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Abstract 

Confining structurally deficient concrete columns with externally bonded fiber-reinforced 

polymer (FRP) has been widely accepted as an effective technology for strengthening the 

ductility and strength of deficient concrete columns.  However, prediction models for damaged 

and afterward repaired concrete based on soft computing methods are not available for the 

planning and maintenance of concrete structures.  Therefore, this paper adopted two soft 

computing methods – artificial neural network (ANN) and Gaussian process regression (GPR) – 

to analyze observations obtained from 103 datasets of concentrically loaded FRP-confined 

predamaged concrete.  The models only consider statistically significant  variables with the 

ultimate strength of FRP-confined predamaged concrete. The statistically significant variables 

based on the multivariate regression analysis are corner radius ratio, FRP thickness, concrete 

strength, and damage degree. The coefficient of determination of the developed models is greater 

than 98% and there is a relatively low error between the measured and predicted values. The 

results of the current study highlight the merit of using soft computing methods in concrete 

technology given their extraordinary ability to comprehend multidimensional phenomena of 

concrete structures with ease and high predictivity over the existing empirical models. 

 

Keywords: artificial neural network, concrete, damage degree, Gaussian process regression, soft 

computing methods, ultimate strength.   
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1. Introduction 

Many concrete structures have reached the end of their design service life.  Also, suddenly 

increased service loads, environmental action, and inappropriate maintenance have caused many 

concrete structures to gradually deteriorate.  Hence, resulting in a substantial reduction in the 

load-carry capacity of the key structural components of the infrastructures and subsequently 

causing safety issues.  Thus, rehabilitation and retrofitting of the concrete structures become 

inevitable.  The application of fiber-reinforced polymer (FRP) has become a commonly accepted 

technology for retrofitting and strengthening structurally deficient concrete structures [1–7].  

Extensive studies have culminated that confining concrete structures with FRP significantly 

improves the mechanical properties of concrete columns [6,8–16]. 

Generally, FRP-retrofitted structures – strengthened structures before damage – behaves much 

differently from FRP-repaired structures – strengthened structures after damage [5,17].  The 

most common approach for assessing the mechanical behavior of FRP-repaired concrete 

structures is through laboratory tests of FRP-confined predamaged concrete [6,11,17,18].  

Nevertheless, studying the mechanical response of concrete in laboratories is time- and cost-

intensive.  Different factors affect the mechanical properties of concrete structures.  Typically, 

the damage degree, sectional properties of the concrete structures, the concrete strength, and the 

FRP properties are the major factors affecting the mechanical properties of FRP-confined 

predamaged concrete. 

The ability to forecast the peak strength of FRP-confined predamaged concrete is essential for 

proper planning and maintenance of the existing concrete structures.  Typically, soft computing 

methods are proficient in solving an extensive range of multifaceted engineering problems.  

Currently, the application of soft computing methods in concrete technology is growing 

considerably, (e.g., [19–27]).  To explore the advantages of these contemporaries in soft 

computing methods, two novel soft computing methods – artificial neural network (ANN) and 

Gaussian process regression (GPR) – have been used in this study to predict the ultimate strength 

of FRP-confined predamaged concrete.  Hence, this paper aims at presenting data-driven 

techniques for FRP-confined predamaged concrete.  Generally, these data-driven techniques 

were developed to reduce the time and associated cost of experimental setup for studying 

mechanical behaviour of concrete structures. 
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2. Overview of soft computing methods  

2.1. Artificial neural network 

Artificial neural networks (ANN) is one of the widely adopted soft computing methods which is 

established to model the human brain.  The ability of ANN to match complex input parameters to 

output parameters, a streamlined approach with high performance, and a low computational rate, 

make this algorithm a popular technique [25].  Commonly, a multi-layer feedforward neural 

network is the most broadly adopted and simplest type of ANN and is capable of handling non-

linear problems [28–31].  The main components of multi-layer feedforward neural network are 

the input layer, hidden layers, activation function, weights, an output layer, and neurons [19].  

The input layer collects data from the external source and forwards it to the neurons in the 

hidden layers without processing it.  The hidden layers perform the major computations, while 

the output layer presents the network calculations [32]. 

2.2. Gaussian process regression 

Gaussian process regression (GPR) is another soft computing method that is a non-parametric 

Bayesian technique that captures an extensive diversity of relations between input and output 

parameters using a theoretical inestimable amount of functions and allows the data to determine 

the level of complexity through the Bayesian inference [33–35].  Typically, this technique 

expresses a reproductive process of the data that comprises hidden variables and stipulates the 

joint probability distribution of the hidden and observed random variables [35].  Unlike 

traditional regression techniques that use a technique of fitting several modes with a different 

quantity of clusters and then selecting a cluster using comparison metrics [36], this method fits a 

single model that can adapt its intricacy to the data. 

3. Overview of FRP-confined predamaged concrete 

Figure 1 illustrates the typical response curves of predamaged concrete, FRP-confined concrete, 

and, FRP-confined predamaged concrete.  Here it is assumed that plain concrete is concentrically 

loaded to point C.  After unplanned overloading, the concrete is completely unloaded to X, and 

then an FRP wrap is installed to strengthen the predamaged concrete.  Typically, the 

concentrically loaded unconfined predamaged concrete and FRP-confined predamaged concrete 

will follow the load paths X-A-D and X-Z, respectively [6,18]. 

With reference to Fig.1; analytically, the damage degree of concrete is defined as the strength 

loss [37,38], as given in Eq. (1) 
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where fco and fcd are the strengths of undamaged and unconfined predamaged concrete, and δ is 

the damage degree.  A computational investigation based on soft computing methods previously 

unavailable is undertaken in this study to predict the ultimate strength of FRP-confined 

predamaged concrete.  This study contributes to the repair and strengthening of damaged 

concrete under concentric loading using soft computing methods. 

4. Overview of the test database 

To predict the ultimate strength of FRP-confined predamaged concrete using soft computing 

methods, a database of concentrically loaded FRP-confined predamaged concrete was gathered 

from the literature.  Inclusion of a test result into the database was based on the following 

requirements: (1) the concrete predamage was performed under concentric loading and repaired 

with carbon-FRP; (2) no inner steel reinforcement was present in the concrete; (3) the repair was 

performed using manual wet lay-up process of FRP wraps with the fibers oriented in the hoop 

direction of the column; and (4) the specimen was tested under concentric loading.  The 

assembled database is presented in Table 1.  The developed database compiled 103 data on FRP-

confined predamaged concrete.  The collected data on the ultimate strength of FRP-confined 

predamaged concrete covered 7 independent parameters: corner radius ratio ρ; FRP thickness tf; 

concrete strength fco; FRP elastic modulus Ef; damage degree δ; FRP rupture strain εf; and 

ultimate strength fcu.  More information about the test database can be referred to in the existing 

studies [11,18]. 

5. Model development 

5.1 Backward multivariate regression 

The adopted model datasets presented in Table 1 are subjected to backward multivariate 

regression (BMLR) to enable the identification of statistically significant variables.  The 

backward multivariate regression implies that all the model variables participate in the regression 

models and are based on the statistical parameters – such as coefficient of correlation, coefficient 

of determination, Adj R-square, and p-values – which are used to access the parameters.  The 

output of the analysis conducted using the OriginPro software is presented in Tables 2 to 4. 

Table 3 shows tha ANOVA of the model. The statistically significant variables are 2r/b, fco, δ, 
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and tf (Table 4).  Their p-values are far below 0.005.  Therefore, the statistically significant 

parameters as presented in Table 4 were used in developing the proposed models. 

Based on the results presented in Table 4, a regression equation – BMLR model – was 

formulated as given in Eq. (2).  The performance of this regression equation is evaluated and 

presented under the results and discussion section. 

𝑓𝑐𝑢 = −36.3138 + 54.66411(2𝑟 𝑏⁄ ) + 0.60366𝑓𝑐𝑜 − 0.41691𝛿 + 184.2782𝑡𝑓  (2) 

 

5.2. Normalization and performance metrics 

The datasets in Table 1 have different units of measurement that can result in the overfitting of 

the soft computing methods.  To eliminate, the effect of overfitting in the prediction models, 

existing models highlighted that datasets should be normalized [39–41].  Therefore, the datasets 

in Table 1 were normalized within the range of -1 and 1 for the ANN and 0 and 1 for the GPR 

model using Eq. (3). However, the same number of datasets were used in the training, testing, 

and validation of the proposed models. 
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where xnm is the normalized model parameter, xmin and xmax are the least and utmost values of the 

actual model parameter x, nmin and nmax are the smallest and highest values of the required 

normalization range.  On the other hand, two performance indexes that are statistically sensitive 

to the deviation of prediction results from measured values are adopted to evaluate the models 

[42].  The indexes are mean squared error (MSE) and the coefficient of determination (R
2
), – as 

given in Eqs (4) and (5) – respectively. 
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where ye is the measured value, yex is the model predicted value, and m is the number of datasets. 
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5.3. ANN model 

The normalized datasets were divided into training, testing, and validation datasets at the 

proportion of 70%, 15%, and 15% of the whole dataset, respectively in the MATLAB 

environment.  The ANN was executed in the MATLAB environment.  The feedforward 

backpropagation training algorithm was used with the Levenberg Marquardt training function.  

Typically, there is no fixed method to precisely determine the number of neurons in the hidden 

layers [28,29,32,39].  Therefore, 1-input, 1-hidden, and 1-output ANN architectures were tried 

with several trials of neurons in the hidden layer, and a hyperbolic tangent was defined as the 

transfer function for the hidden and output layers, respectively.  The performance of the ANN 

architectures is presented in Fig. 2. 

Based on the performance of the ANN architecture presented in Fig. 2, the selected optimum 

ANN is a 4-15-1 architecture as illustrated in Fig. 3.  The weights and biases of the selected 4-

15-1 architecture are presented in Table 5, while the performance of the selected architecture is 

shown in Fig. 4.  Generally, it can be deduced that the error rate of the selected 4-15-1 

architecture is low and that there is a high correlation between the measured and predicted results.  

Generally, one of the drawbacks of an ANN model is that the relationship between the input 

variables and targeted output is usually not understood.  This drawback can be solved by 

transforming the proposed ANN models into a mathematical expression that can be used for easy 

prediction of the targeted variable - ultimate strength of FRP-confined predamaged concrete - 

without the need to reconstruct a new ANN simulation [43–45].  Hence, the weights and biases 

of the 4-15-1 ANN architecture were extracted and presented in Table 5.  Subsequently, the 

resulting mathematical expressions based on the weights and biases of the model are presented in 

Eqs. (6) and (7). 

 

𝑓𝑐𝑢 = 39.55tanh(∑ 𝑥𝑖
15
𝑖=1 − 3.7853) + 81.55  (6) 

 

where xi in Eq. (6) can be obtained from Table 5 as demonstrated in Eq. (7). It should however be 

noted that independent variables in the model (Eq. 7) are in the normalized form hence the data 

must be subjected to Eq. (3) before inserting them into Eq. (7). 
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𝑥1 = 2.2828𝑡𝑎𝑛ℎ(−0.01938 (2𝑟 𝑏⁄ ) − 7.50709𝑓𝑐𝑜 − 4.6926𝛿 + 3.9958𝑡𝑓 − 5.0276)

𝑥2 = 1.37704tanh(1.10647 (2𝑟 𝑏⁄ ) − 4.1519𝑓𝑐𝑜 − 5.05247𝛿 + 0.34152𝑡𝑓 − 4.3304)
.
.
.

𝑥14 = −4.0051 tanh(−2.1967 (2𝑟 𝑏⁄ ) + 1.4537𝑓𝑐𝑜 + 7.4786𝛿 − 0.3341𝑡𝑓 − 4.3954)

𝑥15 = 2.44295 tanh(2.8501 (2𝑟 𝑏⁄ ) − 1.91109𝑓𝑐𝑜 − 1.0496𝛿 − 2.8828𝑡𝑓 + 0.8623)

    (7) 

 

5.4. GPR model 

To develop the GPR model, the normalized datasets as adopted in the ANN model were used for 

training, testing, and validation purposes.  Since GPR techniques are stochastic or probabilistic, 

the required mean, covariance, and likelihood functions were taken as constant, rational 

quadratic covariance, and Gaussian functions, respectively.  The hyperparameters were first 

initialized and then optimized in conjunction with the intended training parameters.  Thereafter 

the program was run to execute the training and the testing/validation of the GPR model.  This 

program was implemented in the MATLAB environment.  Therefore, LINiso (linear covariance 

function), LINard (linear covariance function with automatic relevance determination (ARD)), 

SEard (squared exponential covariance function with ARD), RQiso (isotropic rational quadratic 

covariance function), RQard (rational quadratic covariance function with ARD), and Materniso 

1/2 covariance functions were tried.  The performance of the different covariance functions is 

presented in Table 6. From Table 6, Materniso 1/2 covariance function performed better than the 

others and was selected for comparison with the proposed ANN and MLR models. 

Based on the performance of the different covariance functions presented in Table 6, Materniso 

1/2 is selected as the optimum covariance function for the GPR models.  The performance of the 

selected covariance functions is shown in Fig. 5.  Generally, it can be observed that the error rate 

of the selected covariance functions is low and there is a high correlation between the measured 

and predicted results.  The performance of this model is evaluated and presented under the 

results and discussion. 

6. Result and Discussion 

6.1. Prediction models 

Figures 6a and 6b present the comparison between the measured ultimate strength with the 

predicted ultimate strengths based on ANN and GPR models, respectively  The linear least-

square fit lines of the training and testing datasets with the ideal fit line are also presented in the 
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figures.  The ±5% error bars are also included in the figures.  The performances of the ANN 

model for the ultimate strength of FRP-confined predamaged concrete using the selected 

optimum 4-15-1 architecture network were assessed using the two performance indexes given in 

Eqs (3) and (4).  Figure 6a illustrates the plots of the measured and predicted values for the 

training, testing, and validation datasets using the ANN model with 4-15-1 architecture.  The 

linear least-square fit lines of the training and testing datasets with the ideal fit line are also 

presented in the figures.  The ±5% error bars are also included in the figures.  Similarly, the 

performance indexes were also used to evaluate the performances of the GPR model.  Figure 6b 

illustrates the plots of the measured and predicted results for the training, testing, and validation 

datasets using the GPR model with Materniso 1/2 covariance functions.  Also, the linear least-

square fit lines of the training and testing datasets with the ideal fit line and the  ±5% error bars 

are presented in the figures. 

 

It can be observed that there is a good correlation between the measured values and the predicted 

values from the two soft computing methods.  Generally, most of the data points are within the 

±5% error bars.  Hence, the error between the measured and predicted values is relatively low 

and the R
2
 values are high.  The results of the statistical indicators are summarized in Table 7. 

 

As presented in Table 7, the R
2
 values for the training, testing, and validation datasets of ANN 

model are 98.66%, 97.78%, and 98.96%, respectively.  Similarly, the R
2
 values for the training, 

testing, and validation datasets of GPR model are 99.39%, 99.76%, and 99.99%, respectively.  

On the other hand, the MSE values the training, testing, and validation datasets of ANN model 

are 4.9898, 6.0552, and 4.7290, respectively.  Similarly, the MSE values the training, testing, and 

validation datasets of GPR model are 2.421, 1.2491, and 0.7444, respectively. Generally, the 

values of the performance indicators show that the proposed models can give prediction values 

that are close to the experimental values.  

6.2. Evaluation of the ANN, GPR and BMLR models 

The relationship between the measured values and the predicted results based on the 4-15-1 

ANN architecture and Materniso 1/2 covariance GPR function are presented in Fig. 7 and Fig. 8, 

respectively.  Furthermore, to examine the superiority of the models developed based on the soft 
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computing techniques, the relationship between the measured values and predicted results based 

on backward multivariate regression (Eq. 2) is also presented in Fig. 9. 

It can be observed from Figs. 7 – 9 that the R
2
 values of ANN, GPR, and BMLR models are 

98.6%, 99.5%, and 85.99%, respectively.  Meanwhile, as presented in Table 8, the computed 

MSE values between measured and predicted values based on ANN, GPR, and BMLR models 

are approximately 5.2, 2.0, and 51.7, respectively.  The GPR model slightly outperformed the 

ANN model based on performance indexes while the BMLR model showed the least prediction 

performance.  Although BMLR model was developed using statistically significant variables, the 

performance of the BMLR model has a least prediction performance as compared to the ANN 

and GPR models.  Hence, it can be deduced that soft computing techniques aid the correlation 

between the measured data and predicted values. 

 

7. Conclusion 

This study used two soft computing methods – artificial neural network and Gaussian process 

regression – to developed models for the prediction of the ultimate strength of FRP-confined 

predamaged concrete.  A test database of 103 datasets was assembled from the existing studies, 

the datasets comprise the strength of plain concrete, corner radius ratio, damage degree, the FRP 

elastic modulus, FRP thickness, FRP rupture strain, and the ultimate strength.  The results of the 

current study illustrate the potential of using modern computing methods in predicting the 

ultimate strength of FRP-confined predamaged concrete.  The following significant conclusions 

could also be drawn from the results of this study: 

 Based on the multivariate regression analysis, the unconfined concrete strength, damage 

degree, corner radius, and thickness of the FRP materials are the major factors affecting 

the ultimate strength of FRP-confined predamage concrete. 

 The mean squared error of the models based ANN, GPR, and backward multivariate 

regression analysis are approximately 5.1, 2.0, and 51.7, respectively.  While, the R
2
 

values of ANN, GPR, and BMLR models are 98.6%, 99.5%, and 85.99%, respectively. 

 The soft computing methods were able to predict the ultimate strength of FRP-confined 

predamaged concrete with sufficient accuracy and low error rates, as compared to the 
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performance of the model developed based on backward multivariate regression analysis 

only. 

 Although both ANN and GPR models have almost the same prediction accuracy based on 

the statistical evaluation indexes, GPR slightly outperformed the ANN in the prediction 

of FRP-confined predamaged concrete. 

The models established in this study applies to concentrically loaded FRP-confined predamaged 

concrete.  Typically, the behaviour of concrete damaged by fire or other environmental effect 

prior to FRP repair could be signicantly differs from the mechanical response of concrete 

damaged by compression inflicted damage (as it in the assembled data in this study) before FRP 

repair.  Also, the mechanical responses of FRP-confined predamaged concrete under eccentric 

and cyclic loading could be significantly different from the mechanical response of concrete 

structures under concrentric loading.  Hence, future work is essential to advance the test database 

for FRP-confined predamaged concrete to consider the effect of more parameters such as 

damage caused by the environmental effect, attack by fire before repairing, inert filler, and fibers.  

Furthermore, the mechanical behavior of FRP-confined predamaged concrete under different 

types of loadings – e.g. eccentric and cyclic loading – could be substantially different from the 

behavior of concentrically loaded specimens.  Hence, more study is required to examine the 

effect of different loadings on the FRP-confined predamaged concrete and to predict the 

mechanical behavior of FRP-confined predamaged concrete under different loadings using soft 

computing methods. 
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Fig. 3. Typical stress-strain curves 

 

 

Fig. 4. Performance of different ANN architecture 
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Fig. 5. Selected optimum ANN architecture 
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Fig. 6. The performance of the selected 4-15-1 architecture 
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(a) actual and predicted values 

 

(b) residual 

Fig. 7. The performance of Materniso 1/2 covariance functions  

(a) 

(b) 
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(a) ANN (b) GPR 

Fig. 8. Comparison of the measured ultimate strength with the predicted values 

 
(a) ANN prediction (b) Coefficient of determination 

Fig. 9. Performance of the developed ANN model  
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(a) GPR prediction (b) Coefficient of determination 

Fig. 8. Performance of the developed GPR model 

 

 

 
(a) BMLR prediction                                         (b) Coefficient of determination 

Fig. 9. Performance of the developed BMLR model  

 

 

Table 1. Test database used in the model 

Reference ρ fco (MPa) δ (%) Ef (GPa) tf (mm) εf (%) fcu (MPa) 

Wu et al. [18] 1.0 

31.7 0 

235 0.167 1.76 

65.4 

31.7 2.5 67.6 

31.9 2.9 64.7 

32.4 7.2 63.3 

30.9 14.9 66.2 

32.6 21.6 65.5 

32.6 27.2 61.3 

32.6 44.1 53.6 
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34.3 56.3 53.1 

32.1 0 64 

32.1 2.3 64.6 

32.7 2.9 49.7 

32.4 8.5 63.2 

31.3 14.3 43.8 

29.3 20 54.6 

31.5 29.5 56.4 

31.6 35.5 47.9 

30 56.1 42 

46.4 0 73.3 

46.4 2.5 73.7 

47.2 2.9 72 

44.6 6.4 73.7 

47.3 11 69.8 

42.3 12.5 71.6 

45.5 27.9 62.5 

45.7 56.2 64.1 

47.4 0 78.9 

47.4 2.3 75.7 

46.9 2.9 71.7 

47.3 8.7 71.4 

48 14.2 66.5 

42.8 21.9 60.2 

46.6 23 64.2 

43.1 58 53.1 

33.3 0 

0.334 

105.3 

33.3 2.4 104.6 

33.4 2.9 99.8 

32.9 7.9 98.9 

33.5 15 99.1 

33.1 21.3 99.6 

33 26.9 87.3 

29.6 43 85.7 

33.7 57 59.3 

34.5 0 90.7 

34.5 2.4 104.9 

34.7 2.9 105.6 

34 8.1 105.1 
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35 14.4 73.5 

32.5 20.2 97.7 

32.8 26.7 95.8 

32.1 48.5 91.3 

33.5 56.2 85.6 

47.9 0 117 

47.9 2.5 118.1 

48.4 2.9 110.4 

47.9 7.7 114 

47.1 9.6 108.1 

49.1 21.2 103.2 

49.1 48.5 82.9 

48.3 56.2 76.2 

47.3 0 121.1 

47.3 2.5 119.6 

50.2 2.9 110.3 

45.7 8.4 108.9 

46.1 14.4 105.1 

49 18.4 90.5 

46.9 27 82.5 

47 53 80.9 

Li et al. [11] 

0.2 

43.8 0 

258 0.334 1.49 

66.7 

43.8 3 63 

43.8 3 61.3 

43.8 8 65.4 

43.8 8 55.4 

43.8 16 56.9 

43.8 35 53.2 

43.8 35 53.3 

43.8 35 49.2 

0.4 

43.8 0 76.4 

43.8 0 76.6 

43.8 3 74.2 

43.8 8 72.7 

43.8 8 76.7 

43.8 16 64.4 

43.8 16 69.5 

43.8 35 64.6 

43.8 35 66 



24 

0.6 

43.8 0 87 

43.8 0 90.8 

43.8 3 83.9 

43.8 3 85.1 

43.8 8 82.7 

43.8 8 87.9 

43.8 8 82.7 

43.8 16 78.5 

43.8 16 83.5 

43.8 16 72.3 

43.8 35 63.7 

43.8 35 67 

0.2 43.8 8 

0.501 

71.2 

0.4 
43.8 8 86.7 

43.8 8 80.2 

0.6 
43.8 8 107 

43.8 8 108.4 

Minimum 0.2 29.3 0 235 0.167 1.49 42 

Maximum 1.0 50.2 58 258 0.501 1.76 121.1 

 

 

 

Table 2: Model summary 

Number of data Multiple R R-Square Adj R-square Root-MSE (SD) Rows missed 

103 0.92733 0.85995 0.85423 7.37383 0 

 

Table 3: ANOVA 

 
DF Sum of Squares Mean Square F Value Prob>F 

Model 4 32718.67 8179.667 150.435 0 

Error 98 5328.594 54.37341 
  

Total 102 38047.26 
   

 

Table 4: Model coefficients 

 
Value Standard Error t-Value Prob>|t| 

Intercept -36.3138 6.94614 -5.22791 9.70E-07 

2r/b 54.66411 3.01586 18.12556 0 

fco (MPa) 0.60366 0.12343 4.89053 3.94E-06 

δ(%) -0.41691 0.04405 -9.46516 1.78E-15 

tf 184.2782 9.38386 19.63779 0 
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Table 5. Weights and biases of the selected 4-15-1 architecture 

Hidden 

layer 

w1 w2 

2r/b fco 𝛿 tf fcu b1 b2 

1 -0.01938 -7.50709 -4.6926 3.995774 2.282845 -5.02756 

-3.78534 

2 1.106473 -4.15193 -5.05247 0.341523 1.377044 -4.33042 

3 -1.0399 1.528196 2.524318 -1.45428 5.920234 2.625794 

4 2.560789 3.717715 -2.5806 -1.68423 -3.92895 -2.97694 

5 0.797232 3.538876 -1.87743 1.609724 6.256812 -3.15424 

6 -3.18243 -7.76703 5.295658 2.174151 -2.22012 3.20949 

7 2.059885 -2.49536 5.352248 4.529893 -1.73519 3.662914 

8 -0.11631 6.532017 -4.04565 5.193886 -1.77226 -2.56795 

9 3.519138 1.864404 5.024643 -3.54999 -2.56933 -0.07049 

10 2.074723 -2.45226 -4.53085 -0.03322 -1.45121 -0.28007 

11 -1.89158 1.820149 2.649225 -1.16391 3.941276 -1.69566 

12 3.45564 5.516056 -1.18055 1.317115 3.833241 3.23313 

13 2.012213 -3.71056 1.279575 0.13646 3.588699 1.425177 

14 -2.19674 1.453738 7.478569 -0.33409 -4.00513 -4.39537 

15 2.850122 -1.91109 -1.04956 -2.88285 2.442951 0.862346 

 

Table 6. Performance of different GPR architecture 

Covariance function Performance Training Testing Validation 

LINiso 
R

2
 0.8106 0.0923 0.9134 

MSE 79.01401 484.2778 31.12219 

LINard 
R

2
 0.8106 0.8841 0.9134 

MSE 79.01406 32.20567 31.12219 

SEard 
R

2
 0.978 0.9986 1 

MSE 8.157397 0.363 1.04E-10 

RQiso 
R

2
 0.9335 0.9588 0.9868 

MSE 24.74966 11.59434 6.595863 

Qard 
R

2
 0.9388 0.9634 0.9921 

MSE 22.84994 10.28349 4.917461 

Materniso ½ 
R

2
 0.9939 0.9976 0.9999 

MSE 2.420955 1.249059 0.744415 
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Table 7. The statistical evaluation of the proposed models 

 

ANN GPR 

 

R
2 

MSE R
2
 MSE 

Training 0.9866 4.9894 0.9939 2.4210 

Testing 0.9778 6.0552 0.9976 1.2491 

Validation 0.9896 4.7290 0.9999 0.7444 

 

Table 8. Statistical evaluations of the models (whole datasets) 

Models MSE 2R  

ANN 5.1067 0.9862 

GPR 2.0061 0.9953 

BMLR 51.7339 0.8599 
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