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Abstract—In this paper, the problem of detection and tracking
of emitters by multiple flying-vehicles, working in a cooperative
manner, is considered. The radio sensor on each vehicle is capable
of measuring the distance of the vehicle to the radio emitter. The
goal is to detect the presence of such emitters, localize, and then
track them. Meanwhile, the emitter can be moving or stationary,
and may go beyond some environmental obstacles that prevent
it from being sensed. The proposed procedure optimizes the
routes and tasks of the employed flying-vehicles by minimizing
a suitably-defined cost function. Moreover, the appropriateness
level of the assigned routes and tasks is continuously assessed,
so that if it drops below an acceptable threshold due to the
dynamics of the scenario, optimization is performed again and
the routes and tasks are renewed. The simulations, as well as
the complexity discussion, verify effectiveness of the proposed
method, considering the applied requirements and limitations.

Index Terms—Radio intercept, Distributed cooperative search,
Task and route optimization, Range sensor, Environmental ob-
stacles.

NOMENCLATURE

Rc maximum communication range of vehicle
Rs maximum radio sensing range of vehicle
Υ unawareness value
ΥJ joint unawareness value
Pr received signal’s power
d distance
L likelihood value
LJ joint likelihood value
µ mean value of distribution
σ standard deviation of distribution
θHP antenna’s half-power beamwidth
∆T sampling interval
E{⋅} expectation notation
∆J k term of cost function for k’th step
J total cost function
NV number of vehicles
NT number of detected emitters
Rmin. minimum turning radius
V∞Rmin.

velocity related to minimum turning radius
nRmin.

load factor related to minimum turning radius
g gravity acceleration
VI
B velocity vector

ΩBE skew symmetric matrix of the angular velocity
vector of vehicle w.r.t. the earth

sBE displacement vector of the vehicle w.r.t. the
earth

mv vehicle’s mass
fa,p aeropropulsive (aerodynamic and propulsive)

force
fg gravity force
∝ proportional to

1 INTRODUCTION

The cooperative intelligence concept has been widely stud-
ied in recent works [1], [2].

Many researches have been carried out to prove the advanta-
geous of cooperation in different missions, for example, search
and rescue (SAR) by a team of multiple agents [3] or multiple
multicopters [4], cooperative localization [5], surveillance [6],
tracking [7], search and attack [8], and animal monitoring [9].

Considerable works have been done specifically on the
subject of cooperative search with different simplifications. For
instance, in [10], the idea of using a map for measuring the
suitability of search, and a map for measuring the tracking
error is suggested. In this work, each vehicle uses multiple
sensors (besides a range detector) so that the objects’ positions
are supposed to be known whenever they locate in the vehicle’s
field of view. Therefore, no detection scheme is defined.
Similar notes can be argued about [11] where the seeker
installed on the vehicles measures both range and direction of
emitters, or about [12] where the vehicles are equipped with
optical camera sensors. Moreover, the problem of searching for
only one emitter by multiple vehicles is considered in [13]–
[15].

In the present paper, the main goal is to develop a method-
ology for searching a region of interest for possible radio
emitters, and then tracking them. These emitters can appear
and disappear from the region at any time. So, the vehicles
should simultaneously search for undetected emitters and track
the detected ones. As explained before, this procedure can
be efficiently done through the cooperation of the agents.
The cooperative procedure is done in a distributed manner,
such that the vehicles communicate and share information
with each other. In addition, cooperative search is studied
in the context of radio emitters as targets of interest, and
flying-vehicles as agents. Flying-vehicles are commonly used
in different missions for their lower cost and weight and
their human safety [16], [17]. In details, it is noteworthy
that the communication range of each vehicle is limited, so
that each vehicle can communicate only with its neighboring
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vehicles. Each vehicle moves on trajectories that are generated
by running a route optimization at each step. This optimization
is performed independently of other vehicles, based on the
information collected by that vehicle and its neighbors. More-
over, as our vehicle is a flying-vehicle, there are limits on the
weight and expense of the sensors mounted on it. Therefore,
we have assumed a common case, that each flying-vehicle has
only an RSSI (Received Signal Strength Indicator) sensor to
measure the emitter’s range. Obviously, an object cannot be
localized solely by finding its range. But, it can be detected
with the help of other vehicles’ information, or intercepting
its signal for a period of time. In this regard, a detection
scheme is defined, based on the emitters’ ranges sensed by the
vehicles. In addition, the criteria for search and track schemes
are well-formulated, according to the received signal power at
the vehicle’s receiver and the characteristics of the employed
tracking filter.

In summary, the contributions of this paper is highlighted
as:

● Our solution to the surveillance problem benefits from
using light and cost effective flying-vehicles, since they
are equipped with only range sensors.

● Considering the problem such that the vehicles have
cooperation through communications with each other
makes the solution more complicated. But this fact results
in improved success rate of the mission.

● Solving the surveillance problem for multiple emitters,
which can be moving or stationary, and can appear and
disappear from the region at any moment, is another
privilege of the proposed method.

● An efficient innovative algorithm is developed for per-
forming a mission with the goal of searching for and
localizing undetected emitters, while tracking the detected
ones, simultaneously.

● The proposed algorithm considers the problem of obsta-
cles (e.g., mountains) in the surveillance regions, which
prevent the vehicles from sensing the radio signal of an
emitter behind the obstacle.

In the following, the cooperative surveillance problem is
presented in Section 2, where the solution is also proposed.
Next, in Section 3, the simulation results of performing
the proposed optimization for some scenarios are presented.
Section 4 discusses the complexity of the proposed algorithm.
Finally, the paper is concluded in Section 5.

2 COOPERATIVE SEARCH

A known number of flying-vehicles is performing coop-
erative search in a predefined region of interest to find an
unknown number of moving or fixed radio emitters. They roam
in the region to intercept any possible signal. All the vehicles
fly at similar constant height level. Each vehicle is equipped
with only a common, low cost, RSSI sensor to measure the
emitter’s distance to the vehicle. Emitters are mobile, so they
may leave or enter the search region causing the signals appear
or disappear. However, when an emitter is detected, only one
vehicle will track it. Each vehicle is capable of performing
only one of the tasks as defined below at a moment:

● search: when the vehicle is searching the region, its re-
ceive antenna is omnidirectional, intercepting the possible
signals from all 360○ around the vehicle.

● track: when a vehicle is assigned to track an emitter, it
constantly estimates the position of the emitter and tries to
narrow its intercepting beam towards the estimation point,
so that it receives only the tracked emitter’s signal, but
with higher SNR (Signal to Noise Ratio) and accuracy.
In this way, a detected emitter’s state (position, velocity,
and acceleration) is monitored continuously.

Meanwhile, the vehicles share their information with their
neighbors within the maximum communication range of Rc.
They, also, have a maximum radio sensing range Rs, as shown
in Fig. 1.

The surveillance region, containing the vehicles and emit-
ters, is assumed two-dimensional, and the vehicles and emit-
ters are considered point masses in this region. Moreover, there
may be some obstacles (e.g., natural barriers or mountains)
which prevent the vehicles from receiving signal from the
emitters. Thus, the covered emitters can be detected only
when they get LOS (Line Of Sight) with a vehicle, as a
result of the vehicles searching or emitters’ movements. It is
assumed that the obstacles’ map is available for all vehicles
during the mission. As a general guideline, a mission having
more accurate detections and efficient tracking of the detected
emitters in less time duration, is desired.

In order to search the region of interest, each vehicle plans
its path and task (search or track) through a constrained
optimization procedure. In each optimization run (namely, an
optimization phase), the route of each vehicle is determined
for the next multiple steps. In other words, each optimization
phase consists of multiple time steps, in which, the opti-
mization is performed to determine the path of the vehicle
during the steps of that phase. To do so, a gridding network
is proposed for defining the paths (or equivalently the steps).
To obtain the cost function of such optimization, three criteria
are evaluated over the region for each vehicle, as illustrated
in the following.

2.1 Environmental unawareness criterion

In order to define the environmental unawareness criterion,
each point in the region is assigned an unawareness value
which represents the amount of vehicle’s unawareness from
that point. This value can be obtained by considering the fact
that further points have more unawareness values. Accord-
ingly, each point’s unawareness value (Υ) can be obtained
from:

Υ ∝

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
Pr

∝ d4 if there is no obstacle in between,
∞ if there is an obstacle in between,
0 if the point is located on an obstacle.

(1)
where Υ represents the unawareness value, Pr is the received
signal’s power, d is the distance between the specified point
and the vehicle, and the 4 power comes from the traditional
radar equation. This means that for the points behind obstacles,
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where radio emitters have no LOS* to a vehicle’s sensor, we
have complete unawareness. Also, note that for the points
on the obstacles, we have complete awareness, i.e., zero
unawareness, as it is assumed that we are looking for the free
space emitters in the region. Assuming that (x0, y0) and (x, y)
are the position coordinates of a vehicle and an arbitrary point
in the search region, respectively. The unawareness value is
then calculated as presented in Equation (2).

Υ(x, y) = k ((x − x0)
2 + (y − y0)

2)
2
. (2)

Figure 2 shows a sample of region’s unawareness values,
in which one vehicle is located at (0,0), and there are three
rectangular obstacles. As can be observed, further points from
the vehicle have larger values.

It is noteworthy that the unawareness values of the points
over which a vehicle is already passed, are set to zero
for a short duration. That means, the vehicle has complete
awareness of these points at least for a period of time after
passing over them. However, after a while, and as the vehicle
goes away, these zero unawareness points will get nonzero
values again based on Equation (2). In fact, the unawareness
of the vehicle about that points is now returned.

2.2 Emitter likelihood criterion

Normally, the signal emitted by a non-detected emitter is
sensed by a search vehicle that has LOS with the emitter.
Due to non-idealities and environmental factors, the emitter’s
range is measured with error. In this respect, the emitter
likelihood criterion is defined to allow to detect and localize
emitters. In this regard, the points with range distance equal
to the measured range are assigned the value of one (which
is the maximum likelihood value). Then, the points with other
distances are assigned values which decrease in a Gaussian
distribution pattern, as we go further from the points with
maximum values (one). As an example, it is assumed that a
signal from an emitter at (40,35) is received and detected
by a vehicle at (10,25). The RSSI sensor has measured the
distance as 31.6m.

The assumed Gaussian distribution pattern is shown in Fig.
3. As seen, the points further from the measured emitter
range (31.6m) have less probability values obtained from the
Gaussian distribution pattern. As mentioned, the central axes
of this Gaussian distribution are the points with range equal to
the measured range (31.6m) and its variance (σ2) is assumed
to be proportional to the measured range. Intuitively, the reason
is that higher measured range is obtained from the weaker
signal of a further emitter. In other words, its received signal
would have less SNR. Therefore, lesser measurement accuracy
is expected, which results in larger variance of that point’s
distribution. Indeed, each point’s likelihood value represents
the probability of the emitter’s presence at that point, based
on the measurements of the sensor. Note that, the likelihood
values of the points behind and in the obstacles are set to zero.
The reason is that there is no chance to receive a measurement

*Line Of Sight

from an emitter with no LOS. The likelihood distribution can
be written as

L(d) =
1

σ(µ)
√

2π
exp(−

(d − µ)2

2σ(µ)
2
) , (3)

where µ is the mean value of the distribution and, as explained
before, it is the sensed range measurement. Also, σ2 is the
variance of the distribution and d is the distance of the point
for which the likelihood value is calculated. It is noteworthy
that, as mentioned before, σ2 increases as µ increases, because
the measurement accuracy decreases for larger distances. To
capture this dependency, we have [18]

σ(µ) =
θHP

√
2πSNR

, (4)

where θHP is the receive antenna’s half-power beamwidth that
is a sensor characteristic. Also, we can obtain from the radar
equation that for a receiver intercepting an emitter at a distance
µ

SNR ∝
1

µ2
, (5)

and substituting in Equation (4), we have

σ(µ)∝ µ. (6)

In other words, a larger sensed range measurement results in
an emitter’s likelihood function with larger variance.

2.3 Tracking precision criterion

This criterion is defined for the detected emitters, which
are being tracked. A point with likelihood value exceeding a
predefined threshold, is alarmed as a new emitter and should
be tracked. In this regard, the likelihood values of all points
are examined: any point with a likelihood value more than the
threshold is declared a new detected emitter. As a reasonable
case, the threshold is set as a multiple of the mean likelihood
value of all points of the region. Subsequently, each detected
emitter is assigned a vehicle to be tracked by.

The tracking precision criterion is defined as the detected
emitter’s tracking error. A suitable tracking filter will be
chosen in the subsequent sections and its estimation error will
be used for the precision criterion.

2.4 Sharing information with neighbors

At each optimization phase, each vehicle should be assigned
one of the two tasks of search or track. Also, a search vehicle
evaluates the two criteria values of unawareness and emitter
likelihood, for all points of the region. But, a tracking vehicle
evaluates only the tracking precision criterion.

After defining and evaluating the aforementioned three
criteria for each vehicle, the assessments of the neighboring
vehicles from the region should be combined and shared
with each other. The neighbors are determined based on the
vehicles’ communication ranges (Rc). The result of such
information sharing about each point of the region, is three
values of joint unawareness, joint emitter likelihood, and
joint tracking precision. For a group of neighboring vehicles,
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the joint unawareness and joint emitter likelihood values are
computed by combining the information of those vehicles
which are in the search mode. However, the joint tracking
precision value is produced only based on the information
shared by the neighboring vehicles in the tracking mode. Thus,
for a tracking vehicle, the unawareness and emitter likelihood
values are produced by combining the corresponding values
of that vehicle’s neighbors, which are in the search mode. In
fact, the vehicles in the track mode, have no effect on the
searching procedure. The reason is that the tracking vehicles
have no awareness of the areas around them; because they
are just tracking their assigned emitters. On the other hand,
the tracking precision value for a tracking vehicle is produced
based on the information of that vehicle and its neighbors
which are in the track mode.

The combining procedure to obtain the aforementioned joint
parameters is explained in the following:

2.4.1 Joint unawareness: The joint unawareness value of
a point is the minimum of the unawareness values of all N
number of search neighbors,

ΥJ(x, y) = min
i

Υi(x, y) , i ∈ (1,⋯,N). (7)

In fact, low unawareness values for a vehicle in an area
indicates well coverage of that area. So, there is no need to
force other vehicles to move to that point and cover it again.

2.4.2 Joint emitter likelihood: The emitter likelihood val-
ues of searching neighbors should be combined to find the
undetected emitters. For this goal, assume that Ui is the i’th
receiver’s observation from an emitter and also X is the
occurrence of that emitter’s presence at a certain point of
the region (p0). The probability of such occurrence, while
{Ui, i = 1,⋯,N} are observed, can be obtained according to
the Bayesian law [19], as

Pr(X ∣U1,⋯, UN) =
Pr(U1,⋯, UN ∣X)Pr(X)

Pr(U1,⋯, UN)
, (8)

which, due to independency of occurrence probabilities Ui and
Uj (i ≠ j) conditioned on X , can be rewritten as

Pr(X ∣U1,⋯, UN) =
∏Pr(Ui∣X)Pr(X)

Pr(U1,⋯, UN)
. (9)

For Pr(Ui∣X) one can employ the Bayesian law again:

Pr(X ∣U1,⋯, UN) =∏(
Pr(X ∣Ui)Pr(Ui)

Pr(X)
)

Pr(X)

Pr(U1,⋯, UN)

=∏Pr(X ∣Ui)
∏Pr(Ui)

Pr(X)N−1Pr(U1,⋯, UN)

=k0
∏Pr(X ∣Ui)

Pr(X)N−1 , (10)

where k0 is constant and independent of X , which means that
in evaluating the emitter’s likelihood of a point (p0), when
conditioned on observation {Ui, i = 1,⋯,N}, k0 is constant
for all points of the region. On the other hand, since Pr(X)
has a uniform distribution (since there is no information about
the presence of the emitter at different points of the region

before starting the mission and observing any measurement.),
we can write:

Pr(X ∣U1,⋯, UN) = k∏Pr(X ∣Ui), (11)

where k is constant and its value is independent of p0, which
means that it is constant for all points of the region. Therefore,
it can be ignored in the thresholding process of the likelihood
values for finding emitters.

Furthermore, notice that Pr(X ∣Ui) is the probability of the
emitter’s presence at p0 conditioned on the i’th receiver’s
observation, which represents the likelihood value of the i’th
vehicle individually. Thus, Equation (11) states that the joint
likelihood value of N receivers can be obtained from

LJ(p0) =∏Li(p0). (12)

Considering the joint values of all points of the region,
the point, for which the likelihood value is larger than the
threshold, is declared as the location of a new emitter.

It is noteworthy that to get better performance, another
improvement is considered in producing the joint likelihood
value. We can use the information sensed by vehicles in
previous times, which is remained in their memories. Indeed,
the likelihood values related to an individual vehicle, in
different subsequent times, can be combined, similar to the
case of combination of values of different vehicles:

Pr(X ∣U t, U t−1)∝ Pr(X ∣U t)Pr(X ∣U t−1)ξ, (13)

where t denotes the observation time, and the likelihood value
of the previous time (which is between 0 and 1) is powered
with a forget factor (ξ), so that the previous time value has
less effect than the current value. As a result, as the time goes
on, the vehicle forgets the past status, gradually.

2.4.3 Joint tracking precision: Each tracking vehicle has
an estimation of the position of the emitter it is tracking. In
this paper, the tracking procedure is done using a variant of
Kalman filter, namely, the αβγ filter, in which a good trade-
off is met between the low computational burden enforced by
the limitations of each vehicle’s processor and the tracking
accuracy needed in the surveillance missions.

a. αβγ filter
In order to use the original Kalman filter, detailed dynamic

system model is needed, and states’ values are estimated in a
formal and rigorous manner. Alternatively, one can employ the
αβγ filter which is basically a Kalman filter when the model
meets some simple assumptions. The detailed dynamic system
model is not needed in the αβγ filter and it estimates the states
in a simple process. This filter presumes that a system is ade-
quately approximated by a model having three internal states,
where the first state is obtained by integrating the value of the
second state and the second state is obtained by integrating
the value of the third state over time. This approximation is
adequate for many simple systems, for example, the emitter
dynamics in our case, where position and velocity are obtained
as the time integral of velocity and acceleration, respectively.
In addition, a Kalman filter, which is designed to track a
moving object using a constant-acceleration dynamics model
with process noise covariance and measurement covariance
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held constant (which is our case, in this paper.), converges to
the same structure as an αβγ filter [20].

Two separate αβγ filters are used in the x and y directions.
For both directions the equations are the same. Therefore, in
the following, just the equations for x direction is presented.

The equations of this filter are defined in two parts. First
for the prediction part we have:

xp(k) = xs(k − 1) +∆Tvs(k − 1) +
∆T2

2
as(k − 1),

vp(k) = vs(k − 1) +∆Tas(k − 1),

ap(k) = as(k − 1), (14)

where ∆T is the sampling interval, xp(k), vp(k) and ap(k)
are the predicted object position, velocity and acceleration at
time k∆T, respectively, and xs(k−1), vs(k−1) and as(k−1)
are the smoothed object position, velocity, and acceleration at
time (k − 1)∆T, respectively.

For the smoothing part, using the measured position, we
have:

xs(k) = xp(k) + α (xo(k) − xp(k)) ,

vs(k) = vp(k) +
β

∆T
(xo(k) − xp(k)) ,

as(k) = ap(k) +
2γ

∆T2
(xo(k) − xp(k)) , (15)

where xo(k) is the measured position (observation) at time
k∆T, and α, β, and γ are the filter gains.

This filter’s estimation error consists of two parts: the steady
state error (or the noise error) and the transient error (or the
maneuver error). The maneuver error can be computed from
[21]:

∆T2(2 − α)

αβ(4 − 2α − β)
. (16)

As can be observed, this error is a function of only the constant
parameters of the filter and is independent of the geometry of
the vehicles. Thus, this term has no role in the optimization
procedure. The noise error can be obtained as [20]:

σ2
P =E [(xp(k) − xt(k))

2
]

=
8β2 + α(4 − 2α − β)(2αβ − γ(2 − α))

(2 − α)(4 − 2α − β)(2αβ − γ(2 − α))
σ(µ)2, (17)

where E denotes the expectation notation, xt represents the
true emitter’s position, and σ(µ) can be obtained from Equa-
tion (4) for an object at distance of µ.

Regarding the neighbors’ tracked emitters, each vehicle con-
siders minimizing the tracking error by considering whether to
track the neighbors’ dedicated emitters or not. In other words,
all neighboring vehicles try to maximize the joint tracking pre-
cision of detected emitters by assigning appropriate vehicles
to track each emitter.

b. Obtaining position observation from range information
As the tracking αβγ filter is suitable for a linear model,

the object Cartesian coordinates (p = [x, y]) is appropriate
for tracking and should be the input to this filter, outcoming
from the fact that the object usually moves in a straight

line. However, more complicated filters such as extended
Kalman filter or unscented Kalman filter [22] should be used
for nonlinear models. This means that the polar coordinates
([r, θ]) are not appropriate, and the range only measurement
(r) is not sufficient for our means. In this regard, a solution is
proposed in the following to obtain the Cartesian coordination
of the emitter from the range information available from the
sensors, so that the αβγ filter can be suitably applied.

In order to employ the αβγ filter, the two Cartesian coor-
dinates of the emitter’s position should be determined from
the received signal, that only measures just the distance of
the emitter (r). To overcome this issue, the locus of two
circles, related to the current time and the last time steps,
are plotted, using the two different sensor’s range measure-
ments as the circles radii and the two different vehicle’s
positions as the centers of the circles (see Fig. 4). Then,
the nearest intersection of these two circles to the predicted
point (pp(k) = [xp(k), yp(k)]) is chosen as the Cartesian
observation (po(k) = [xo(k), yo(k)]). It is noteworthy that
the step time should be chosen sufficiently small that the
emitter’s movement is negligible in this duration. In this
way, an emitter’s position is available each time a range
measurement rk is sensed. Based on this new position, and
then using the aforementioned αβγ filter, the emitter’s position
can be tracked.

2.5 Optimization problem

For each vehicle the path and task should be determined,
such that, considering the whole region and all vehicles, the
search and track mission is done suitably. In this way, one
can assure that all emitters, present in the region, are detected
and tracked as fast and accurate as possible. To do so, an
appropriate cost function is defined according to the criteria
presented in the previous sections.

2.5.1 Cost function: The cost function of the route/task
optimization problem is defined as follows:

J =
K

∑
k=1

∆J k,

∆J k =∫ ∫ ΥJ(x, y)dxdy

+
NV

∑
i=1
Si

NLmax

∑
m=1

LJ(xm, ym) ×
√

(xv
i − xm)2 + (yv

i − ym)2

+
NV

∑
i=1

NT

∑
j=1

T ji × (σ2
P )ij . (18)

where ∆J k is the term of cost function for k’th step (i.e., at
time t = k∆T), K is the number of steps in each optimization
run, ΥJ(x, y) is the joint unawareness at point (x, y), and
Si indicates whether this vehicle is searching (Si = 1) or
not (Si = 0). Indeed, the first term is the integral of the
unawareness values over the whole region of interest during
one step. In the second term, NLmax and LJ(xm, ym) are
the total number of local maximums of the joint likelihood
function and their corresponding values, respectively. In addi-
tion, [xv

i , y
v
i ] is the i’th vehicle’s position. The second term is

defined such that the vehicles move toward the points that are
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more likely of an emitter’s presence. In the third term, (σ2
P )ij

is the estimation error of tracking the j’th emitter by the i’th
vehicle, and T ji indicates whether this vehicle is tracking the
j’th emitter (T ji = 1) or not (T ji = 0). Finally, NV and NT
are the number of neighboring vehicles and detected emitters
being tracked, respectively. Minimizing this term aims to track
emitters with least estimation error.

In order to perform the optimization, feasible routes should
be considered. For this goal a gridding network is assumed,
in which the vehicles travel by crossing only to the adjacent
nodes in each movement. For illustration, five candidates of
feasible routes are shown in Fig. 5, where the current vehicle’s
position is denoted by number one.

In this paper, GA (Genetic Algorithm) is employed for
solving the optimization problem. The GA is a searching
process based on the laws of natural selection and genetics.

2.5.2 Optimization constraints: The constraints of the op-
timization problem are as follows.

1) Task assignment,
Si + Ti = 1, (19)

which means that the i’th vehicle is assigned whether
to search the region (Si = 1, Ti = 0) or track an emitter
(Si = 0, Ti = 1).

2) Track assignment,
NT

∑
j=1

ηj = min(NT ,Nv), (20)

which means that a detected emitter should be tracked
by only one vehicle (and not more) and also should not
be released (if there is any vehicle ready for tracking).
In constraint of Equation (20), ηj indicates whether the
j’th emitter is being tracked (ηj = 1) or not (ηj = 0),
and NT and Nv are the number of detected emitters and
vehicles, respectively.

3) Vehicle’s dynamics,

Vv(t) =
ds

dt
,

Vvmin . < Vv(t) < Vvmax,

(21)

where Vv(t) is the velocity as a function of time,
ds is the distance differentiation, and dt is the time
differentiation. This means that the velocity limitations
of the vehicles are considered besides the equation of
motion. In addition,

Rmin. < R(t),

(22)

which states the constraint on turning radius of the
vehicle (R(t)). The minimum turning radius of vehi-
cles, according to flying-vehicle’s characteristics, can be
calculated as [23]:

Rmin. =
V∞

2
Rmin.

g
√
n2Rmin.

− 1
, (23)

where g is the gravity acceleration, and V∞Rmin.
and

nRmin.
are the velocity and load factor related to mini-

mum turning radius, respectively.
4) Gridding,

dN ≈ 4.8Rmin., (24)

where (dN) is the horizontal (or equivalently vertical)
distance of the nodes. To illustrate this constraint, sup-
pose that in an extreme scenario the vehicle moves in
a sequence of Node 3 to Node 1 to Node 2 to Node 4
as shown in Fig. 6, where the maximum change in the
vehicle’s heading angle occurs. Near Node 1 and Node
2, this change equals 135 degrees.
Thus, the minimum acceptable distance of two nodes
can be obtained from

` =
dN
2

=
Rmin.

tan(45○/2)
⇒ dN = 4.8Rmin.. (25)

5) Sensor range.
Two vehicles are assumed neighbors and therefore can
share their information only when they are in the com-
munication range of each other:

√
(xi − xj)2 + (yi − yj)2 < Rc, (26)

where [xi, yi] and [xj , yj] are the vehicles positions.
In addition, the vehicle is able to sense a signal from an
emitter only if their distance is less than the vehicle’s
defined sensor range:

√
(xs − xt)2 + (ys − yt)2 < Rs. (27)

6) Obstacles.
When obstacles are present in the region, to avoid
obstacle collision, only those routes that do not touch
the obstacles are accepted. In more details, each of
the obstacles in the search area includes some nodes
of the preassumed gridding network. Accordingly, these
nodes are omitted from the allowable nodes that form
a candidate route. For Example, in Fig. 7, there are
three rectangular obstacles that the vehicles should avoid
colliding with.
Moreover, it is possible that an emitter goes behind an
obstacle such that the vehicle has no LOS to that emit-
ter. Therefore, an emitter affects a vehicle’s likelihood
function only when there is LOS between the emitter
and vehicle. To formulate this constraint, it is assumed
that the obstacle B is defined as a set of boundary line
segments†:

B = {`i∣i = 1,⋯, L}. (28)

where each line segment (`i) is considered straight,
and L is the number of these segments constituting the
obstacle B. Therefore, to have LOS, a line connecting
the vehicle to the emitter (`vt

LOS) should not collide with

†Note the 2D consideration, as explained before.
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any member of the set B:

B ∤ {`vt
LOS} = ∅, (29)

where the ∤ symbol denotes the set of points obtained
from the intersection of the lines of the two sets.
Finally, it is obvious that only a vehicle, that has LOS
with a detected emitter inside its sensor range, is allowed
to be assigned to track that emitter.

2.6 Assessment stage

In order to decrease the computational burden, the cost
function is optimized once after multiple step times (instead
of at each step time), determining the route for multiple step
times. However, when moving through the planned route, the
vehicle may experience degraded performance, as the emitters
and environmental situations change dynamically. In this re-
gard, at the beginning of each step time, the appropriateness
of the planned route and task is evaluated by each vehicle.
This evaluation determines whether the planned path and task
are still suitable or not. For this purpose, the cost function
of Equation (18) is evaluated for the rest of the vehicle’s path
(i.e., that part of the path that the vehicle has passed is omitted
from the summation of Equation (18)):

Ji =
K

∑
k=kt

∆J ki ,

where kt is the current step’s index. Obviously, the path’s
cost may vary during the vehicle’s travel, as the emitters are
moving and new measurements are sensed. In this regard, if
the cost of the rest of the path has increased unacceptably, a
new planning optimization is performed for that vehicle and
the previous one is neglected.

The proposed surveillance scheme is summarized in Algo-
rithm 1.

3 SIMULATION RESULTS

In the following, each optimization is performed to ob-
tain the routes for three time steps (K = 3 in Equation
(18)). Specifically, the genetic algorithm employs the scattered
crossover method with a crossover fraction of 0.8. Besides, the
Gaussian mutation is utilized for producing the next genera-
tions, while the stochastic universal sampling (SUS) technique
is applied for the selection procedure [24]. Maximum number
of iterations before the algorithm halts is chosen as forty.

The recent six positions of the vehicles are assumed to
have zero unawareness values, as illustrated in Section 2.1.
If the value of a point’s likelihood gets 1,000 times larger
than the average of all the values of the region, then that
point would be declared as a new emitter. In addition, the
vehicles’ range sensor is assumed to have a detection range of
170km, and the vehicles have low frequency communication
links, which allow them to be connected with each other
through the whole region. Indeed, the obstacles that prevent the
radio emitter’s signal from being intercepted by the vehicle’s
range sensor, are not considered barrier for the communication
signal. Moreover, each vehicle flies with the velocity of
between 120km and 180km per hour. Thus, setting the load

Algorithm 1 : Algorithm for the cooperative surveillance
problem of a group of neighboring vehicles

Require: Set of tasks, locations, and sensor measure-
ments of the vehicles at the current time, i.e.,
{Si, Ti},{(x

v
i , y

v
i )},{Ri} for i = 1,⋯, vehiclesNumber.

Ensure: A solution set of paths and tasks for i = 1,⋯,Nv ,
Possible new emitters.
a: Solve the constrained optimization problem of finding
the best (with the minimum cost) set of paths and tasks
among all feasible candidate sets, using the Genetics
algorithm.
b: The cost of a candidate set of paths (including K steps)
and a candidate set of tasks for the vehicles is calculated
as below (lines 1 to 27).

1: Set i = 0;
2: repeat
3: i ∶= i + 1;
4: if vehicle(i) ∈ {Search vehicles} then
5: for all (x, y) ∈ region of interest do
6: Compute the unawareness value Υi(x, y) (Equa-

tion 2)
7: Compute the likelihood value Li(x, y) (Equation

3)
8: Combine the likelihood values of subsequent times

according to Equation 13
9: end for

10: else if vehicle(i) ∈ {Track vehicles} then
11: Estimate the assigned emitter’s position (Equation

15)
12: end if
13: until i ≤ Nv
14: for all (x, y) ∈ {region of interest} do
15: Compute the joint unawareness Υ(x, y) (Equation 7)
16: Compute the joint likelihood value LJ (Equation 12)
17: if LJ > LikelihoodThreshold then
18: A new emitter is declared detected at (x, y)
19: end if
20: end for
21: for all detected emitters do
22: Compute the joint tracking precision σ2

P (Equation 17)
23: end for
24: Set k = 0;
25: repeat
26: k ∶= k + 1;
27: Compute cost of k’th step (∆J k) according to Equa-

tion 18
28: until k ≤K
29: Compute J = ∑

K
k=1 ∆J k.

30: Output J



8

factor as nRmin
= 1.8 leads to the minimum turning radius

of the vehicles as Rmin = 75.7m (from Equation (23)). The
distance of nodes is chosen dN = 380m to meet the constraint
of Equation (24). Having a velocity controller, each vehicle
goes from a node to its adjacent node in a step time (∆T).
By choosing ∆T = 11s, the velocity of the vehicle remains
in the aforementioned bounds. Accordingly, the velocity in
longitudinal and lateral directions would be 34.55m/s, which
is more than the minimum allowable speed. Besides, the
velocity for passing in the diagonal nodes would be 48.85m/s
which satisfies the maximum allowable speed. In addition, for
satisfying the turning radius constraint, no vehicle can turn
back, or remain at its last node. Furthermore, the region of
interest, with the dimensions of 19km × 19km, is divided to
50 equi-distance nodes. In the following, the distance, time,
and velocity values are normalized by dN = 380m (distance
of two adjacent nodes), ∆T = 11s, and 380/11m

s
, respectively.

Finally, values of α = 0.5, β = 0.1, γ = 0.001 are used for the
tracking filter.

3.1 An instructive scenario

In the following, the ideas mentioned before for optimizing
the vehicles’ routes and tasks are illustrated by an example.

In this scenario, three vehicles at (10; 5) (first vehicle),
(10; 30) (second vehicle), and (10; 55) (third vehicle) are
considered. In addition, two emitters, initially at (41; 50) and
(35; 22), are moving with constant velocities of (0.1; 0) and
(0;−0.17), respectively. Also, three obstacles (for example,
mountains) are present in the region of interest, whose bound-
aries are distinguished by light blue lines in the following
figures.

Figure 8 shows the joint likelihood function for the 14’th
optimization. In this step, the value of the peak at (19; 19)
exceeds the threshold, and therefore, a new emitter is declared.
From now, two vehicles search the region and the other one
tracks the only detected emitter. As expected, since the second
vehicle is closer to the detected emitter, it is assigned to track
and the other two vehicles continue searching.

As the searching vehicles continue searching, the likelihood
function, gradually tends to yield narrower peak until the peak
exceeds the threshold in the 34’th optimization and a new
emitter at (23; 53) is declared. The likelihood values are shown
in Fig. 9. Based on the constraint of Equation (20), from now,
two vehicles are assigned to track.

The overall vehicles’ trajectories are shown in Fig. 10.
It is worth noting that after the second emitter detection, the

two tracking vehicles plan their routes only based on the error
estimation criterion. The position estimation errors of the two
detected emitters are presented in figures 11 and 12. Although
some little temporary increase in the x-coordination error is
observed at about step#100 due to the vehicle’s maneuver, the
results show satisfactory convergence.

3.2 Performance evaluation

In this part, the effectiveness of the cooperation between
vehicles in the surveillance scenario is investigated.

3.2.1 Effect on detection: First, one stationary emitter is
positioned randomly in the region of interest with no obstacle,
and a cooperative search mission is performed according to
the proposed algorithm. This scenario is repeated for different
number of employed vehicles. In fact, each scenario is repeated
for 100 times with 100 randomly chosen positions for the
emitter, and the mean detection time, is measured. The results
are depicted in Fig. 13, where the efficiency of the cooperation
in decreasing the mean detection time is obvious. The results
suggest that in a cooperative surveillance, increasing the
number of search vehicles, initially, has a significant impact
on the detection. But, gradually this improvement tends to
saturation, which implies that no considerable decrease occurs
in the detection time by increasing the number of vehicles, and
three is adequate. Moreover, it is observed that one vehicle
alone has relatively weak detection performance due to the
nature of its range only sensor.

The same result is observed in Fig. 13 for one moving emit-
ter in the region, where 100 random positions are produced for
the emitter and the emitter starts to move to the center with
a constant velocity of 34.5m/s. Also, notice that so long as
the emitter’s speed is not very high w.r.t. the step time, such
that it satisfies the constraint of Section 2.4.3, introduced for
the intersection localization method, the algorithm well detects
the emitter and there is not significant difference between a
moving emitter and a stationary emitter from the detection
time point of view.

3.2.2 Effect on coverage: In this part, the effect of vehicles’
number on the coverage level of the region is examined. In
fact, for different number of vehicles, the previously men-
tioned region of interest without any emitter or obstacle is
considered. In this case, according to what stated in Section 2,
only the unawareness criterion determines the vehicles’ routes,
and the values of other two terms are zero. The value of the
resulted cost function, which is indeed the joint unawareness
level, is depicted in Fig. 14 over 20 optimization phases for 1
to 3 vehicles.

First, notice that the unawareness values are less for more
vehicles. In addition, it is worth noting that in addition to the
decreasing behavior of the unawareness over the 20 phases,
each case converges to a final value which, also, decreases by
adding more vehicles. Indeed, for a limited number of vehicles
searching a region of interest, the proposed optimization
scheme, finally, leads to optimum locations for the vehicles,
where the vehicles have the most awareness of the region by
roaming at. Moreover, similar to the previous analysis (Fig.
13), one vehicle (without cooperation) has relatively weak
performance as a result of using range only sensor.

3.2.3 Effect of emitter’s velocity: The effect of emitter’s
velocity on the tracking performance is examined. To do so,
two vehicles and one emitter are considered. Indeed, regarding
the previous analyses’ results, it can be observed that two
vehicles are sufficient for such mission. The vehicles are
positioned initially at the two corners of (1; 1) and (1; 59).
In six different scenarios, the emitter starts from (40; 55) with
a velocity chosen from Table I.

The resulted vehicles’ trajectories, upto the 43’th optimiza-
tion, are shown in Fig. 15.
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The mean error of the emitter’s position estimation in the
phase of stable tracking is shown in Fig. 16. As can be
observed, it increases with the increasing of the emitter’s
velocity.

The reason lies in the fact that in producing the position
measurement of the emitters by the intersection method pre-
sented in Section 2.4.3, there was an assumption of emitter’s
being approximately stationary w.r.t. the vehicle in two suc-
cessive steps, as mentioned before. However, by increasing
the emitter’s velocity, this assumption gets more violated.
Moreover, it can be inferred from the results that localization
of a stationary emitter is performed perfectly due to the feature
of intersection method.

3.3 Validation with regard to recent works

In this part, the efficiency of the proposed search algorithm
is compared with two similar recent works of the same field.

First, the search algorithm of [25] is considered. In this
article, the flying-vehicles’ paths are determined using a dis-
tributed ant colony optimization (ACO) algorithm. Assume a
50km×50km region with 1,000×1,000 nodes. Two vehicles
with the initial locations of (0,0)km and (50,0)km are to
search the region for eight stationary emitters, as in Fig. 17.
The vehicles have the speed of 250m

s
with the minimum

turning radius of 100m. In this regard, the distance of two
adjacent nodes is chosen 500m to satisfy Equation (25). As
can be observed in Fig. 17, there are some zones in the region
of interest which should be avoided by the vehicles, as the
environmental obstacles. In addition, it is mentioned in [25]
that the emitters are detected whenever they are in the range
of 1km of the vehicle’s sensor.

The result of the detection procedure is stated in Table II.
As can be observed, the eight emitters are detected by the
method of [25] in 333.33s, while our proposed algorithm leads
to detection of these emitters in 181.12s.

As the second similar work, [26] is considered, where the
flying-vehicles are equipped with RSSI sensors, and aim to
detect and localize the emitters. In each vehicle, a Mont
Carlo filter is implemented to fuse its measurements with
other vehicles’ measurements. Then, the guidance points are
generated, and the searching guidance law directs the vehicle
through these points.

The region of interest is 40km × 40km with the adjacent
nodes’ distance of 380m. The number of neighboring vehicles
searching for the emitters, varies from one to five, in separate
scenarios. In each scenario, three parameters are investigated:

● detection time,
● success rate,
● income, which is defined as below ( [26]).

In = nt10000e
−(Dt)2

400 + 500 − ns
Dt

60
1500($), (30)

where nt and ns, are the number of localized emitters
and flying-vehicles, respectively, and Dt is the detection
time in minutes. The income value is larger for a mission
with more detected emitters, fewer number of employed
vehicles, and less hiring time.

The detection process of [26] is such that an emitter is
declared detected whenever the vehicle gets as close as 50m to
it. In the first scenario, one emitter is positioned at (37,20)km.
The results are shown in Table III, where we can see that

● Both search algorithms lead to the detection of the emitter
with 100% of success rate.

● Our proposed algorithm overcomes the algorithm of [26]
from the detection time point of view. Also, it is observed
that the cooperation of the vehicles plays a key role in
the detection time parameter, as increasing the number of
vehicles significantly improves this parameter.

● Our proposed algorithm results in better income values
with respect to the Mont Carlo filtering method.

It is noteworthy that, as the authors have mentioned in
[26], the method is best appropriate for one emitter. However,
they have presented the outcome for detection of two emitters
(positioned at (35.1,16.2)km,(37,25.7)km). The resulting
success rate for the Mont Carlo Method and our proposed
algorithm is shown in Table IV. As can be observed, while
the Mont Carlo method is poor in this case, our proposed
method leads to perfect detection.

In overall, the results represent the flexibility of the pro-
posed algorithm with respect to various scenarios with differ-
ent number of emitters, different number of vehicles, different
step sizes, different nodes’ distances, and, in general, different
circumstances of the mission. Notably, in the proposed algo-
rithm, when there is no signal in the environment, a suitable
procedure (environmental unawareness criterion) is designed
to look for possible targets. Then, a proper process (emitter
likelihood criterion) is developed for the case of sensing signal
from targets. These two logics together result in well detection
of covert targets, while monitoring all intended zones of the
surveillance region at the same time. Finally, an appropriate
estimation procedure is used to track the detected targets,
which completes the surveillance mission perfectly.

4 COMPLEXITY DISCUSSION

It can be inferred from the proposed surveillance scheme
that its computational burden is directly related to the cost
function defined in Equation (18). Indeed, without using the
genetic algorithm, and through an exhaustive search to find
the optimum solution, the total number of times, that the cost
function should be computed‡, is obtained from:

C1 = (8 × (8 − 1)K−1)
Nv P (Nv,NT ), (31)

where 8 is the number of grid points surrounding around each
grid point in our model, so that a vehicle have 8 choices
to go at each step. In addition, P denotes permutation and
other parameters are defined before. In this relation, the first
term is the number of states due to the different paths that
the vehicles can pass, and the second term is the different
number of choices for assigning the search and track tasks to
the vehicles.

On the other hand, for each time the cost function is
computed, the computational burden is equal to:

‡which is in fact the total number of candidate solutions.
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C2 = FS(K.ρNv) + FT (K.(1 − ρ)Nv)∝ Nv, (32)

where FS is the time complexity of the search term of the cost
function, and FT is the time complexity of the track term of
the cost function. ρ is the proportion of search vehicles to the
overall number. Namely, Equation (32) is referred to as the
order of evaluate.

The total complexity order of the aforementioned exhaustive
search is obtained from the multiplication of two values of
Equation (31) and Equation (32):

CT = (8 × 7K−1)
Nv NvP (Nv,NT )K (FSρ + FT (1 − ρ)) .

(33)
Therefore, the complexity of an exhaustive search would
grow in an exponential regime with respect to the number
of vehicles, rather than polynomial.

It is shown that, by employing the genetic algorithm, the
complexity would be on the order of (C2×m lnm/ ln r) [27],
where m is the population size and r is the fitness ratio§. Both
of m and r are constants [27]. So, using Equation (32), the
complexity order of the proposed genetic-based surveillance
scheme will be O(Nv). Therefore, it is observed that the
exponential relation is reduced to a polynomial one, which
leads to a much more efficient algorithm.

5 CONCLUSION

The problem of detection and tracking of stationary and
moving emitters by multiple flying-vehicles, working in a co-
operative manner, can be considered in any scenario, in which
finding and monitoring a specific kind of radio emission source
is desired. This may involve a vast range of applications,
such as rescue, animal monitoring or localizing hostile radio
equipment, etc. In this study, with the intention of using low-
cost applicable agents, the flying-vehicles are considered to be
equipped with only range sensors that measure the distance
from radio emitters. In this case, in addition to detecting,
the problem of localizing the emitters also arises. Moreover,
the region of interest may consist of various obstacles which
barricade the line of sight and therefore, add complexity to
the surveillance.

It is shown that by introducing a suitable cost function com-
bined with taking advantages of genetic algorithm, the routes
and tasks of the vehicles can be obtained efficiently. This
efficiency is based on three points of views: the complexity
burden of solution, detection of new emitters, and track of
detected emitters.

The proposed procedure is appropriate for various search
and tracking missions where the primary solution is costly,
irregular, or time inefficient. All these advantages are provided
through an intelligent cooperation of agents.

Although the vehicles are considered to be equipped by
range sensors, however, the proposed surveillance method-
ology can be easily adapted for employing the other radio

§In more details, r can be referred to as the ratio of the average cost
function value when setting a gene to 1, to the average cost value when setting
that gene to 0. Obviously, this value is defined cost function dependent.

sensors such as DF¶. Also, extending the proposed algorithm
to the 3D (3-dimensional) can be considered as a future work,
where the vehicles can change their height during the mission.
All concepts presented in this paper in defining the proposed
criteria are applicable to the 3D case, too. However, new grid-
ding network should be defined and, probably, innovative ap-
proaches should be developed to overcome the computational
issue of 3D scenarios. In addition to these subjects, considering
the surveillance problem of cooperative vehicles with no prior
knowledge of the terrain and moving towards more analytic
methods while benefiting more advanced tracking filters would
be interesting for future study.
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Fig. 2: A sample of region’s unawareness level from a receiver point of view at (0,0).
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Fig. 7: The nodes inside the obstacles’ boundaries (shown in blue) are not considered for producing candidate routes.
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Fig. 11: Position estimation error of the first emitter.
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TABLE I: Scenarios for different emitter’s velocities

Scenario Normalized velocity vector Speed (km/h)
1 (0; 0) 0
2 (0;−0.083) 10.36
3 (0;−0.167) 20.73
4 (0;−0.250) 31.10
5 (0;−0.333) 41.45
6 (0;−0.417) 51.82

TABLE II: Detection time in the presence of obstacles (s)

ACO method of [25] proposed method
Detection time 333.33 181.12

TABLE III: Performance evaluation according to criteria introduced in [26]

Mean detection time (s) Success rate (%) Income value
Number of vehicles Method of [26] Proposed method Method of [26] Proposed method Method of [26] Proposed method

1 1619 818.07 100 100 3014 6442
2 831 193.05 100 100 5953 10084
3 749 151.8 100 100 6167 10152
4 714 152.13 100 100 6118 10087
5 685 89.1 100 100 6029 10259

TABLE IV: Performance evaluation with two emitters

Success rate in detection of two emitters (%)
Number of vehicles Method of [26] Proposed method

1 8 100
2 42 100
3 52 100
4 64 100
5 62 100


