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Abstract 

 

Energy efficiency is one of the critical parameters affecting production in the natural stone 

sector, as it is in every industrial sector. High energy consumption negatively affects 

production costs, especially in stone cutting and surface treatments. Nowadays, it is crucial to 

predetermine energy consumption with reliable predictive techniques to produce with the 

lowest energy possible and sustain sectorial competition. This study conducted stone cutting 

tests with a computer-assisted circular cutting machine at different peripheral speeds (PSs) 

and advance rates (ARs). Unit energy (UE) consumptions were measured in stone cuttings. 

UE was evaluated regarding the circular stone cutting machine’s (CSCM's) operating 

parameters, some stone characteristics, vibration amplitude (VA), and sound level (SL) 

measured during cutting. Classical statistics (CS) and data mining (DM) techniques were used 

to predict UE. 287 and 24 cutting data sets were selected as training and testing data for CS 

and DM techniques, respectively. These techniques were also compared and provided more 

significant and reliable results of DM techniques than CS. DM techniques predicted the UE 

with high correlation coefficients obtained in the range of R
2
=0.963 and 0.973. DM models 

for UE prediction before stone cutting have been introduced for stone processing researchers 

and those interested. 

 

Keywords: Natural stone cutting; unit energy prediction; data mining; classical statistics; 

prediction reliability. 
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1. Introduction 

 

The size of the global natural stone market increases steadily, according to researches and 

reports worldwide. Increasing construction according to the growing population, renovation 

of old buildings, increasing demand for outdoor social areas accelerate the use of natural 

stones worldwide. Besides, sectorial competition among producers increases to take a share 

from the growing natural stone market. Therefore, producers need to produce natural stone 

products as low a cost as possible to be at the forefront of this competition. For this, producers 

should reduce their cost items whenever possible. 

 

Energy consumption is an essential cost item in the natural stone industry, especially in stone 

cutting. Several machines, such as CSCM, frame cutting/sawing machines, wire 

cutting/sawing machines, etc., can be used to cut natural stone processing plants. CSCMs are 

broadly used due to being more economical and more flexible.  

 

It is necessary to determine the optimum cutting parameters for the efficient usage of CSCMs. 

CSCMs should be operated at a minimum UE and maximum AR conditions for low-cost 

production. UE consumed during cutting can be measured with a unique energy analyzer to 

be placed in the CSCM. Besides, machine operating parameters (PS and AR) and some stone 

properties can be an effective solution for predetermining this UE. It is necessary to 

investigate the effects of machine operating parameters and stone properties on UE 

consumption.  

 

Some researchers have studied circular stone cutting performance parameters. In some of 

these studies, cutting performance and cutting forces, cutting parameters, and stone properties 

have been related [1-14]. The relationships between specific energy and energy consumption 

with cutting performance have been investigated in some studies [15-20]. Also, the 

performance of the cooling medium used for the cutting tool was studied for the reduction of 

the consumed energy [21, 22]. Conventional statistical techniques defined as hard computing 

have been used in the studies mentioned above generally. 

 

On the other hand, except the artificial neural networks (ANN), DM techniques have not been 

widely used in circular stone cutting. DM techniques, such as fuzzy logic, genetic algorithms, 

neural networks, machine learning, and expert systems deal with approximate models and 
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offer solutions to more complex problems. There are a limited number of studies in the 

literature on circular stone cutting using DM techniques. Yurdakul et al. [23] developed 

specific cutting energy prediction models with adaptive hybrid intelligence techniques. 

Mikaeil et al. [24] tried to predict a circular cutting machines’ hourly production rate with 

meta-heuristic algorithms and fuzzy clustering techniques. Guney
 
[25] estimated circular 

cutting machines’ hourly areal slab productions during marble blocks’ dimensioning with 

ANN and regression methods. Akhyani et al. [26] predicted the circular diamond saw wear by 

combining the fuzzy rock engineering system (Fuzzy RES) and genetic algorithm (GA). Ataei 

et al. [27] evaluated the energy consumption and vibration of cutting machine by 

incorporating a combination of multi-layered perceptron ANN and genetic algorithm (GANN-

BP) and the support vector regression method and Cuckoo optimization algorithm (COA-

SVR). Hosseini et al. [28] investigated the effect of cooling and lubricant fluid on the cutting 

performance (as a maximum electrical current) with ANN and the hybrid genetic algorithm - 

artificial neural networks (hybrid GA-ANN). Sadjad et al. [29] developed predictive models 

depends on machine vibration and physical-mechanical properties of stones using statistical 

and soft computing methods. Mikaeil et al. [30] proposed new prediction models for 

determining the vibration of circular sawing machine using machine learning.  

 

In the literature review shown above, there is no DM study related to predicting the UE in 

circular stone cutting using the machine operating parameters (PS, AR), stone characteristics, 

VA and SL measured during cutting as a prediction data. Besides, there is no study comparing 

CS methods and DM techniques in UE prediction. The much better, more effective, and more 

reliable results have been obtained with DM techniques used in this study according to the 

hard computing techniques (such as CS) used in literature. DM techniques are very successful 

in evaluating such complex cutting data. The UE prediction models obtained in this study 

offer an approach that natural stone researchers can use in cost and performance estimates. 

 

2. Methodology of Study 

 

This study for unit energy prediction includes experimental studies and the evaluation of data 

collected. Figure 1 shows the methodology of the study. Experimental studies were conducted 

in two stages. In the first stage, rock mechanics tests were carried out to determine the stone 

properties cut in CSCM. The cutting experiments were performed in CSCM at different PSs 
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and ARs in the second stage. Then, the obtained data were evaluated with different 

techniques. 

 

Figure 1. Methodology of study 

 

2.1. Stone Characteristics 

 

Limestone (sedimentary rock) and real marble (metamorphic rock) samples were used in this 

study. The physical and mechanical properties [unit volume weight (UVW), uniaxial 

compressive strength (UCS), tensile strength (TS), bending strength (BS), impact strength 

(IS), Shore hardness (SH), and Bohme surface abrasion (BAR)] of stone samples were 

determined according to International Society for Rock Mechanics and Rock Engineering 

(ISRM) [31] and Turkish Standards Institution (TSE) [32] standards. Table 1 shows some 

rock characteristics of the stone samples.  

 

Table 1. Some rock characteristics of the samples 

 

2.2. Stone Cutting Experiments 

 

Stone cutting experiments were carried out with the computerized CSCM for this study. This 

machine is a specially manufactured cutting machine to control operating parameters with a 

computer (Figure 2). Limestone and real marble samples were used in the cutting studies. The 

experimental samples were prepared in 200x300x500 mm mini blocks. The cutting operations 

were carried out at a 60 mm constant depth and 24 conditions which are the combination of 

four PSs (at a range of 40-70 m/s) and six ARs (at a range of 400-900 mm/min). The cutting 

operations were repeated five times for each condition.  

 

Figure 2. Computerized CSCM 

 

2.2.1. Measurements of UE  

 

A microprocessor network analyzer installed on the control panel was used to measure all 

electrical network parameters in CSCM. The measured parameters can be monitored with five 

different indicators, and at the same time, the measured parameters can be transferred to the 
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computer with serial communication. The instantaneous energy consumed during the cutting 

operations within this study’s scope was measured, and the related data were transferred to 

the computer with this analyzer. Table 2 shows the measured UE after cutting operations. 

 

2.2.2. Measurements of VA and SL 

 

SL of cutting operation was measured by a RadioShack digital sound level meter. The net SLs 

of cutting conditions were determined around the cutting blade by removing the background 

sounds. A vibration sensor manufactured by Wilcoxon was used to measure the lateral 

vibration on the circular saw blade during cutting. VAs were determined as the average 

amplitude of lateral vibration measured while the saw blade was in the rock. Table 2 shows 

the measured average VA and net SLs after cutting operations. 

 

Table 2. The measured UE, average VA, and net SL after cutting operations 

 

2.3. CS Assessments for Determining UE 

 

The dependent variable (UE) and independent variables (stone cutting parameters, stone 

characteristics and VA, and SLs of cutting operations) were determined in the first stage of 

statistical assessment. The descriptive statistics of the dependent and independent variables 

were investigated (Table 3). Skewness and kurtosis coefficients were within normal limits 

(±3), thus satisfying the normal distribution.  

 

Table 3. Descriptive statistics for variables 

 

The ideal variables for the multiple regression model were selected using the best subsets 

regression, which is an automatic process that defines the optimal regression models using 

independent variables. The basic approach in this process is to choose the smallest subset of 

independent variables that can fully satisfy statistical criteria. The adjusted coefficient of 

determination (adjusted R
2
) and Mallows' Cp statistics are commonly used to select the ideal 

model to be developed the best subsets regression. The higher the adjusted R
2
, the more 

appropriate the model, while the lower the Mallows' Cp, the more suitable the model. Table 4 

shows the results of the best subsets regression. 
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Table 4. Best subsets regression results 

 

The 287-cutting data of different limestone and real marble samples as training data were 

used to develop the regression model. The data mentioned above were analyzed using Minitab 

17 statistical software. Model 7 (in Table 4) has the most suitable conditions; the highest 

adjusted R
2
 (91.0%), low Mallows' Cp (7.0). 

 

Table 5 shows the results of the multiple regression model for UE. The coefficient of 

determination (R
2
) of the UE regression equation was 0.9122.  

 

Relationships of variables with each other were analyzed, and it was investigated whether 

there is multicollinearity between independent variables for regression analysis. As a rule of 

thumb, the variance inflation factor (VIF) should be less than 10 to indicate no 

multicollinearity among independent variables. It was determined in the VIF analysis that 

there was no multicollinearity between the variables.  

 

Table 5. Results of multiple regression model for UE 

 

The statistical validity of the UE regression model was evaluated with analysis of variance, 

also called ANOVA. Table 6 shows the ANOVA results. The model is statistically highly 

significant according to the P-value. 

 

Table 6. The ANOVA results for the UE regression model 

 

2.4. DM Assessments for Determining UE 

 

The DM techniques in this study were performed using Weka software version 3.8.3, 

approved widely, and one of the complete tools in DM applications. In this study, DM 

assessments are intended to test the performance of DM techniques to predict UE from some 

machine parameters, stone characteristics and VA, and SL measured during cutting. The 287-

cutting data consisted of seven limestone samples, and six marble samples were used as 

training data. The DM techniques used in this study were the ANN, k-nearest neighbor (k-

NN), M5' model tree (M5P), and random forest (RF). All model algorithms were optimized to 

represent training data in the optimum condition and predict test data most reliably.  
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The ANN technique depends on the human brain's structure and is contained with simple 

processing units, artificial neurons, and their interconnections, etc. The multilayer perceptron 

structure was adopted in this study [33]. In ANN analysis, back-propagation neural networks 

were used to determine the relationships between UE and stone cutting parameters (machine 

parameters, stone characteristics, VA, and SL). For ANN analysis to be efficient, it is 

necessary to modify the ANN model and parameters. Hidden layers and nodes per hidden 

layer were tested systematically. Three hidden layers were constructed with the 9, 5, 5 nodes, 

respectively. These network parameters can also be monitored and modified during data 

training. Figure 3 shows the ANN networks. 

 

Figure 3. ANN network for UE 

 

The k-NN is used both in classification and regression analyses. The nearest neighbor method 

is one of the most straightforward techniques in statistical discrimination. It is a 

nonparametric method. A new observation is placed into the observation class from the 

training data closest to this observation concerning covariates. In the k-NN process, the 

classification and value of an object are influenced by its nearest neighbors. The parameter k 

is the number of neighbors in the analysis. The value of the object is a weighted mean of k-

nearest neighbors’ values in regression analysis [34, 35]. In k-NN analysis, the number of 

neighbors used in the model was 5 for the best result. 

 

The M5P technique is a system for machine learning models that predicts the data. M5' model 

tree splits the data space into subspaces and constructs a linear regression equation for each 

subspace. M5P constructs a regression or model tree by reiterative separation based on 

treating the standard deviation of the class values. Regression and model trees are effective 

for big data. However, model trees generally have a smaller size than regression trees, and 

their prediction integrity is better [36]. The stone cutting parameters were classed with the 

M5P algorithm to predict UE. M5P algorithm generated a decision tree using this 

classification and derived a localized linear regression equation (LM) instead of the class label 

in all leaves of the model tree. UE was predicted using these LMs more effectively. Figure 4 

shows this model tree.  

 

Figure 4. M5P model tree for UE 
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As shown in Figure 4, the M5P classed the data set into some subclass based on the AR and 

UCS values and constructed LMs for each class using the more related parameters. These 

models allowed a more accurate prediction of the UE in stone cutting.  

 

One of the practical tools in prediction is the RF technique. RFs are a combination of tree 

predictors. Each tree depends on the values of a random vector sampled independently and 

with the same distribution for all trees in the forest. A RF is a tree-structured classifier {h(x, 

Θk), k = 1} where the {Θk} is independent identically distributed random vectors, and each 

tree casts a unit vote for the most popular class at input x [37]. In RF analysis, 100 iterations 

were performed.  

 

The coefficient of determination (R
2
) and cross-validation metrics such as the mean absolute 

error (MAE) and the root mean square error (RMSE) were used to determine and compare the 

performance of models. Table 7 shows the global statistical metrics (R
2
, MAE, and RMSE) 

for the correlations between measured and predicted UE.  

 

Table 7. The global statistical metrics for applied DM techniques  

 

As shown in Table 7, all applied DM models have acceptable reliability for predicting UE 

values. The coefficients of determination for the results obtained with DM techniques are 

pretty high. This situation shows that the independent variables used in the study explain the 

dependent variable in a more meaningful way thanks to the DM algorithms. 

 

3. Discussion 

 

In the study, using different methods and algorithms, five different prediction models were 

developed and optimized with CS methods (best subsets regression and multiple regression) 

and DM techniques (ANN, k-NN, M5P and RF). After developing prediction models based 

on CS and DM techniques, the performance of the prediction models on the same test data 

was investigated.  

 

The UE regression model developed with CS was tested with the 24-cutting data of a marble 

sample not used in statistical modeling. Figure 5 shows the relationship between the measured 
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and predicted UE values for testing data according to the CS regression model. The predicted 

UE values meet the measured UE values by 89.9%.  

 

Figure 5. Performance of CS regression model for testing data 

 

Prediction models developed with 287-cutting data (training data) using DM techniques were 

tested with the same data set used in testing the UE regression model. Figure 6 shows the 

performance of DM models for testing data. It can see from the figure that the predicted 

values for DM models reflect the measured values very well at a range of R
2
=0.963 and 

0.973.  

 

Figure 6. Performance of DM models for testing data 

 

According to the above evaluations, DM techniques outperformed CS methods in UE 

prediction. Although similar results were obtained in DM techniques, the RF algorithm was 

given the best results. 

 

4. Conclusions 

 

Fourteen different stones, including limestone (sedimentary rock) and real marble 

(metamorphic rock), were cut with a computerized CSCM in this study. The UE consumed 

during cutting was tried to predict with DM techniques and CS methods from some stone 

characteristics, machine operating parameters, VA and SL.  

 

DM techniques have a better ability to predict according to CS methods. The prediction of UE 

in stone cutting should be obtained more accurately with DM techniques. In this study, the 

coefficient of determination for CS methods (best subsets and multiple regression) was 

determined by 0.896 in predicting testing data. The developed DM models (ANN, k-NN, 

M5P and RF) were tested with testing data and provided a higher coefficient of determination 

in the range of 0.963 and 0.973. Among the DM techniques, the RF algorithm gave the best 

results (R
2
=0.973). 
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This study contains beneficial results for stone processing researchers. The UE can be 

determined accurately and reliably before stone cutting with DM techniques. DM algorithms 

give more successful outcomes than CS methods in analysis with such complex data. 
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Table 1. Some rock characteristics of the samples 

 

Natural Stones 
UVW 

(g/cm
3
) 

UCS 

(MPa) 

TS 

(MPa) 

BS 

(MPa) 

IS 

(MPa) 
SH 

BAR  

(cm
3
/50 cm

2
) 

Afyon Violet 2.72 73.94 5.49 10.98 3.0 42 33.85 

Afyon Grey 2.70 49.65 6.53 10.95 2.5 51 36.35 

Afyon Pink 2.73 46.71 6.32 11.76 2.5 58 23.09 

Afyon Tigerskin 2.71 40.95 7.80 13.97 2.5 56 35.73 

Afyon White 2.70 51.45 6.22 12.93 3.0 49 37.09 

Mugla White 2.70 65.31 4.77 15.02 3.0 42 30.85 

Kutahya Violet 2.69 63.50 6.80 11.00 3.6 50 28.75 

Rosalia Beige 2.68 91.95 5.94 6.78 1.6 55 18.59 

Hazar Pink 2.67 100.28 8.13 21.60 2.0 51 20.79 

Rustic Green 2.69 70.47 7.77 13.64 3.0 63 15.28 

Amasya Beige 2.70 105.40 6.92 22.50 3.0 60 14.15 

Burdur Cream Creama 2.69 79.40 6.39 6.49 1.6 51 24.65 

Sivrihisar Beige 2.70 70.00 7.05 15.50 2.5 62 14.20 

Mustafakemalpasa Beige 2.70 110.75 7.50 23.80 3.6 64 14.25 
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Table 2. The measured UE, average VA, and net SL after cutting operations 

 

Stone 

Class 
Natural Stones 

UE 

(kWh/m
2
) 

Average VA 

(Hz) 

Net SL  

(dB) 

Min Max Min Max Min Max 

R
ea

l 
M

ar
b
le

 

Afyon Violet 4.078 8.720 7.8 27 6 13 

Afyon Grey 4.078 9.267 9 23.6 4 14 

Afyon Pink 4.141 8.870 9 20 4 17 

Afyon Tigerskin 3.933 8.432 9 20.75 3 11 

Afyon White 3.748 9.053 12.25 23.8 3 14 

Mugla White 3.701 7.800 9.75 21 3 13 

Kutahya Violet 3.663 7.922 9.75 20 4 14 

L
im

es
to

n
e 

Rosalia Beige 4.507 8.573 12.5 24.75 6 14 

Hazar Pink 4.442 8.734 12 28.4 3 17 

Rustic Green 4.652 8.883 10.5 24.6 2 16 

Amasya Beige 4.606 8.935 11 24.5 2 11 

Burdur Cream Creama 4.762 9.413 11.5 32 4 14 

Sivrihisar Beige 4.611 9.057 10.5 31.75 2 11 

Mustafakemalpasa Beige 4.427 8.459 9.5 35 4 14 
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Table 3. Descriptive statistics for variables 

 

Variables Data Mean Standard deviation Skewness Kurtosis 

PS 287 55.854 11.152 -0.12 -1.34 

AR 287 632.06 165.83 0.12 -1.18 

UVW 287 2.6967 0.0122 -0.31 0.27 

UCA 287 73.63 21.15 0.29 -0.98 

TS 287 6.6959 0.9503 -0.37 -0.61 

BS 287 14.243 5.133 0.50 -0.62 

IS 287 2.7101 0.609 -0.41 -0.63 

SH 287 53.199 7.059 -0.03 -1.00 

BAR 287 25.561 8.921 -0.07 -1.64 

VA 287 15.190 4.643 1.24 1.67 

SL 287 8.645 3.121 0.09 -0.65 

UE 287 5.8418 1.3121 0.60 -0.36 

 

 

Table 4. Best subsets regression results 

 

Model 

No 

Adjusted 

R
2
 

Mallows' 

Cp 

Mean 

square 

error 

PS AR UVW UCS TS BS IS SH BAR VA SL 

1 73.4 555.0 0.67614  X          

2 88.4 85.1 0.44770 X X          

3 89.4 54.3 0.42796 X X      X    

4 90.2 30 0.41144 X X     X X    

5 90.5 20.7 0.40448 X X X    X  X   

6 90.9 10.0 0.39646 X X X X   X X    

7 91.0 7.0 0.39358 X X X X  X X X    

8 91.0 7.8 0.39343 X X X X  X X X   X 

9 91.0 8.2 0.39300 X X X X  X X X X  X 

10 91.0 10.1 0.39365 X X X X X X X X X  X 

11 91.0 12.0 0.39432 X X X X X X X X X X X 
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Table 5. Results of multiple regression model for UE 

 

Predictors Coefficient 

Standard 

Error of 

Coefficient 

T-value P-value VIF 

Constant -20.72 6.36 -3.26 0.001  

PS 0.04413 0.00211 20.95 0.000 1.02 

AR -0.00696 0.000142 -49.00 0.000 1.02 

UVW 10.28 2.36 4.36 0.000 1.53 

UCS 0.00654 0.00149 4.39 0.000 1.84 

BS -0.01473 0.00652 -2.26 0.025 2.07 

IS -0.2278 0.0486 -4.69 0.000 1.61 

SH 0.02089 0.00372 5.62 0.000 1.27 

 

 

 

Table 6. The ANOVA results for the UE regression model 

 

Source 
Degree of 

Freedom 

Adjusted 

Sum of 

Squares 

Adjusted 

Mean 

Square 

F value 
P 

(probability) 

Regression 7 449.162 64.166 414.22 0.000 

   PS 1 68.005 68.005 439.01 0.000 

   AR 1 371.876 371.876 2400.64 0.000 

   UVW 1 2.949 2.949 19.04 0.000 

   UCS 1 2.980 2.980 19.24 0.000 

   BS 1 0.791 0.791 5.10 0.025 

   IS 1 3.410 3.410 22.01 0.000 

   SH 1 4.895 4.895 31.60 0.000 

Error 279 43.219 0.155   

Total 286 492.381    
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Table 7. The global statistical metrics for applied DM techniques  

 

Statistical Metrics 
DM Techniques 

k-NN  RF M5P ANN 

MAE 0.2455 0.2458 0.2605 0.2755 

RMSE 0.3706 0.3598 0.3443 0.3767 

R
2 

0.9629 0.9730 0.9688 0.9710 

 

 


