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Abstract 

Sourcing resilience has become a primary concern in most closed-loop supply chains (CLSC). 

Companies face the option of sourcing their raw materials from suppliers or recycling centers though 

the latter can be disrupted sometimes. In this study, a multi-stage, stochastic programming (MSSP) 

model is developed to analyze how a company can proactively employ sourcing strategies along with 

pricing policies to enhance sourcing resilience in a CLSC, where the return of end-of-life (used) 

products into recycling centers is stochastic and sensitive to the purchasing price. The stochastic 

return is modelled using a scenario-tree-based approach. Since the sample average approximation 

algorithm (SAA) in scenario generation can lead to an increased number of scenarios and make the 

model hard to solve, a backward scenario reduction algorithm is employed to efficiently reduce the 

problem size. The findings indicate that an effective pricing policy can help determine the resilient 

sourcing strategy in the CLSC network design problem and, therefore, maximize the total profit and 

mitigate the disruption risks.  

Keywords: Close loop supply chain; Pricing policy; Sourcing resilience; Stochastic programming, 

Automotive battery industry.   

 

1. Introduction 

Nowadays, because of the increased risks of business environments and limited natural resources, 

designing CLSCs has become a necessity, especially on a global scale [1]. Recycling in CLSC 

reduces the need for virgin raw materials, with lower energy consumption and environmental 

pollution [2]. It is, thus, vital to provide conditions to recycle such materials to attain sustainability 

benefits.  

      As recycling in CLSC contributes to the economic and environmental aspects of sustainability, it 

is essential to deal with the risks of sourcing through recycling [3]. The recycling centers may 
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sometimes be disrupted due to the fluctuations in the return flows of used products. Here, the most 

critical risk is customers’ reluctance to return the used products to the intended collection centers. 

According to the existing literature, sourcing resilience is an important criterion for enhancing the 

security of the supply of critical materials against disruption risks and improving the long-term 

performance of a CLSC in today’s turbulent and competitive environments (e.g. [4, 5]). Recycling 

capacity expansion in CLSCs is a widely-used sourcing resilience strategy for cheap and safe sourcing 

[6]. This strategy enables companies to use materials generated from the return flows of the used 

products in the CLSC instead of solely using virgin materials sourced from suppliers [7]. 

Consequently, manufacturers will have two sourcing options: (1) cheaper but less reliable recycling 

centers, or (2) more reliable external suppliers who demand higher prices for their products.  

A proper pricing policy in the supply chain can attract new customers and increase the market 

share of companies [8, 9]. To mitigate the risks related to the return flow of used products, companies 

can offer attractive prices to encourage customers to return their used products to recycling centers 

[10]. Since a fair pricing policy for used products can reduce the impact of recycling disruptions, the 

importance of pricing policy for the success of sourcing strategy should be taken into account in the 

CLSC network design problem (e.g. [8]). In addition, since a pricing policy can encourage the return 

of used products and result in increased return costs, firms need to balance these two possible 

outcomes in developing a return policy. In this respect, this study aims to provide insights into 

incorporating the sourcing strategy and pricing policy. Thus, we pose the research questions as 

follows:  

1) What is the effective sourcing strategy for mitigating supply disruption risks according to the 

above-described sourcing options?  

2) How should the capacity expansion strategy of recycling facilities, as a proactive and resilient 

strategy, be applied in designing the CLSC network?  

3) For the success of the sourcing strategy, how should the pricing policy be developed to 

enhance sourcing resilience through recycling?   

To the best of our knowledge, this research is the first to apply a mathematical programming approach 

to address the effect of pricing policy on the sourcing resilience strategy in recycling disruption risk 

management under the CLSC design problem. We analyze how pricing policy can determine the 

optimal sourcing strategy for manufacturers to mitigate disruptions. We use price adjustment of new 

and used products at the beginning of each period as a proactive and practical policy for mitigating the 

return disruptions of used products that the recycling centers face. For this purpose, we apply a MSSP  

approach to incorporate the sourcing and pricing decisions into the CLSC design problem for an 

automotive battery manufacturing company.  

The remainder of the article is organized as follows. Section 2 presents a review of the related 

researchs on sourcing resilience and pricing policy in CLSC network design problem. In Section 3, 

the mathematical model for designing the CLSC network is developed. In Section 4, the 
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computational results, sensitivity analysis, and managerial insights are provided. The conclusions and 

future directions are presented in Section 5. 

 

2. Literature review 

In this section, we concisely review the most relevant literature on resilience strategies and pricing 

policy in supply disruption risk management under the CLSC network design problem.      

2.1. Sourcing resilience under supply disruption in CLSC 

In this subsection, we first address the disruption risks of raw materials sourcing and then focus on the 

used-product return disruptions in CLSCs. The existing literature on supply risk management suggests 

different resilience strategies for supply risk reduction, which include: 1) multiple sourcing [5, 11], 2) 

contracting with backup suppliers [12, 13], 3) fortification/protection of suppliers [14], 4) pre-

positioning emergency inventory [4, 5], and 5) acceptance [12]. Another resilience strategy in supply 

chain design is the capacity expansion in facilities such as suppliers, factories, warehouses, 

distribution and recycling centers (e.g. [4, 15]). The capacity expansion strategy in recycling can 

mitigate the effects of disruption in the supply chain by increasing the flexibility level of the facilities 

and, thus, can guarantee the reliable supply of raw materials [7]. Santillán-Saldivar et al. [16] 

considered the risk-mitigating potential of domestic recycling. They concluded that recycling should 

be ideally carried out domestically, recycled material should be reinserted into the domestic economy, 

and the import supply mix should be considered. Cheramin et al. [17], aiming to alleviate the risk of 

supply shortage for magnets, critical materials and rare-earth elements, used a risk-averse stochastic 

programming approach to design  a resilient magnet recycling supply chain and logistics network, 

taking the impacts of the COVID-19 pandemic into account. Some studies have evaluated the effect 

of the design decisions on disruptions related to processing, return and demand volumes. Notably, 

they have considered the effect of suppliers’ investment in capacity expansion or restoration on 

supply disruption (e.g. [4]). However, to the best of our knowledge, the effect of capacity expansion 

in collection and recycling centers, as a resilience strategy, on reducing the risk of supply disruption 

has not been investigated in the literature.  

Few studies has suggested different policies such as pricing [18], discount offers [8] and advertising 

[19] to motivate consumers to return the used products to be recycled. Pricing as a proactive policy 

can help supply chains manage raw material supply disruptions that mainly occur in the return flow of 

the used products in CLSCs. However, its effect on sourcing resilience has not been investigated in 

the literature so far.  

Few studies have considered the interaction between sourcing resilience strategy and pricing policy 

under uncertainty (e.g. [20, 21, 22, 23]). Gupta and Ivanov [24] developed a game-theoretic model to 

examine the impact of risk aversion, demand volatility, and supply disruption on sourcing decisions 

and pricing policies under supply disruption. In addition, Mogale et al. [25] developed a multi-

objective model for a sustainable CLSC network problem to show the positive effects of incentive 
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pricing on returned goods in the reverse logistics network. To address the research gaps in the 

literature, this study analyzes pricing policy and capacity expansion of collection and recycling 

centers in the CLSC network design problem to address the used-product return disruption.  

2.2. Multi-stage stochastic programming in supply chain design 

The stochastic programming methods are divided into two main groups: two-stage stochastic program 

(TSSP) and multi-stage stochastic program (MSSP) [26]. MSSP allows for sequential and proactive 

decisions in the supply chain design problem under evolving uncertainties over time (see [27]). In the 

MSSP approach, the uncertainty in parameters over the planning horizon can be modelled by 

constructing a scenario tree (see [26, 28]). One of the main issues in MSSP models is that the number 

of scenarios rises exponentially as the number of periods increases, making it intractable. Researchers 

have extensively applied the SAA method, proposed by [27], to construct and reduce the size of the 

scenario tree without sacrificing the solution quality. An SAA technique, like the Latin Hypercube 

Sampling (LHS) method, is more efficient and can cover more domain space of stochastic processes 

for the same number of samples than other techniques [29]. However, scenario generation by SAA 

can also exponentially increase the number of scenarios, making the stochastic CLSC model highly 

complex. To deal with this problem, forward and backward scenario reduction techniques (FSR and 

BSR), proposed by [30], have been widely used in the supply chain network design literature as two 

popular scenario reduction techniques [31].  

The literature on sourcing resilience and pricing policy which employ stochastic programming 

approaches are compared in table 1. First, despite efforts to improve resilience in supply chain design 

problems, there is still a research gap in this area, especially when the supply chain structure is 

considered closed-loop. As shown in this table, based on the present study, only [17] considered 

sourcing resilience through recycling in the CLSC design problem, and no study has addressed 

resilient CLSC design under the return disruption of used products. Additionally, given that only 

Renjbar et al.  [23] simultaneously considered the resilience strategies and pricing policy in the CLSC 

design problem, there is still a research gap in this area. Recycling capacity development as one of the 

resilience strategies, despite its direct relevance to resilient CLSC, has not been addressed in the 

literature.  

 

 

Contributions of the present study in finding answers to the above research questions are summarized 

as follows: 

1.  One of the contributions of the present study is simultaneous consideration of the return 

disruptions, price-sensitive return and establishment of recycling centers. We determine the 

optimal sourcing strategy and pricing policy to strengthen the resilience of the CLSC under 

the non-return of used products. 
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2. We develop a multi-stage stochastic programming model for coping with the return 

uncertainty of used products while maximizing total profit in the CLSC. To the best of our 

knowledge, this is the first study to develop a multi-stage stochastic programming model for a 

CLSC design problem under the risk of price-sensitive return. 

3. We use an efficient approximation method called LHS to closely imitate the real world where 

the high number of scenarios prevents exact algorithms from solving the problem. This 

approximation method can consider the return scenarios of the used products in the CLSC 

design problem with a high accuracy level.  

 

3. Model development 

The CLSC considered in this research includes different suppliers, plants, distributors and customer 

zones in the forward channel. In the reverse channel of the CLSC, the consumers leave the used 

products at stations called initial collection points and replace them with new ones. The collected used 

products are transported to the centralized collection point, where they should be inspected for 

possible quality failure. Then, the decision is made on whether to recycle or dispose of them. Once the 

inspection is completed, reusable products are sent to recycling centers, where the new raw material is 

provided under an eco-friendly recycling process. Finally, the recycled material is transported to the 

plants, where it is used together with the virgin raw material. In each period, products are transported 

from plants to distributors and finally to customer zones to meet customer demand. The CLSC is 

mapped in Fig. 1. 

 

 

 

3.1. Scenario tree for stochastic data 

A scenario tree is a way of discretely approximating the probability distribution of stochastic variables 

over a time horizon. In the considered CLSC problem, we approximate the uncertainties related to 

random variables using a scenario tree. Assume that random variables can have two possible 

realizations for each period (i.e., high or low), as shown in Fig. 2. A possible realization of stochastic 

variables is presented by an arc on the tree and is denoted mathematically as t t  , where a 

probability of realization tp


is associated with it in the scenario tree. A scenario is denoted by t  for 

period t ( t t  ) and indicates a unique sequence of uncertainty realizations 0 1{ , ,..., }t    from the 

root (i.e., the beginning of the planning horizon) to the considering node; t is illustrated by a node at 

stage t on the tree. For the consistency of the notation, at stage 0, no uncertainty is realized, and the 0-

stage scenario 0  is an artificial scenario with 0 1p

 . Note that every t-stage scenario t  in the 

scenario tree has a unique ancestor (t−1)-stage scenario 1t  , denoted by ( )ta  . It should be noted 
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that the probability of the t-stage scenario 
t , denoted by tp


, is determined as the product of 

probabilities of the arcs from the root node to the considered node.  

To deal with the uncertainty on the return, we adopt the capacity expansion and pricing policies as 

two proactive strategies before the realization of random return to hedge against the evolving 

uncertainty related to the return flow of the used products. Similarly, location decisions of collection 

and recycling centers are made at the beginning of the planning horizon, and decisions about the sale 

price of new products and the purchase price of the used products are made at the beginning of each 

stage before any uncertainty is revealed. Other decisions, such as the production amount and flow of 

the materials and products in CLSC, are made during each stage once the uncertainties have been 

realized.  

 

3.2. Assumptions and notations 

3.2.1. Assumptions 

The main assumptions of the CLSC network design problem considered in the present study are as 

follows:  

 In each period, the demand of each customer zone and the return amount for all products 

depend respectively on the selling and purchasing prices defined as linear price-response 

functions. 

 The return amount of the used products for each product is assumed to be stochastic in each 

period and is defined with regard to a finite number of possible scenarios.  

 The cost parameters (i.e., fixed cost for opening the facilities, material, transportation, 

processing, distribution, collection and recycling costs) and demand are known. 

 The transportation cost per unit of the used product from the initial collection point to the 

collection centers is already included in the collection cost.  

 Unsatisfied demand of the customer zones is penalized. 

 

3.2.2. Notations 

Indices and sets: 

 

I  Set of suppliers, i = 1, . . ., |I| 

J  Set of fixed locations for plants,  j = 1, . . .,|J| 

K  Set of fixed locations for distribution centers, k = 1, . . .,|K| 

M  Set of fixed locations of customer zones, m = 1, . . ., |M| 

H  Set of potential locations for collection centers, h = 1, . . .,|H| 

O  Set of potential locations for recycling centers, o = 1, . . .,|O| 



7 

 

T  Set of time periods, t = 1,2,. . . ,|T| 

P  Set of product types, p = 1,2,. . . ,|P| 

t  Set of all scenarios in period t; 1,...,t t    

Model parameters: 

, ,

t

m p lDe  The demand of customer zone m at level l in period t for product p,  

, ,

t

m p lpn  Price per unit of product p at level l for customer zone m in period t, 

,

, ,R tt

m p l


 Potential return amount of used product p at level l from costumer zone m in period t under scenario 

t  

,

, ,
tt

m p lpr


 Price per unit of used product p at level l from customer zone m in period t under scenario 
t  

,

t

m pRu  Maximum offer price to a customer zone per unit of product 

,

t

m pRl  Minimum offer price to a customer zone per unit of product 

t

ips  Purchase price of virgin raw material in kilograms from supplier i in period t 

hFC  Fixed cost of opening collection center h 

oFR  Fixed cost of opening recycling center o 

,

t

i jts  Cost of transporting virgin material in kilograms from supplier i to plant j in period t 

, ,

t

j k ptp  Transportation cost per unit of product p from plant j to distribution center k in period t 

, ,

t

k m ptd  Transportation cost-per-unit of product p from distribution center k to customer zone m in period t 

, ,

t

h o ptc  Transportation cost-per-unit of used product p from collection center h to recycling centers o in period t 

, ,

t

o j ptr  Cost of transporting recyclable material in kilograms from recycling center o to plant j in period t 

,

t

j pmc  Manufacturing cost-per-unit of product p at plant j in period t 

,

t

h pcc  Collection cost-per-unit of used product p for collection center h in period t 

t

orc  Recycling cost of material in kilograms at recycling center o in period t 

,

t

k phc  Holding cost-per-unit of product p at distribution center k in period t 

iCS  The supply capacity of supplier I  

jCP  Production capacity of plant j  

kCD  Processing capacity of distribution center k  

hCC  The capacity of the collection center h  
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oCR  The capacity of recycling centers o  

p  Amount of the raw material needed in kilograms for production of a unit of product p 

p  Amount of the material recycled in kilograms per unit of the returned product p 

,

t

m p  Penalty cost per unit of unfulfilled demand of customer m for product p in period t 

 

Variables: 

,

,
tt

m pR


 Potential return amount of the used products under the scenario 
t  

,

,
tt

i jxs


 Quantity of the transportation of virgin material from entity i to entity j in period t under scenario 
t  

,

, ,
tt

j k pxp


 Quantity of the product p produced at entity j and transferred  to entity k in period t under scenario 
t  

,

, ,
tt

k m pxc


 Quantity of product p shipped from entity k to customer zone m in period t under scenario 
t  

,

,
tt

k pInv


 Quantity of ending inventory of product p in entity k in period t under scenario 
t  

,

, ,
tt

h o py


  
Quantity of the used product p shipped from collection center h to recycling center o in period t under 

scenario 
t  

,

,
tt

o jz


 Quantity of the recycled material transported from recycling center r to plant j in period t under scenario 
t  

,

,
tt

m p

  Quantity of unsatisfied demand of customer m in period t under scenario 
t  

C

hw  
1 if a collection center is opened at location h, 0 otherwise;  

R

ow  
1 if a recycling center is opened at location o, 0 otherwise;  

 

3.3. Scenario generation 

In this study, a time series called autoregressive (AR(p)) is applied to consider the time dependencies 

of the stochastic processes in the tree. The potential return quantity in stage t+1 can be forecasted 

using the equation 
1 1

1

ˆ
P

t i t i

i

R R   



  . In our model, we add a realization of the error term 1

1
t

t

 

 , 

as illustrated in the scenario tree, to the forecast amount in each scenario (node) in the considered 

problem. Therefore, the forecast in each scenario is based on historical data and the error scenario. 

The forecasted potential return at period t + 1 (first prediction) under the scenario 1t   is then 

obtained by the following formula: 

1 1

1 1 1

1

ˆ t t

P

t i t i t

i

R R
    

   



    
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Where   is a constant, 
i is an autoregressive parameter, 

1t iR  
 is the historical return at period 

t+1-i, and 1

1
t

t

 


 is the error term at period t +1 under the scenario 

1t 
. Note that forecasting the 

return for multiple periods can be based on both historical return data and forecasted return, as shown 

in Fig. 3.  

To produce different future scenarios, we apply the LHS sampling technique to generate distinct 

values for the error terms in each period. Hence, for the respective set of scenarios (nodes) in each 

time period, we generate the random values of the error term t j

t j


 


with a (0, 

2

 ) distribution and 

obtain the realizations of the stochastic variable through the (AR(p)) method as by following formula . 

It is assumed that the probability of happening the scenarios are equal. 

1

( )

1

1
ˆ

ˆ 1

t j

t j

t j t j

P

i t j i t j

it j

a

t j t j

R j
R

R j





 

  

  





 

  



  


  

 
   


                                                                                                                                                                               

. 

A backward scenario reduction algorithm is employed to bound the number of generated scenarios 

[30].  

 

3.4.  Modelling the relationship between price and the return volume 

In the CLSC model, customers decide whether to return their used products to the collection centers at 

the announced purchase price or not. It is assumed that a generous return policy by collection centers 

will lead to more return amounts, and a tighter policy will reduce them. We use a linear function for 

modelling the relationship between the price and the return quantity of the used products. Linear 

regression can be used to estimate this relationship. In the considered CLSC model, let 
,

,
tt

m pR


 and 

,

,Re tt

m p


 be the potential and realized return amount of collection centers, respectively, and 1,

,
tt

h ppr
   be 

the purchase price announced to the customer zone m M for one unit of the returned product 

p P  at the beginning of the period t T  such that 
, ( )

, , ,
tt at t

m p h p m pRl pr Ru


  . It is worth noting 

that the potential return amount, 
,

,
tt

m pR


,  has inherent uncertainty regarding customers’ inclination to 

return the used products to collection centers. Fig. 4 shows the relationship between the announced 

purchase price and the returned used-product volume for product p P  to customer zone m M . 

 

 

Thus, the relationship between the purchase price and the returned used-product volume is defined as: 

, ( )

, ,, ,

, ,

, ,

Re , , , ,
t

t t

t a t

m p m pt t

m p m p t tt t

m p m p

pr Rl
R m M p P t T

Ru Rl



  
 

       
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Here, if we assume that a continuous relationship exists between price and return, the developed 

model for the CLSC design problem will be MINLP due to the nonlinearity of purchasing cost 

function of the returned products. To deal with this problem, Fattahi et al. [31] applied the effective 

and easy-to-use approach proposed by [33] to discretize the prices in a dynamic pricing problem. 

Suppose L= {1,2,…, |L|} is a finite set of discrete price levels for buying one unit of used products, so 

that the purchasing price of used products at period t, 
tpr  , is restricted to a discrete set, 

t

prpr  , 

where 2 | |{ , ,..., }t t t

pr l Lpr pr pr  . Ret
 means that the realized return amount at period t is restricted 

to Ret

r  where 2 | |{Re ,Re ,...,Re }t t t

r l L  . 

Then, the price announced at the beginning of period t, 1,

,
tt

h ppr
  , and the realized return amount, 

,

, ,Re tt

h p l


, can be obtained by using the following constraints: 

1,

, , , , , 1 1

1
( ), , , , ,

| | 1
tt t t t

m p l m p m p m p t t

l
pr Rl Ru Rl m M p P t T l L

L

 

 

 
        

 
 

, ( )

, , ,, ,

, , ,

, ,

Re , , , , ,
t

t t

t a t

m p l m pt t

m p l m p t tt t

m p m p

pr Rl
R m M p P t T l L

Ru Rl



  
 

        

 

Let 1,

, ,
tt

m p l

  be binary decision variables that take on the values of zero or one, where the decision 

variable value 1 means that the price level l ∈ L is chosen at the beginning of period t for buying a 

unit of the used product p P  from the initial collection point m M . Thus, the purchase cost of 

the used products 
,

,
tt

m pRC


, derived from buying all amount of the realized return of the used product 

p P  by offering price level l ∈ L to the initial collection point m M  in period t ∈ T under the 

scenario 
t t  , is determined as follows: 

1,

, , 1 11, , , ,tt

m p l t t

l L

m M p P t T
 

 



      

, , ( ) , , ( )

, , , , , , ,Re , , , ,t t t tt t a t t a

m p m p l m p l m p l t t

l L

RC pr m M p P t T
    



      

 

Also, we can use the  procedure described above to determine the relationship between the selling 

price and the demand for the new products as follows: 

1,

, , 1 11, , , ,tt

m p l t t

l L

m M p P t T
 

 



      

, , ( ) , ( )

, , , , , , , , , ,t t tt t a t at

m p m p l m p l m p l

l L

Inc pn De m M p P t T
  



     

  

 

3.5. Multi-stage stochastic formulation of CLSC 
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The objective function in the proposed model (Eq. 1) is to minimize the total expected cost in the 

CLSC network design problem:  

 

Where  

 

The objective function is composed of multiple items such as fixed costs related to the location of 

facilities (Eq. 2), manufacturing and recycling cost (Eq. 3), sales income-shortage cost (Eq. 4), the 

purchasing cost of recyclable material and used products (Eq. 5), transportation cost (Eq. 6), and 

inventory holding and collection cost (Eq. 7). 

The objective function is subject to the constraints formulated as follows: 

 

max ( Pr )z Sal Fix o Buy Tran HC       (1) 

,C R

h h o o

h H o O

Fix FC w FR w
 

    (2) 

, ,

, , , ,Pr t t t

t t

t tt t

j p j k p o o j
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Constraint (8) guarantees that, in each period under each scenario, plants should receive 

sufficient raw materials from suppliers and recycling centers to produce the requested 

quantity of products. Constraint (9) guarantees that for each product in each period under 

each scenario, the sum of the amount of its residual inventory from the previous period and 

the total quantity of the product entering each distribution center during the current period is 

equal to the quantity of the product exiting from each distribution center plus the quantity of 

residual inventory at the end of the current period. According to constraint (10), the demands 

of customer zones can be fully or partially satisfied, and a shortage is possible. Constraint (11) 

indicates the quantity of used products which can be transported from customer zones to the 

collection centers. Constraint (12) guarantees the used product flow balance at each recycling center. 

Constraints (13)–(17) are capacity constraints on suppliers, plants, distributors, and collection and 

recycling centers, respectively. Constraints (18) and (19) ensure that corresponding variables are 

non-negativity and binary, respectively. 

 

4. The model implementation 

4.1. Case study 

The Saba Battery Co. has more than 40 years of experience producing various kinds of 

automotive batteries. Recently, the company has been more vulnerable to specific risks in sourcing 

critical materials. To deal with the above-described problem, the company managers have decided to 

review their sourcing strategy and pricing policy to mitigate the supply risks. 
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The company has six suppliers, seven distribution centers, and one plant that can produce 

different types of automotive batteries in the supply chain under study. We assume that a retailer 

operates in each customer zone. The company’s customer zones are located in 10 provinces. The plant 

and its central warehouse are located in Tehran province, and the manufactured batteries are 

transported from the central warehouse to distribution centers and then to retailers in each time period. 

In addition, the company has a recycling center for providing the required raw material (lead) by 

recycling the used batteries collected from the customer zones. Recently, Saba Battery has been 

experiencing low recycling output because of the increase in demand, a significant shortage of used 

batteries due to the customers’ reluctance to sell their used batteries to the collection centers of the 

company. Therefore, it is essential to invest in establishing new centers for collecting and recycling 

the used batteries, together with determining an appropriate pricing policy for motivating customers to 

return their used products to be recycled. According to the managers’ assessments, the number of 

potential locations for establishing the collection and recycling centers is ten and seven, respectively. 

The model is implemented for a planning horizon of five periods.  

 

4.2. The model solution 

In this study, the scenarios are designed using the past records of return amounts existing in the 

database of the company. Using the available historical data, the managers analyzed the most 

probable risks and addressed possible levels of uncertainty in the return flow during each period with 

associated probabilities. For each scenario, the potential return amount of the used products is 

computed based on the method explained in subsection 3.3. The scenario reduction approach is 

implemented through the SCENRED2 package in GAMS. In the considered stochastic model, the 

reduction tree is constructed by determining the exact number of scenarios, where a considered 

percentage of the original scenarios is 25%, 50%, 75% and 100%. The formulated model is coded and 

solved in GAMS 23.5/CPLEX 12.2 on a personal computer with Pentium dual-core processor @ 2.10 

GHz and 3 GB RAM.  

 

4.2.1. Evaluation of the solution method for the CLSC 

In this study, the LHS method is used to generate scenarios, and then the number of scenarios is 

decreased using a backward scenario reduction technique. When we run the scenario generation 

procedure several times with the same input parameters, different scenario trees are produced due to 

the stochastic nature of the LHS. Each scenario generation method should consider two main 

measures: in-sample stability and out-of-sample stability. In-sample stability means that whichever of 

these trees is used in the optimization problem, the optimal objective function value will be 

(approximately) the same. In this study, we generate a scenario tree including 200 scenarios and then 

decrease the number of scenarios to 20 to solve the CLSC problem. Here, the LHS method produces 
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different scenario trees, including 20 scenarios for 10 instance problems. The optimal objective 

function values for each of the 10 instance problems are reported in Table 2. In this Table, the in-

sample stability error is computed as follows: 

 Max objective - Min objective
100%

Average of objective values
In SampleE   

 

In-sample stability is essential for a reliable scenario generation process, but it alone is not 

enough [34]. By out-of-sample stability, it is understood that the true objective function values are 

also the same for first-stage decisions obtained by the different scenario trees. The out-of-sample 

performance will usually be measured through simulation [34]. 

Here, to generate scenario trees with more scenarios, an initial scenario tree containing 200 

scenarios is simulated and then converted into a scenario tree. In this study, to check the out-of-

sample stability, first, the decisions that must be made in the CLSC design problem at the beginning 

of the planning horizon and will must not change until the end of the planning horizon are obtained by 

solving the MSSP model. Then, we fix these decisions in the optimization problem and solve it for 

another scenario tree with more scenarios. The objective function value obtained from the MSSP 

solution under these conditions can be assumed as a simulation response for the actual objective 

function value. For each instance problem, the out-of-sample stability error of the scenario tree 

generation method is calculated as follows: 

 Simulation response - Optimal objective
100%

Optimal objective
Out of SampleE    

 

Table 2 displays the computational results of in-sample and out-of-sample stability for the 

scenario tree generation method on various instance problems. 

 

As shown in Table 2, the relative difference between the maximum and minimum objective 

function values in the scenario trees in each instance problem is relatively small. Therefore, it can be 

concluded that in-sample stability is achieved with 20 scenarios for our case study. It is also shown in 

Table 2 that the maximum and minimum values of out-of-stability error are 3.7% and 0.52% in 

different test samples, respectively. Therefore, our computational results show the efficiency of the 

scenario tree generation approach in terms of out-of-sample and in-sample stability. 

 

4.3. Sensitivity analysis 

4.3.1. The analysis of multi-stage pricing 

To prove the efficiency of MSSP, Huang and Ahmed [28] compared it with a TSSP model. To make 

this comparison, we formulate and solve a two-stage stochastic problem in which the decisions on the 

price of used and new batteries do not depend on the realizations of the scenarios and cannot hedge 

against disruptions. By removing the subscript 1t   from the variables 1, tt    and 1, tt    for the entire 
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time horizon, the MSSP model is converted into a TSSP model. The optimal objective function value 

of multi-stage (MS) and two-stage (TS) models is denoted by 
MSz  and 

TSz  , respectively. Obviously, 

every solution to the two-stage model is feasible for the corresponding multi-stage model as well, and 

thus 
TS MSz z . According to Huang and Ahmed (2009), the value of multi-stage (VMS) relative to 

two-stage is calculated as MS TS

TS

z z
VMS

z


 . 

In this subsection, we also consider the impact of return risk on the price of both new and used 

batteries and the CLSC profit. For sensitivity analysis, we use different sets of return scenarios in the 

same case by varying the risk level  , setting the variance value of stochastic returns (
2

 ), and then 

resolving the two models. Thus, we provide the optimal solutions for two-stage and multi-stage 

models with different levels  . The results are reported in terms of the price of used and new 

batteries, the overall profit of the CLSC problem, and the VMS in table 3 and  Figures 5 and 6. 

Compared with the TSSP model, the MSSP model produces a higher profit for the same values of  , 

especially for the very big ones. Also, it can be seen that prices of both used and new batteries are set 

higher in the multi-stage model than in the two-stage one. Indeed, the higher the return variance, the 

higher the price of the used batteries. This way, the return risk of used batteries to the supply chain 

can be mitigated. The results corresponding to VMS show that a multi-stage model can have a higher 

effect than a two-stage model on maximizing the total CLSC profit, especially if solved for high 

levels  . 

In this subsection, we also consider the impact of return risk on the price of both new and used 

batteries and the CLSC profit. To do the sensitivity analysis, we use different sets of return scenarios 

in the same case by varying the risk level  , setting the variance value of stochastic returns (
2

 ), 

and then solving the two models. Thus, we provide the optimal solutions for two-stage and multi-

stage models with different levels  . The results are presented in table 3, Figures 5 and 6 with regard 

to the price of the used and new batteries, the overall profit of the CLSC problem, and the VMS. 

Compared with the TSSP model, the MSSP model produces a higher profit for the same values of  , 

especially for the very big values of  . Also, it can be seen that the price of both used and new 

batteries is higher in the multi-stage model than in the two-stage one. Higher variance in the return 

flow means a higher purchasing price for the used batteries in order to mitigate the return risk of the 

used products. The results for VMS show that the multi-stage model can have a high effect than the 

two-stage model on maximizing the total CLSC profit, especially if solved for high levels  . 
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4.3.2. The analysis of the sourcing strategy    

In this subsection, we consider the effect of return risk on sourcing strategy. For this purpose, the 

CLSC model is solved using TSSP and MSSP approaches, and the results are presented as the average 

values of the solutions of the model. We repeatedly implement the same procedure on the same case 

by varying the risk level  . The main purpose of solving the same case for different   values is to 

provide insights into sourcing strategies for each risk level. Let SUPQ and RECQ be the sourcing 

amount from suppliers and recycling centers, respectively. As the variance value t j

t j


 


 in 0   is 

zero, the model becomes deterministic. Computational results are obtained for both TSSP and MSSP 

approaches in terms of the average quantities of the utilization of two sourcing options, the number of 

opened collection and recycling centers (C, R), and the expected profit of the considered supply chain. 

Table 4 presents the results, and Figures 7 illustrates the same results visually. 

 

As observed in both the MSSP and TSSP models, the RECQ decreases with the increase in risk level 

  on return flow, while SUPQ increases with the increase in  . Generally speaking, under high risk, 

the results of the MSSP model suggest that there is less tendency for sourcing from the outside 

supplier, but the opposite is true for the TSSP model results. However, under low risk, there is no 

significant difference between the results of the two stochastic programming approaches. This implies 

that the MSSP model can change the sourcing structure by employing a proactive pricing policy, in 

which the establishment of extra collection and recycling centers is justified. Also, it can be seen that 

the number of opened collection and recycling centers in the MSSP model decreases from 4 and 3 to 2 

and 2, respectively, with an increase in   parameter from 0 to 1.1. Therefore, it can be concluded 

that, in general, risk level and pricing policy can affect the sourcing strategy. 

Managerial insights  

This research helps managers properly allocate resources and financial investments by understanding 

the various disruptions and examining their impacts on supply chain design decisions. Managers and 

policymakers with a deep understanding of the return risk of used products in the battery supply chain 

can decide on appropriate resilience strategies for mitigating these risks. By determining the risk value 

of return disruption for a long-term time horizon, decision-makers can decide on the capacity 

development of recycling centers and other facilities. On the other hand, we require an appropriate 

pricing strategy to incentivize customers to return used products to the supply chain; otherwise, the 

established recycling centers will lack used batteries for recycling. Investment in the establishment of 

recycling centers can improve the resilience of the battery supply chain only if there is a balanced 

pricing policy.  
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When automotive battery manufacturers face return disruption, they need to seek a proactive selling 

policy to sell their products at higher prices to compensate for the production loss due to lead 

shortage. However, this policy is usually ineffective in all markets that can be considered to determine 

its impact on profit. Thus, it is better to consider its impact on profit before deciding on the pricing. In 

addition, companies facing the used batteries shortage for recycling can offer higher purchase prices 

to motivate consumers to return their used products. This is particularly useful when the return 

amount of the used batteries is highly sensitive to price. It can be concluded that the less reliable 

recycling option can be turned into a more reliable sourcing option by employing an appropriate 

pricing policy, as they can adjust the pricing decisions according to a pricing policy in the planning 

horizon. Companies can employ such a pricing policy to announce generous purchase prices for the 

used batteries at the beginning of each period to proactively deal with return disruptions. In general, it 

is recommended that companies proactively update their selling and purchasing prices in each period 

and set new prices in the customer zones after the risk level of return flow is determined.   

 

5. Conclusions and future works  

This study developed an MSSP model for the CLSC network design problem regarding the sourcing 

options and pricing policy under the return disruptions. RHS and backward scenario reduction 

techniques in the MSSP model were employed to generate a scenario tree and efficiently reduce the 

problem size, respectively.  The results of the MSSP model were compared with that of the TSSP 

model to provide insights on resilient sourcing by analyzing the interaction between sourcing strategy 

and pricing policy. The results of the MSSP model indicated that investment in the establishment of 

recycling centers can improve the resilience of the battery supply chain only if there is a balanced 

pricing policy. In addition, the MSSP model proved less sensitive to the risk level because the 

proactive decision-making about pricing in the model at the beginning of each period can act as a 

hedge against return disruptions. The results indicated that sourcing through recycling centers, though 

it involves a higher risk of disruption in the return flow of the used products, can be effective if the 

consumers are encouraged to return the used products by employing an effective pricing policy. When 

the risk level of return is low, companies can source from low-cost recycling centers and decrease the 

selling price of the new products and purchasing price of the used products. Hence, in low-risk 

conditions, companies do not have to incur a cost for improving the reliability of the recycling 

centers. When the risk level is high, companies can have more sourcing from the recycling centers 

than the suppliers only if there is a balanced pricing policy. Therefore, the proposed CLSC design 

model can help managers choose the optimal sourcing strategy and pricing policy to mitigate the 

return risk of used products in battery CLSC. 

Future studies can extend the model proposed in this study to include the cost structure related to the 

collection and recycling centers and raw material prices offered by suppliers. Moreover, the sourcing 
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strategy can be analyzed with regard to sustainability considerations in CLSC. Finally, developing an 

efficient solution algorithm for scenario reduction can be another future research direction.  
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[20]              TSSP GAMS - 

[9]              
Game 

theory 
GAMS - 

[4]              MSSP GAMS - 
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[21]               GAMS - 

[15]              TSSP GAMS waste paper 

[32]              TSSP GAMS 
automotive 

battery 

[18]              TSSP SAA & BRS Glass 

[11]              TSSP GAMS - 

[23]              TSSP GAMS TV 

[17]              TSSP 

Benders 

decompositio

n 

electric 

vehicles 

[25]              TSSP 
Genetic 

Algorithm 

household 

appliance 

The present study              MSSP SAA & BRS 
automotive 

battery 

 

Table 2. Performance of the simulation for the CLSC problem 

Instance 

problems 

Optimal 

objective 

function 

value 

Optimal problem objectives related to different 

scenario trees with 20 scenarios 

Expected 

value 

of 

simulation’s 

responses 

In SampleE   Out of SampleE    

Scenario 

tree 1 

Scenario 

tree 2 

Scenario 

tree 3 

Scenario 

tree 4 

1 1.07E+07 1.08E+07 1.09E+07 1.08E+07 1.09E+07 1.09E+07 0.92 1.87 

2 1.21E+07 1.22E+07 1.23E+07 1.20E+07 1.22E+07 1.23E+07 2.46 1.65 

3 1.37E+07 1.34E+07 1.36E+07 1.37E+07 1.35E+07 1.38E+07 2.21 0.73 

4 1.49E+07 1.47E+07 1.49E+07 1.50E+07 1.48E+07 1.52E+07 2.02 2.01 

5 1.51E+07 1.49E+07 1.50E+07 1.49E+07 1.51E+07 1.53E+07 1.34 1.32 

6 1.68E+07 1.65E+07 1.62E+07 1.67E+07 1.63E+07 1.69E+07 3.04 0.60 

7 1.73E+07 1.70E+07 1.74E+07 1.75E+07 1.72E+07 1.71E+07 2.89 1.16 

8 1.77E+07 1.74E+07 1.76E+07 1.79E+07 1.75E+07 1.78E+07 2.84 0.56 

9 1.89E+07 1.85E+07 1.89E+07 1.83E+07 1.88E+07 1.82E+07 3.22 3.70 

10 1.92E+07 1.89E+07 1.90E+07 1.93E+07 1.91E+07 1.93E+07 2.10 0.52 

 

Table 3. Optimal prices of the used and new battery and VMS  

 

Price of used battery  Price of new battery  Profit 
VMS 

MS TS  MS TS  MS TS 

0 9.92 9.1  85.18 85.18  1.68E+07 1.66E+07 0.010 

0.1 11.78 9.9  88.36 86.59  1.63E+07 1.60E+07 0.020 

0.2 13.05 10.6  90.27 87.32  1.60E+07 1.54E+07 0.042 

0.3 13.42 11.2  91.44 88.74  1.58E+07 1.50E+07 0.053 

0.4 13.97 12.2  92.69 89.50  1.58E+07 1.47E+07 0.075 

0.5 15.4 13  93.77 90.94  1.58E+07 1.45E+07 0.087 

0.6 17.16 13.9  94.49 91.40  1.58E+07 1.44E+07 0.099 

0.7 18.5 14.5  95.03 91.70  1.57E+07 1.41E+07 0.111 

0.8 19.26 15.5  95.69 92.20  1.54E+07 1.36E+07 0.136 
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0.9 19.76 16.1  95.98 92.40  1.51E+07 1.31E+07 0.149 

1 20.35 16.8  96.32 92.65  1.48E+07 1.30E+07 0.136 

1.1 21.4 17.5  96.81 92.87  1.43E+07 1.24E+07 0.149 

 

Table 4. Optimal design and sourcing amount for different levels of risk 

  TS  MS 

   (C,R) SUPQ RECQ Profit  (C,R) SUPQ RECQ Profit 

0  4,3 0 2728344 1.66E+07  4,3 0 3128344 1.68E+07 

0.1  3,3 0 2723910 1.60E+07  3,3 0 3023910 1.63E+07 

0.2  3,3 0 2726006 1.54E+07  3,3 0 2926006 1.60E+07 

0.3  3,2 900354 1827990 1.50E+07  3,3 0 2927990 1.58E+07 

0.4  2,2 908417 1823250 1.47E+07  3,3 0 2823250 1.58E+07 

0.5  2,2 902648 1823214 1.45E+07  3,3 0 2723214 1.58E+07 

0.6  2,1 894583 1816495 1.44E+07  3,2 804583 2095990 1.58E+07 

0.7  1,1 1800707 910542 1.41E+07  3,2 780070 2070000 1.57E+07 

0.8  1,1 1790500 903250 1.36E+07  2,2 770500 2062000 1.54E+07 

0.9  1,1 1780548 902350 1.31E+07  2,2 768048 2042400 1.51E+07 

1  1,1 1775200 890950 1.30E+07  2,2 775200 2010210 1.48E+07 

1.1  0,0 2553500 0 1.24E+07  2,2 753500 1992540 1.43E+07 

 

 

 
 

Figure 1. The CLSC map 
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Figure 2. The structure of the scenario tree model with three periods and two outcomes 

 

 

Figure 3. Forecasting the amount of returned used products 

 

 

Figure 4. The relationship between the announced purchase price and the return amount of used 

products 
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Figure 5. The average price of new (A) and used (B) batteries for different levels of risk 

 

 

Figure 6. Quantities of the optimal objective functions for different levels of risk  

 

 

6

11

16

21

26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

A
ve

ra
ge

 o
f 

b
u

y 
p

ri
ce

  o
f 

u
se

d
 

b
at

te
ri

es
 

(B) Risk level (Lambda) 

MS TS

84

86

88

90

92

94

96

98

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

A
ve

ra
ge

 o
f 

se
ll 

P
ri

ce
 o

f 
n

ew
 

b
at

te
ri

s 
 

(A)        Risk level (Lambda) 

MS TS

1.20E+07

1.30E+07

1.40E+07

1.50E+07

1.60E+07

1.70E+07

1.80E+07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

o
b

je
ct

iv
e 

fu
n

ct
io

n
 

Risk level (Lambda) 

MS TS

0

500000

1000000

1500000

2000000

2500000

3000000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

1.10E+07

1.20E+07

1.30E+07

1.40E+07

1.50E+07

1.60E+07

1.70E+07

Risk level (Lambda)            (A) 

F
ro

fi
t 

profit SUPQ RECQ

Q
u

an
ti

ty
 o

f 
 s

o
u

rc
in

g 



24 

 

 

Figure 7. The profit and the average amount of lead provided by the sourcing options in terms of TSSP (A) and 

MSSP (B) 
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