

( )( 2 12)

( ) 3 ( )( )

( ) (

e e

e e e e e e

e e e

e e e e e e

e e

e e e e e e

e e e

e e e

x x x x

x x x x x x

x x x x x x

x x x x x x
N

x x x x

x x x x x x

x x x x x x

x x x





  



  



  







  

 

  



  





 


   

  


   


 

   

  
 

 2 2

1 12 12)e e ex x x  

 
 
 
 
 
 
 
 
 
 
 

   

 (18) 

  

Where  is /AG EI . Expressing a weak form of governing equations and imposing boundary 

conditions, one gets the Equation for a single finite element in the following form: 

0e e e em q k q   (19) 

Elemental matrixes for the Euler-Bernoulli model are: 

1

2 2

2 2

e

e

T
x

w w
e

x

d N d N
k EI dx

dx dx



   (20) 

1e

e

x
T

e w w
x

m AN N dx


   (21) 

Elemental matrixes for the Timoshenko model are: 

1e

e

T T
x

w w
e

x

dN dNdN dN
k AG N N EI dx

dx dx dx dx

 

 

   

          
  (22) 

 
1e

e

x
T T

e w w
x

m AN N IN N dx  


   (23) 

Obviously, the presence of elastic support will change the stiffness matrix of the corresponding 

element to which the spring is connected. Since the elastic support is not necessarily located at 

nodes, the additional elemental matrix corresponding to the element to which the elastic support is 

attached to will be as follows: 

k

Spring T

e w w
x x

k k N N


     (24) 

This matrix should be added to the elemental matrix of the corresponding element. After the 

assembling process, one gets the following expression: 

0MQ KQ   (25) 

Q is the global deformation matrix for Euler Bernoulli and Timoshenko model. M and K are global 

mass and stiffness matrices, respectively. The solution of Eq. (25) is assumed to be harmonic as: 

i tQ Xe   (26) 
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Where X is the vector of amplitudes, and  is the natural vibration frequency. Finally, the 

corresponding eigenvalue problem is: 

    2 0i iK M X   (27) 

The natural frequencies are the solution of the following characteristic Equation: 

    2det 0K M    (28) 

 

5. Numerical results and discussion  

 

For simplicity of numerical investigations and convenience of discussions, dimensionless 

parameters are introduced as follows: 
3

,s

kL
K

EI
      kx

L
   

 

Figure 2 depicts the first mode shape of a cantilever beam having an intermediate elastic supporting 

with 300sK   at 0.7834  . Mode shape was plotted for two L/R ratios, where R is the radius of 

the gyration of a cross-section. As is clear from the figure for thin beam, all models, including the 

Analytical and FEM of Timoshenko and Euler-Bernoulli theories, are coincident. Nevertheless, 

there is a remarkable difference between Timoshenko and Euler-Bernoulli's models for thick beams. 

It might be surprising having a node in first mode shape. 

  
5.1. Optimum position of elastic support 
 

Courant's Maximum-Minimum theorem states that if rigid support is added at the beam ZSMS, the 

restricted beam’s initial natural frequency equals the unrestricted beam’s second natural frequency. 

We have considered rigid intermediate support at position b. Figure 3 depicts the first non-

dimensionalized natural frequency versus the position of rigid support for a cantilever beam for 

various slenderness ratios. 
 

It is known that the optimum position of a rigid support on a cantilever beam for Euler-Bernoulli 

beams is 0.7834   regardless of the L/R ratio. However, in the Timoshenko model, the optimum 

position is dependent on the slenderness ratio. Table 1 shows the value of a cantilever beam's first 

and second natural frequencies for an unconstrained beam. Optimum positions for other boundary 

conditions are tabulated in Table 2 for various values of slenderness ratios. 

 

5.2. Minimum stiffness at the optimum position 

 

As mentioned before, adding rigid intermediate support at the optimum position, listed in Table 2, 

for instance, C-F beam with optimum position 0.7834 , the restricted beam’s basic frequency equals 

the unrestricted beam’s second natural frequency  
2

3.5030 21.4862L   . Akesson and Olhoff 

[4] have shown that the support does not need to be rigid to increase natural frequency to its 

maximum level. They showed that if the support stiffness is more significant than a "minimum 

stiffness" value, the fundamental frequency will be maximized. 
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As Figure 4 depicts, for the ratio / 20L R   and 0sK  , the natural frequency equals 

 
2

3.4370L  . As the stiffness of the intermediate support increases, the natural frequency 

increases nonlinearly. For a critical value of stiffness called "minimum stiffness," 140sK  , the 

value of the natural frequency equals the second natural frequency of the unconstrained beam, 

 
2

19.1576L  . We call this point knee point. After the knee point, increasing support stiffness 

does not affect the natural frequency, and it remains constant regardless of any stiffness change. In 

addition, the minimum stiffness values vary for different L/R ratios and must be calculated for each 

case. 

For the Euler-Bernoulli beam, the minimum stiffness for the cantilever beam was reported as 266.9 

by Akesson and Olhoff [4] and 266.87 by Wang [5]. Using the Timoshenko model, the minimum 

stiffness value depends on the slenderness ratio. Table 3 shows the minimum stiffness for different 

boundary conditions and slenderness ratios. 

 

When the stiffness increases after the knee point, the first natural frequency, and corresponding 

mode shape remain fixed, the question is, what is the effect of increasing stiffness above the knee 

point? 

Figures 5 and 6 show the variation of first and second frequencies and corresponding mode shapes 

of a cantilever beam for various values of intermediate support stiffness. It is astonishing that before 

the knee point, the second frequency remains constant, and the first frequency changes, but after the 

knee point, the first frequency remains fixed, and the second frequency varies.  
 

 

5.3. Minimum stiffness at an arbitrary position 
 

One of the present study's most critical issues is determining the value of support stiffness to 

optimize the first natural frequency by placing the elastic support at an arbitrary position, which can 

be very useful in practical design because of practical limitations. 

In many practical applications, locating support at the optimal position is impossible. In this section, 

we look forward to the effect of an intermediate support located at an arbitrary position. 

Figure 7 shows the fundamental frequency of a cantilever beam versus support stiffness for 

different values of ξ and / 50L R  . Figure 7 depicts that for values of ξ different to 0.7834, there is 

no knee point, and as the stiffness increases, the natural frequency asymptotically increases to its 

maximum value. The maximum value corresponds to a rigid support, less than the second frequency 

of the unconstrained beam, as courant's theorem states. 

Here we are faced with a challenge, how can we define a minimum stiffness for non-optimally 

located support? We have considered a 5% tolerance zone. We define the minimum stiffness as a 

stiffness value that increases the first frequency to 95% of its maximum value. 

Figure 8 shows the tolerance zone for a cantilever beam with / 50L R  and 0.5  . Considering 

5% tolerance, the minimum stiffness and natural frequency obtain 1111sK  and  
2

9.1690L  , 

respectively. After this point, increasing stiffness from 1111 to 2500 yields a slight increase in the 

frequency of about 0.3. As mentioned before, since the support position is not at the optimum 

position, the stiffness curve has no knee point. 
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Figures (9) - (12) show the design curve based on this tolerance zone for different boundary 

conditions. 

 

 

6. Experimental Validation 

 

Hypothetical findings are contrasted with empirical data in this section. The experiments were 

performed on the C-F beam, as shown in Figure 13. The dimensions of the beam specimens are 

1600 and 1200 mm in length and 10 mm in diameter. The experimental setup includes an impulse 

hammer (Model no: 086D05 and sensitivity: 0.23 mV/N), accelerometer (Model no: IMI603 and 

sensitivity: 100 mV/g), and data acquisition (DAQ) board (Model no: NI4431), and signal analysis 

software 

The accelerometer was placed on the beam's free end to record the acceleration signals, and a 

hammer was used to excite the beam at 0.8L. The mass of the accelerometers is assumed to have a 

negligible effect. The fast Fourier transform (FFT) technique can be employed to process the 

acceleration signals once they are digitalized by the DAQ device. 

Five tests are conducted. The FFTs for the case with L = 1.2 m are plotted in Figures (14)-(16).  The 

neutral frequencies are obtained and summarized in Table 4 to further comprehend the 

discrepancies. A thin, long beam was employed in the tests. Due to low bending stiffness, vibration 

in different directions, and accelerometer measurement error at low frequencies, the natural 

frequency measurements have significant errors in the unsupported beams, particularly the one with 

a 1.6 m length. The difference between the experimental and numerical frequencies became 

negligible with intermediate support and increased system stiffness. It was observed that the middle 

support increased the initial natural frequency. The frequency of the beam with a length of 1.2 m 

was calculated to be 3.9 Hz (22% error). A place of support at 0.58L from the clamp end raised the 

natural frequency to 18.9 Hz. A change in the support location from 0.58L to 0.83L increased the 

natural frequency from 18.9 to 30.5 Hz. The negligible difference between the results could be 

attributed to the weight of the accelerometer. A shift in the support location toward the second-

mode node of the unconstrained beam (i.e., 0.7834L) changed the frequency closer to the 

unrestricted beam’s second natural frequency (31.24 Hz). The experimental results supported both 

Courant's maximum-minimum principle and numerical model. This ensures that the proposed 

graphs can be employed as a reference in designing beams with intermediate support under different 

boundary conditions. 

 

7. Conclusions 
 

This paper is studied the maximizing of the first natural frequency associated with the transverse 

vibrations of a Timoshenko's beam with rigid and elastic intermediate support. Using Courant's 

maximum-minimum theorem, an additional constraint was imposed on the beam. Motion equations 

were solved analytically and numerically using the finite element method. After validating the 

results through comparison to an analytical method and previous works, the impacts of the 

slenderness ratio and the position and stiffness of intermediate elastic supports on the fundamental 

frequency were investigated. It was observed that after a value of the minimum stiffness, the first 

natural frequency remains constant, which is completely different from the reported result of the 

Euler-Bernoulli beam. In many practical applications, it is not possible to add support at the 
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optimum position. It was shown that, in this case, the frequency versus stiffness diagram has no 

knee point. For a 5% tolerance zone to determine the minimum stiffness and optimal frequency at 

different slenderness ratios and boundary conditions, the design curve was presented. These curves 

give us the minimum stiffness and raised natural frequency for an arbitrary position of intermediate 

supports.  

Ultimately, empirical testing was carried out, with the findings contrasted with hypothetical 

estimations of the initial two natural frequencies. A great agreement in frequency values was seen 

when comparing the findings.  

 

Nomenclature 

 

A Beam cross-section area 

E Elastic modulus 

G Shear modulus 

ρ Density  

L Beam length 

I Area moment of inertia 

μ Shear correction factor 

k Support stiffness 

Ks Dimensionless support stiffness 

t Time 

x Distance along the x axis 

𝑥𝑘 Location of the elastic support 

ξ Dimensionless length 

w(t) Lateral deflection of the beam 

ψ(t) Bending slope of the beam 

𝜔 Frequency 

β Dimensionless frequency 

Prime Differentiation with respect to x 
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Figure 1. Cantilever beam with elastic intermediate support [5] 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

 

 

 

 

Figure 2. First mode shape of cantilever beam on intermediate elastic support 
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Figure 3. Based on the rigid support First natural frequency 
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Figure 4. The first natural frequency versus support stiffness for cantilever beam 
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Figure 5. . First and Second Frequencies for L/R = 100 and rigid support at 0.7834  for the cantilever 

beam 
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Figure 6. Comparison of first and second mode shape for stiffness value of C-F beam 
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Figure 7. Frequency variation in elasticity for position support points in different locations 
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Figure 8. Introducing tolerance zone 
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Figure 9. Design Curves for C-F boundary condition 
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Figure 10. Design Curves for C-C boundary condition 
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Figure 11. Design Curves for C-S boundary condition 
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Figure 12. Design Curves for S-S boundary condition 
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Figure 13. Experimental test setup cantilever condition 
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Figure 14. The frequency spectrum of the tip beam without support 
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Figure 15. The frequency spectrum of the tip beam with support located at 0.7 (m) from the clamp end 
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Figure 16. The frequency spectrum of the tip beam with support located at 1 (m) from the clamp end 
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Table 1. Natural Frequencies of Cantilever unconstrained beam 

 
 

L/R 
Timoshenko’s model Euler-Bernoulli model 

First Mode Second Mode First Mode Second Mode 

10 3.2326 14.5588 

3.5160 20.0354 
20 3.4370 19.1576 

50 3.5030 21.4862 

100 3.5128 21.8971 
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Table 2. Optimum position of intermediate support (ξ) 

 

 

End Condition L/R 
Timoshenko 

model 

Euler-Bernoulli 

Model 

C-F 

10 0.7773 

0.7834 
20 0.7805 

50 0.7829 

100 0.7833 

C-S 

10 0.5292 

0.5575 
20 0.5463 

50 0.5553 

100 0.5569 

C-C 

10 0.5 

0.5 
20 0.5 

50 0.5 

100 0.5 

S-S 

10 0.5 

0.5 
20 0.5 

50 0.5 

100 0.5 
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Table 3. Minimum stiffness and raised frequency for Timoshenko Model 

 

End 

condition 
L/R 

Minimum 

stiffness 

Unconstrained 

frequency 

constrained 

frequency 

C-F 

10 138.5 3.2258 3.2258 

20 216.6 3.4351 19.0974 

50 257.08 3.5028 21.4772 

100 264.6 3.5129 21.8989 

∞ 267 3.5160 22.0330 

C-S 

10 887.55 11.0667 27.0633 

20 1113 13.8518 39.0804 

50 1320.67 15.1344 47.5689 

100 1366.61 15.3506 49.3654 

∞ 1377.65 15.4182 49.9646 

C-C 

10 705.57 13.8079 28.4544 

20 1271.83 18.8285 44.3008 

50 1702.60 21.6767 57.4991 

100 1800.17 22.2055 60.6146 

∞ 1833.67 22.3733 61.6728 

S-S 

10 1017.96 8.3816 25.3097 

20 945.23 9.4095 33.5394 

50 982.4 9.7917 38.2838 

100 992.25 9.8511 39.1851 

∞ 995.91 9.8696 39.4783 
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Table 4. Comparison of experimental results and FEM 

 

Test No. L (m) ξ 𝑥𝑘 (m) 
Natural Frequency (Hz)  

FEM Experimental Difference (%) 

1 
1.6 

0 0 2.804 2.4 14.40 

2 0.625 1 11.80 13.5 14.40 

3 

1.2 

0 0 5.005 3.9 22.07 

4 0.58 0.7 18.17 18.9 4.01 

5 0.83 1 30.07 30.5 1.43 
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