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Abstract 

In the multivariate statistical process control literature, the profile is a function or curve 

representing the relation between two or more variables. Several types of complicated curves are 

conventionally applied to analyze the health of humans, such as Systolic and Diastolic blood 

pressure profiles. This paper proposes a new approach to interpreting the process capability 

indices of complex health profiles in the human body performance assessment. Using the popular 

multivariate statistical techniques of profile monitoring for complex health profiles is too 

complicated or impossible. Hence, the proposed method transforms the health profile into a 

univariate specification using dissimilarity indices. The applicability of the new approach is 

verified via a simulation study on an example of human blood pressure profiles. This application 

also represented the simplicity of the proposed method to conventional techniques and how the 

profile capability indices could be applied in health evaluation. In addition, it provides valuable 
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information to evaluate the Heart’s performance in terms of blood pressure and make a judgment 

on the blood circulation system.   

Keywords: Statistical Process Control, Process capability indices, Profile monitoring, Medical 

curves, Curves dissimilarity indices, Blood pressure assessment  

 

1 Introduction 

     Statistical process control (SPC) involves techniques to detect the out-of-control state of the 

process caused by at least one assignable cause. Shewhart control charts are commonly applied 

to monitor the variability of the process(Oakland and Oakland [1], Berger and Hart [2]). When 

engineering characteristics are correlated, multivariate SPC techniques such as Hotelling T
2
, 

Principal component analysis(PCA), and Mean coding strategy are used Ge and Song [3]. 

   In recent decades, some curvature-type quality specifications have been mentioned, named 

profiles. The first step in Profile analysis is fitting a regression model, and then, a multivariate 

SPC method was applied to monitor the process regarding the coefficients and error variance of 

the fitted regression models [4, 5]. 

     Process capability indices (PCIs) were defined to describe the ability of a process in the 

conforming-items production[6-9]. Kane [10] introduced univariate PCIs, such as Cpk, and 

Dharmasena and Zeephongsekul [11] applied principal component analysis (PCA) to evaluate 

the multivariate PCIs. Hadian and Rahimifard [12] introduced some practical multivariate PCIs 

to assess the capability of a project to satisfy the requirements. Yang et al. [13] evaluated the 

capability of the manufacturing processes based on the truncated data from supplier products. 

Wang et al. [14] applied the robust approach to assessing the PCIs of a production process using 

a model selection method. They aimed at two examples to illustrate the improvement strategy in 
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the manufacturing process of products. In addition, PCIs could be applied to assessing the 

processes, producing profiles as engineering characteristics. Some techniques, such as non-

conforming percentage-based methods, functional indices, PCA-based approaches, and 

Hausdorff distance-based methods, have been developed for profile capability evaluation [15-

18]. 

    In the clinical assessment, some curves might be helpful to analyze the state of patients. For 

example, Systolic and Diastolic blood pressure curves are two commonly used profiles in human 

blood pressure evaluation. In this paper, we propose a new approach to applying the PCIs of 

health profiles as diagnosis indices for health assessment. The pattern of health profiles is 

commonly too complicated to fit a regression model. Hence, the distance between an observed 

profile and the Target profile is considered a value of an engineering characteristic, resulting in 

no need for regression model fitting, tolerance setting for coefficients, or using complex 

multivariate statistical methods. In other words, the main novelty aspect of this paper is using 

CDIs to summarize the complicated health profiles into a univariate engineering characteristic. 

Furthermore,  interpreting the PCIs of profiles as health indicators and applying the new 

approach in the human blood pressure profile assessment presents the first application of profile 

monitoring and capability assessment in the healthcare sector.  

     The remained sections of the paper are as follows. Section 2 reviews the literature on PCIs of 

profiles and CDIs. The related concepts and methods are reviewed in section 3, and a simulation 

study on the blood pressure profiles is proposed in section 4. Finally, section 5 provides 

conclusions and future work remarks. 

 

2 Literature review 
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     Most literature on PCIs of profiles has concentrated on SLP and has employed complicated 

multivariate statistical techniques in their proposed methods. In this section, the literature on the 

PCIs of profile assessment is reviewed to show the high degree of popularity of multivariate 

statistical approaches, particularly in PCIs assessment of SLP. In addition, a literature review on 

the most significant CDIs is provided.  

2.1 Literature of PCIs of profiles 

     Hosseinifard and Abbasi [19] suggested a non-conforming proportion-based PCI of the 

dependent variable as PCI of simple linear profile(SLP). They also investigated the differences 

between the five methods to assess the PCI of SLPs under non-normality conditions [20]. Ebadi 

and Amiri [21] proposed three approaches, including a non-conforming percentage-based 

technique, the multivariate capability vector, and the PCA-based method, to assess the capability 

of multivariate SLPs. Ebadi and Shahriari [22] calculated the process capability indices for SLP 

using the non-conforming percentage method and multivariate capability vector. Wang and Guo 

[23] presented the estimated SpkA to measure the process performance of simple nonlinear 

profiles with measurement errors. Nemati Keshteli et al. [15] proposed a functional PCI for the 

roundness profile, defining the PCI as a function of the explanatory variable. They also 

developed functional process capability indices for simple linear profiles [24]. Wang [25] 

proposed the estimated SpkA for simple linear profiles. In the same year, Wang [26] applied the 

non-conforming percentage method to develop two measures for the capability of SLP when 

there is only one side of specification limits. Wang and Tamirat [27, 28] proposed a new 

approach to assess the PCI of linear profiles using SpkA, which considers the autocorrelation 

between profiles and within each profile. Guevara and Vargas [29] investigated the use of two 

methods based on the functional depth concept using Clement’s indices and showed the 
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applicability of these new methods via a numerical example [30]. Amiri and Rezaye Abbasi 

Charkhi  [31] , and also Rezaye Abbasi Charkhi et al. [32] presented a PCI for processes 

characterized by a logistic regression profile using the percentage of non-conforming items and 

the average of the process output. Karimi Ghartemani et al. [33] developed a process capability 

vector to estimate the process capability using functional specification limits [34]. Guevara and 

Vargas [35] applied a method based on PCA for multivariate functional data to measure the 

capability of multivariate nonlinear profiles. Wang [36] extended the SpkA for nonlinear profiles 

capability assessment in the presentence of the gauge. Wang [37] evaluated the process 

capability using TSpkA of process yield in multivariate linear profiles by constructing a confidence 

interval. He measured the exact process yield instead of providing a point estimate. This 

procedure is close to the target when the sample size with smaller standard deviation increases. 

Guevara et al. [16] applied the Hausdorff distance to assess the capability of nonlinear profiles. 

They used the functional PCIs of Clements, which quantiles functions obtained using Hausdorff 

distance. Wang and Tamirat [38] proposed two indices to assess the process capability of 

multivariate linear profiles when specification limits are one-sided. Chiang et al. [39] used two 

capability indices based on non-conforming items for SLP with within‐profile autocorrelation. 

Wang et al. [40] applied a non-conforming percentage method to assess the capability of SLP 

with one‐sided specifications in a wind turbine case study. Aslam et al. [41] used the capability 

index of linear profiles to develop a novel multiple-dependent state repetitive sampling plan, and 

Alevizakos et al. [18] investigated the capability of Poisson regression profiles using the Spmk 

index. Abbasi Ganji and Sadeghpour Gildeh [42] developed two fuzzy capability indices for 

SLPs. Alevizakos and Koukouvinos [43] calculated the capability of gamma regression profiles 

using the  Spmk index. Pakzad et al. [44] developed loss-based indices for the capability of SLPs 
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using a functional approach. Mehri et al. [45] used the M-estimator and the Fast-τ-estimator to 

propose robust PCIs for multiple linear profiles. Couto et al. [17] reviewed the literature on the 

process capability indices for the linear, nonlinear, generalized linear model(GLM), and circular 

profiles. They concluded that most process capability indices had been developed for SLP, and 

future studies may investigate more complex profiles. Guevara and Lopez(2022) proposed a 

three-component vector to assess the process capability of multivariate nonlinear simple profiles  

[46]. 

2.2 Literature of CDIs 

     Assessing the dissimilarity/ similarity of curves is a fundamental problem in many 

applications, including computer vision, graphics, and geographic information systems. The 

dissimilarity between two objects is a numerical measure of how different two things are. In 

other words, similarities are higher for pairs of shapes that are more alike. Each of the various 

similarity/dissimilarity indices has its strengths and weaknesses. Goshtasby [47] explained 

similarity/dissimilarity measures, including Manhattan distance, Euclidean distance, Rank 

distance, and the median of absolute differences. Seyed Shirkhorshidi et al. [48] reviewed 

standard similarity measures such as Mahalanobis, Mean Character Difference, Manhattan, 

Euclidean Distance, and Chord. Bernardi et al. [49] presented a method to determine the distance 

between models and experimental data naming curve matching. Jekel et al. [50] proposed a 

similarity index to calculate the bounded area between curves and reviewed four approaches, 

including partial curve mapping value, discrete Frechet distance, dynamic time warping, and 

curve length approach. Lv et al. [51] introduced a similarity measure to compare noses. Meng et 

al. [52] proposed a multi-feature fusion (MFF) to solve the mismatch between driver and car 

during the operation using curves comparison. Li and Li [53] designed the rough similarity index 
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based on Hausdorff distance and the fine similarity index based on dynamic time-bending. 

Ontañón [54] reviewed the distance/similarity functions, including Cosine similarity, Tversky, 

Minkowski distances (Manhattan distance, Euclidean distance, Chebyshev distance), and 

Wasserstein metric. 

     According to the literature mentioned above, almost all research on the PCIs of profiles is 

limited to one type of profile, commonly SLP. That is because the complicated multivariate 

statistical methods face restrictions in a bit more complex profiles such as health profiles. Hence, 

this paper proposes an approach to summarize complex health profiles into a univariate quality 

specification and interpret the corresponding PCIs as health indices. This approach is not 

dependent on the type of the profile and needs no regression model fitting. None of these 

advantages have not been considered in the previous research yet. Furthermore, the literature 

review on CDIs showed that Euclidean distance, Manhattan distance, and Hausdorff distance are 

the most popular distances in the curves dissimilarity studies.  

 

3 Background 

    This section reviews concepts about univariate control charts, PCIs, CDIs, and human blood 

pressure curves. 

3.1 Univariate control charts of variable characteristics 

     In the SPC, X R and X S are conventional control charts to monitor the output of a 

process. Using m random samples of size n from the outputs, 2( , )X N   , the control limits of 

these univariate control charts are as equations 1 and 2, respectively. 
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    Where, X , R , S , and n are the estimated mean of process, the mean of sample ranges, the 

mean of sample standard deviations, and the sample size, respectively, and d2 and c4 are 

coefficients, depending on n. In some exceptional cases, the sample size is equal to one, and 

there is only one observation in each sample. These control charts are named individual control 

charts, shown in equation 3. 
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     Where, X and M are the mean of individual observations and moving ranges, respectively. 

Table 1 summarizes the statistical estimators of parameters in the mentioned above control charts 

[2]. 

<< Insert Table 1 >> 

  3.2 Process capability indices  
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       PCIs are indices to evaluate the performance of a process to produce conforming items. 

There are several types of PCI, such as Cp, Cpm, Cpk, Cpmk, Ppk, and Spmk, in the univariate SPC 

[9]. Equation 4 represents the formula of Cpk, the most conventional PCI. 

   

   

     
    

    
pk min , min ,

3 3

USL LSL USL LSL
C

UNTL LNTL
 

 (4) 

    Where , LSL, USL,   3LNTL ,and   3UNTL  are the process standard deviation, 

lower specification limit(LSL), upper specification limit(USL), lower natural tolerance 

limit(LNSL), and upper natural tolerance limit(UNTL), respectively. When Cpk is greater than 

one, the process can produce more than 99.73% of products as conforming items. Equation 5 

represents the relation between Cpk and the process non-conforming proportion denoted by p 

[55]. 

2 2 (3 )pkp C    (5) 

3.3 Curves dissimilarity indices 

       In this section, some standard distances are reviewed. Suppose two sets of points from 

curves T and S are presented in equations 6 and 7, respectively.  

 1 1 2 2 1 1, , ( , , , ( , , (( ) ) ) ),T T T T T T T T

n n n nx y x y x y x y   (6) 

 1 1 2 2 1 1, , ( , , , ( , , (( ) ) ) ),S S S S S S S S

n n n nx y x y x y x y   (7) 

    The most popular distances, including Euclidean distance, Manhattan distance, and Hausdorff 

distance, are reviewed in the following sub-sections. 

3.3.1 Euclidean distance 
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     Euclidean distance is the most well-known distance to assess the similarity of two points in 

multi-dimensional space. Equation 8 defines the Euclidean distance between two points ,( )T T

i ix y  

and ,( )S S

i ix y .  

2 2( ), ( )) ( ), , ( )i T T S S T S T S

E E i i i i i i i id d x y x y x x y y    (8) 

3.3.2 Manhattan distance 

      Equation 9 represents the Manhattan distance between two points ,( )T T

i ix y  and ,( )S S

i ix y .  

(( ), ( )), ,i T T S S T S T S

Man Man i i i i i i i id d x y x y x x y y     (9) 

3.3.3 Hausdorff distance 

     Hausdorff distance is the degree of direct mismatch between two groups of points. Hausdorff 

distance from S to T is represented by h(S,T) and defined as follows. 

  
( )( , ) ,

,( , ) max min ( ) ( , )
T TS S
i ii i

S S T T

i i i i
x y Tx y S

h S T x y x y


   
(10) 

    Where ( ) ( ), ,S S T T

i i i ix y x y  represents the distance between points of two curves S, and T 

[53]. Hausdorff distance from T to S, h(T,S), could be defined by substituting ),( T T

i ix y T  with 

),( S S

i ix y S  in equation (10). The minimum distance between a couple of points is their Euclidian 

distance. Therefore, the Hausdorf distance between two curves S and T is represented in equation 

(11).  

2 2
( , ) ( , ) ( , ) max( ( ) ( ) ; 1,2,..., )T S T S

Hos S T h S T h T S i i i id x x y y i n       
(11) 

3.4 Human blood pressure profiles 
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     Blood pressure patterns are applied to assess the performance of the human heart in blood 

pumping. Conventionally, two types of blood pressure, including Systolic blood 

pressure(mmHg) and Diastolic blood pressure(mmHg) are assessed to investigate the health of 

the blood circulation system of an individual. Systolic pressure indicates the blood pressure when 

the heart has a beat, and Diastolic pressure represents the blood pressure between two sequential 

beats [56]. Figure 1 illustrates the pattern of Systolic and Diastolic pressure in an individual. 

<< Insert Figure 1 >> 

     In figure 1, it is evident that it is impossible to fit only one regression line to the Systolic or 

Diastolic blood pressure, and there might be a need to use many separate SLPs. 

    Normal blood pressure provides oxygen and nutrients for the human body. When blood 

pressure becomes high or gets too low, the health of human fall in danger. Blood Pressure is 

continuously varying throughout time. Conveniently, blood pressure falls to its lowest level 

during the first few hours of sleep, about ten percent lower than during waking hours. According 

to O’Brien and Dolan [57], a satisfactory recording should have at least seventy percent of the 

expected measurements. Variations in blood pressure might result from changes in physical 

activity and environmental conditions. Currently, some wearing devices can measure blood 

pressure continuously [58]. If the blood pressure is in control, it reduces the risk of Stroke, Heart 

attack, Kidney dialysis, and death. High blood pressure, cigarette smoking, sedentary lifestyle, 

diabetes mellitus, lipid abnormalities, and overweight or obesity are the significant risk factors 

caused to cardiovascular disease (CVD). High blood pressure could be considered an alarm for 

human health, and it is crucial to control hypertension for several reasons, such as improving 

heart health, decreasing the chance of a Stroke, and protecting the Kidneys [59]. Figure 2 shows 
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the various ranges of blood pressure for adults according to National Health Service(NHS) 

recommendations.  

<< Insert Figure 2 >> 

4 A new approach for using PCIs in health assessment  

     In this section, firstly, a CDI is nominated to determine the distance between the target profile 

and an observed profile. Then, a procedure would be proposed to apply the opted CDI to 

summarize the health profile in the similarity variable and use the corresponding PCI as a health 

index.   

 4.1 A proper curves dissimilarity index for profiles summarization 

     Consider a target profile and some points of an observed profile, as illustrated in figure 3. 

Suppose that x1, x2, …, xn are n predefined designed values of the independent variable. Also, 

 1 21 12 1, , ( , , , (( ) ,) (), ),T T T T

nn n nx x xx y y y y  , and  1 21 12 1, , ( , , , (( ) ,) (), ),S S S S

nn n nx x xx y y y y  are points 

from the Target profile and observed profile, respectively. 

<< Insert Figure 3 >> 

      The Euclidean distance, Manhattan distance, and Hausdorff distance between points ( , )T

i ix y  

and ( , )S

i ix y  could be defined as follows.         

2 2(( ),(, , )) ( ) ( )T S T S T S

E i i i i i ii i i id x y x y x x y y y y     (12) 

(( ), ( )), ,T S T S T S

Man i i i i i i i ii id x y x y x x y y y y     (13) 

2 2max( ( ) ( ) ; 1,2,..., ) max( ; 1,2,..., )T S T S
Hos i i i i i id x x y y i n y y i n       (14) 
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     Euclidean distance and Manhattan distance provide n distance values for the distance between 

the target profile and the observed profile from figure 3, and adversely, Hausdorff distance 

proposes only one distance value as the degree of dissimilarity between these curves. 

Consequently, as shown in equation 15, a Hausdorff distance, the maximum value of Euclidean 

distances, or the most significant value among Manhattan distances are the same, which could be 

considered an index for dissimilarity assessment.  

    
   max max ; 1,2,..., max ; 1,2,...,

max( ; 1,2,..., )

i i

E Man

T S
Hos i i

D d i n d i n

d y y i n

   

  
 

(15 ) 

 

      Where Dmax represents the degree of dissimilarity of the observed profile to the Target 

profile. The first consequence resulting from the use of Dmax would be the lack of need to fit a 

statistical model to each of the observed profiles and simplifies the process monitoring procedure 

due to replacing the multivariate profile monitoring methods with a univariate SPC.  

4.2 The new approach for health assessment using PCI of health profiles  

     Each health profile represents the values of at least one human health factor as a dependent 

variable. For example, the Systolic profile shows the blood pressure when a heartbeat occurs. 

Hence, blood pressure could be considered a dependent variable in Systolic profiles. Some health 

factors, such as blood pressure, should be assessed over time. Therefore, the independent 

variable in such a health profile is time. For instance, the blood pressure is determined every 

fifteen minutes or half an hour daily. At first, the target curve, specification limits of Dmax, 

predefined design points, and the sample size of health profiles should be provided as input 

information. Then, the values of the dependent variable in the design points of each observed 

profile would be measured. In this step, the information gathering for each observed profile 

might last one day or even more. For example, the information corresponding to one Diastolic 
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blood pressure profile is collected within 24 hours. After gathering all the essential points of the 

observed profile, it is time to measure the value of Dmax for each observed profile. Now, there is 

a sample of Dmax, considered an engineering characteristic. To do phase I of SPC for mentioned 

health profile, it is sufficient to do Phase I of SPC on Dmax. As a result, a large-scale multivariate 

profile monitoring is replaced with a univariate SPC. To be more specific, for example, each of 

the Systolic and Diastolic profiles in figure 1 contains more than thirty separate simple linear 

profiles. Hence, it is necessary to monitor a  huge number of parameters, including intercepts, 

slopes, and error variances of all these SLPs, using a unique Hotelling T
2
, containing about 90 

variables. On the other hand, using Dmax mitigates the issues related to defining specification 

limits for many coefficients of SLPs when we determine the PCIs. 

     The following steps apply traditional phase I of SPC on Dmax. If the result of the test of 

normality test about the distribution of Dmax is positive, univariate control charts, such as I-MR 

control charts, are applied to monitor the health. After passing phase I, it is possible to determine 

the value of PCIs to assess the body’s capability to perform typically. But, when the normality 

test shows a negative result, it is necessary to modify the sample size of the observed profiles to 

satisfy the central limit theorem conditions. Figure 4 illustrates a schematic representation of the 

proposed approach. 

<< Insert Figure 4 >> 

4.3 Simulation study on the blood pressure assessment 

     In this sub-section, the new approach is applied to assess the health of an individual’s blood 

pressure. To analyze the human blood pressure, both Systolic and Diastolic profiles should pass 
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the mentioned above steps of the new approach, and an aggregate PCI should be calculated as 

the overall health of the body in terms of blood pressure as follows.  

Step 1: The pattern of human blood pressure is different per person, and there is no target curve 

in this regard. Hence, only a standard curve could be proposed for each person under 

approximately constant physical and environmental conditions. However, according to figure 2, 

it is only possible to define target values for Systolic and Diastolic blood pressures. Table 2 gives 

the formulas of the partitions of a standard curve of Systolic and Diastolic profiles belonging to 

one person to some extent, similar to Figure 1. 

<< Insert Table 2 >> 

     In table 2, Systolic and Diastolic profiles contain eighteen and seventeen linear segments, 

respectively. Considerably, in the traditional profile monitoring approach, a lot of quantities, 

including 35 slopes, 35 intercepts, and 35 error variances, must be monitored simultaneously. 

Figures 5 and 6 show the curves of the aforementioned Systolic and Diastolic profiles, 

respectively. 

<< Insert Figure 5 >> 

<< Insert Figure 6 >> 

    According to table 2, it is supposed that the intervals [90-140] and [60-90]  are acceptable 

ranges of Systolic and Diastolic blood pressure, and observations out of these ranges imply that 

the person has low or high blood pressure. As a result, in this study, the midpoint of these 

intervals - 115(mmHg) and 75(mmHg)- are considered target values of Systolic and Diastolic 

blood pressure. 



16 
 

Step 2: In the human blood pressure study, the independent variable of Systolic and Diastolic 

profiles is time. A thirty-minute gap between two blood pressure measurements is a conventional 

policy in medicine. Therefore, in this simulation study, forty-eight design points are considered, 

and blood pressures are measured per half an hour between today at 9:30 AM and tomorrow at 

9:00 AM. In figures 5-8, these points are coded from 0.5 to 24.  

Step 3: When 115(mmHg) and 75(mmHg) are assumed target values of Systolic and Diastolic 

blood pressure,  25 and 15 could be supposed as the USL of Dmax in Systolic and Diastolic 

profiles, respectively. This is clear that the LSL of Dmax is zero.  

Step 4: The sample size of observed profiles is supposed to be 25 in each Systolic and Diastolic 

blood pressure.  

Step 5:  A code is developed in the MATLAB R2021a to generate eighteen points of twenty-five 

Systolic observed profiles using the formulas from table 2 under the assumption that the variance 

of normally distributed error terms is 2.5 in the Systolic profile. Moreover, this simulation study 

supposes (0,0.9)N to generate twenty-five Diastolic profiles. The generated Systolic and 

Diastolic profiles are shown in figures 7 and 8, respectively. 

<< Insert Figure 7 >> 

<< Insert Figure 8 >> 

     Figures 7 and 8 show the lowest blood pressure between 14 and 21, corresponding to the 

sleep time of the understudy person between 23:00 and 06:00. 

 Step 6:  The values of Dmax are presented in table 3. 

<< Insert Table 3 >> 
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Step 7:  Figures 9 and 10 show the probability plot of Dmax, confirming its normality for both 

Systolic and Diastolic profiles, respectively, since the corresponding p-values are more 

significant than 0.05.  

<< Insert Figure 9 >> 

<< Insert Figure 10 >> 

Step 8: The I-MR control charts of Dmax of Systolic and Diastolic profiles are presented in figures 

11 and 12, respectively. These control charts are analyzed using MINITAB 20.2.0.0 software. 

 << Insert Figure 11 >> 

<< Insert Figure 12 >> 

    The in-control state of control charts in figures 11 and 12 mean that phase I of SPC is passed 

successfully.  

Step 9: The corresponding Cpk and the proportion of non-conforming profiles are determined by 

using equations 4 and 5, respectively, which are presented in table 4.  

<< Insert Table 4 >> 

    In table 4, the Cpk of the Systolic profile is less than one, which means the Systolic blood 

pressure of the under-study person is capable of following its corresponding standard pattern less 

than 99.73 percent of the time. In other words, his heart performance would be abnormal 0.36 

percent of the time. Compared to Systolic profile capability indices, the situation is a bit better in 

Diastolic blood pressure. Because the Cpk of the Diastolic profile is more significant than one, the 

percent of the times that the body of this person has abnormal performance in terms of Diastolic 

blood pressure is less than 0.01. Furthermore, the aggregate capability indices are 
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p=0.004532825 and Cpk =0.946162. Overall, this person falls in the abnormal range of blood 

pressure about 0.45 percent of the time. Medicines could make some thresholds for p and Cpk of 

the Systolic blood pressure, Diastolic blood pressure, and the overall blood pressure of each 

patient to provide the best curing or care policy.   

 

 5 Conclusion 

   The monitoring of health-related profiles and their capability assessment was considered in 

this paper. The conventional multivariate profile monitoring methods are not applicable for these 

profiles due to their complicated pattern. A new approach was proposed to replace the 

conventional multivariate techniques with a univariate SPC using dissimilarity indices. 

Additionally, the capability indices of profiles were interpreted as an index of health. The new 

approach was applied in a simulation study of human blood pressure assessment. The results 

showed that the heart of the under-study person has a better performance in terms of Diastolic 

blood pressure than Systolic blood pressure. Moreover, the blood pressure of this person is 

abnormal about 0.5 percent of the time.  

    The most significant limitation of the proposed method is allocating the specification limits to 

Dmax. In addition, autocorrelation and correlation studies on the Systolic and Diastolic profiles 

could be recommended in future studies. Developing a new approach in other types of health 

profiles such as the Electrocardiogram (ECG), Electroencephalography(ECC), Heart rate 

monitoring, Lung diseases, Alzheimer’s, and Parkinson’s is an attractive topic for future works. 

Finally, the health capability analysis could be applied to providing related Internet of things 

(IoT) tools or expert systems.  
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Tables: 

Table 1. The estimator of parameters in univariate control charts 

Control Chart     

X S  X  
4

S

C
 

X R  X  
2

R

d
 

I MR  X  
2

M

d
 

 

Table 2. An example of mathematical formulas of blood pressure profiles on an individual  

Line Systolic 

 

Diastolic 
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1 8 121x   7 79.5x   

2 3 116x   2.66 65x   

3 6 98x   0.857 75.57x   

4 12 152x   2.66 52.66x  2 

5 3.5 97.75x   1.5 86x   

6 18 216x   0.5 66x   

7 2.33 94x   6 144x   

8 3.2 143.8x   6 6x   

9 2.8 74.8x   5.5 149.25x   

10 18 366x   6 29x   

11 10 54x   2 99x   

12 12 298x   8 76x   

13 6.66 10x   8 212x   

14 5.5 209x   5.33 41.33x   

15 26 421x   3.33 136.33x   

16 12 358x   12 201x   

17 10.66 129.33x   3 144x   

18 3 185x    

 

Table 3. The values of Dmax in Systolic and Diastolic profiles 

Generated  

profiles 

Dmax of the 

Systolic 

profile 

Dmax of  the 

Diastolic 

profile 

Generated  

profiles 

Dmax of the 

Systolic 

profile 

Dmax of  the 

Diastolic 

profile 

1 17.0473 11.7204 14 16.8429 11.5203 

2 20.9575 12.1474 15 18.2551 12.4613 

3 20.9936 12.2501 16 18.3082 12.6730 

4 20.7002 12.8064 17 18.7449 12.3032 

5 19.0091 13.0134 18 24.3298 11.2402 

6 18.2920 10.8982 19 18.8387 12.1013 

7 18.6474 13.7902 20 21.6882 12.7924 

8 23.6527 11.6414 21 19.2333 11.4111 

9 21.6072 13.1249 22 18.8730 13.7797 

10 17.7449 12.6239 23 18.7283 11.2252 

11 16.4043 12.6649 24 22.0732 11.5247 

12 19.8625 11.9071 25 19.6733 11.5445 

13 19.1312 12.1583    

 

Table 4. The results of Systolic and Diastolic profiles capability analysis 

Chart p Cpk 

Systolic 0.003565 0.9714231 
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Diastolic 0.000971 1.0995928 

 

 

Figures: 

 

Figure 1. Systolic, the upper diagram, and Diastolic patterns of human blood pressure for an individual 

(O’Brien and Dolan (2016))  
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Figure 2. Standard ranges of blood pressure 
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Figure 3. Distance between the target profile and an observed profile 
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Figure 4. Schematic representation of the proposed approach 
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Figure 5. The standard curve of the Systolic profile of the under-study person  

 

Figure 6. The standard curve of the Diastolic profile of the under-study person 
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Figure 7. The pattern of generated Systolic profiles  

 

Figure 8. The pattern of generated Diastolic profiles  

 

 



32 
 

 

Figure 9. The probability plot of Dmax for  the Systolic profile 

 

Figure 10. The probability plot of Dmax for the Diastolic profile 
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Figure 11. I-MR control charts of Dmax of the Systolic profile  

 

Figure 12. I-MR control charts of Dmax of the Diastolic profile  

 

 


