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Abstract

In this paper, we will present a numerical study to simulate the solution of the nine-dimensional

chaotic fractional Lorenz model. The used fractional derivative of the type the Rabotnov fractional-

exponential (RFE). We give an approximation of the RFE derivative for the function tp in terms of the

RFE kernel. We implement the spectral collocation method with the help of the properties of the shifted

Vieta-Lucas polynomials. This procedure converts the presented model to a nonlinear set of algebraic

equations. To validate the efficiency and accuracy of our numerical solutions given by the proposed

procedure, we evaluate the residual error function. We compare the obtained results with those results

obtained by using the fourth-order Runge-Kutta procedure (RK4), and the variational iteration method

(VIM). The obtained solutions confirm that the applied technique is an easy and efficient technique for

simulating the solution of such systems.
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1 Introduction

The year 1963 was the beginning of the emergence of chaotic mathematical models known as the

phenomenon of chaos, and that was when Lorenz discovered this phenomenon in the solutions of

the system of differential equations, which represents the phenomenon of weather [1]. Basically,

a chaotic system has only one positive Lyapunov exponent, so we find that chaotic systems with

more than one positive Lyapunov exponent are said to be hyper-chaotic and are more complex

than normal chaotic systems. This concept of hyper-chaos was introduced by Rössler in 1976

when studying solutions to differential equations for modeling chemical reactions [2]. Since then,

several chaotic and hyper-chaotic systems have been discovered and studied in many biological

and engineering applications, and others [3].

Because chaotic systems are highly sensitive to initial conditions and rapidly changing solutions,

which make they are difficult to analyze numerically. Although many researchers try to use several
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direct numerical techniques to solve such models ([4]-[7]), most of those current direct numerical

methods slowly converge to solve these problems, and thus obtain inaccurate approximations.

Although the spectral methods are characterized by the high accuracy of the solutions, they

give less accuracy for the non-smooth solutions as well as when the time domain of the problem

under study is very large, even if the number of grid points is increased. Whereas, increasing

the grid points leads to large memory requirements which in turn also leads to approximations

that exhibit spurious oscillations, hence nonlinear instabilities. To overcome this limitation, many

researchers have used a multi-domain technique, in which it is assumed that the main interval can

be divided into a finite number of sub-intervals.

The spectral method is one of the most important and useful techniques to simulate the frac-

tional differential equations (FDEs) ([8], [9]). One of the most important features of these tech-

niques is their ability to give us accurate results (small errors). In these methods, the polynomials

play a major and important role, where the orthogonality property of Vieta Lucas polynomials

(for example) is implemented to approximate the functions in the domain [a, b] ([10], [11]).

Fractional calculus has been a focus of interest for many researchers in the past 30 years [12].

This resulted in researchers being able to provide new definitions for fractional derivatives with

non-singular cores, which were necessary to fulfill the need for mathematical modeling of many real-

life models in distinct applications of our life such as biology, physics, engineering, fluid mechanics,

and viscoelasticity ([13], [14]). As we know that most FDEs are difficult to find an exact solution

for, so it was imperative to discover apply many of the approximate methods ([15], [16]). To find

out more details about the definitions and properties of these fractional derivatives, you can take

a look ([17]-[21]).

Our motive in this article is to estimate the fractional derivative with the RFE kernel. We

give an approximate formula for the RFE derivative of the function tp. Then we apply the given

approximate formula with the help of the properties of the Vieta-Lucas polynomials (VLPs) to

give the numerical solution to the proposed system. The applicability and enormous potential

of the suggested numerical method are demonstrated through a comparison of the approximate

solutions provided by using the VIM and RK4 method.

2 Basic definitions and notations

2.1 Definitions of fractional derivatives

Definition 1.

Caputo fractional derivative (CFD), CDν of order ν ∈ (0, 1] for ϕ(t) ∈ H1(0, b) is given by:
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CDνϕ(t) =
1

Γ(1− ν)

∫ t

0

ϕ
′
(τ)

(t− τ)ν
dτ, t > 0,

where Γ(.) is a Gamma function.

Definition 2.

The left sided CFD of order β on [0, 1] for a function Θ(t) is defined by:

RFEDβΘ(t) =

∫ t

0

Θ(n)(ξ)Rβ[−Ω(t− ξ)β]dξ, n− 1 < β ≤ n, (1)

here, Ω ∈ R+, and Rabotnov fractional exponential function is given in the following form:

Rβ[−Ω(t)β] =
∞∑
k=0

(−Ω)k t(k+1)(β+1)−1

Γ((k + 1)(β + 1))
.

For more detail on the RFE-operator derivative, see ([22], [23]).

2.2 Approximation of RFE-derivative of tp

Through this subsection, the approximate formula of the fractional derivative concerning the RFE

kernel based on the Simpson-1
3

rule for numerical integration is derived.

Theorem 1.

The RFE derivative of order n− 1 < β ≤ n of the power function tp with p ≥ n, (n = dβe) is:

RFEDβ tp =
Γ(p+ 1)

Γ(p+ 1− dβe)
× h

3

[
Gβ,p(t, ξ0) +Gβ,p(t, ξm) + 4κ1 + 2κ2

]
, (2)

where κ1 and κ2 are defined by:

κ1 =
m−1∑

k=1, k:odd

Gβ,p(t, ξk), κ2 =
m−2∑

k=2, k:even
Gβ,p(t, ξk), (3)

here, the interval [0, 1] is divided into m equal subintervals with step-size h:

h =
1

m
, Gβ,p(t, ξ) = ξp−dβeRβ[−Ω(t− ξ)β], ξk = hk, k = 0, 1, 2, ...,m.

Proof. The formula (2) can be derived directly by substituting the function Θ(t) = tp and imple-

menting the Simpson-1
3

rule for the integration on the right-hand side of the equation (1).

The details of this derivation for the formula (2) can be found in [23].

Remark: It is known that to deduce the formula (2), we use the formula (1) in Definition 2, so

since the integral in this formula is complicated, we can evaluate it by Simpson 1
3

and any other

numerical technique can be applied to estimate this integral.
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2.3 Fundamental definitions on the shifted VLPs

To accomplish our objective, we give some concepts of the shifted VLPs, such as notations and

properties in this subsection of the work [24].

The orthogonal Vieta-Lucas polynomial; VLk(z) of degree k ∈ N̄0 is obtained from the following

formula [24]:

VLk(z) = 2 cos(kψ), ψ = cos−1(0.5z), 0 ≤ ψ ≤ π, −2 ≤ z ≤ 2.

We can prove that VLk(z) have the following recurrence relation:

VLk(z) = zVLk−1(z)− VLk−2(z), k = 2, 3, . . . , VL0(z) = 2, VL1(z) = z.

By imposing the transformation z = 4t−2, we can generate a new class of orthogonal polynomials

from VLPs on the interval [0, 1] and it will be denoted by VLsk(t) and so:

VLsk(t) = VLk(4t− 2).

VLsk(t) have the following recurrence relation:

VLsk(t) = (4t− 2)VLsk−1(t)− VLsk−2(t), k = 2, 3, . . . ,

where, VLs0(t) = 2, VLs1(t) = 4t − 2. Also, we find VLsk(0) = 2(−1)k and VLsk(1) = 2, k =

0, 1, 2, ... .

The analytical form for these polynomials is:

VLsk(t) = 2k
k∑
j=0

(−1)j
4k−jΓ(2k − j)

Γ(j + 1)Γ(2k − 2j + 1)
tk−j, k = 2, 3, . . . .

The polynomials VLsk(t) are orthogonal polynomials on [0, 1] w.r.t. the weight function 1√
t−t2 . Let

v(t) ∈ L2[0, 1], then using VLsk(t), we have:

v(t) =
∞∑
j=0

cjVLsj(t), (4)

where cj must be evaluated to express v(t) in terms of VLsm(t). By considering only the first m+1

terms (4), we can write:

vm(t) =
m∑
j=0

cjVLsj(t), (5)

cj, j = 0, 2, . . . ,m can be evaluated from:

cj =
1

δj

∫ 1

0

v(t)VLsj(t)√
t− t2

dt, δj =

{
4π, j = 0,

2π, j = 1, 2, . . . ,m.
(6)
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Lemma 1.

Assume that v(t) ∈ L2
w̃ [0, 1] with w̃(t) = 1√

t−t2 , and |v′′(t)| ≤ ε, for some constant ε. Then

as m → ∞, the series (5) is uniformly convergent to the function v(t). In addition, we have the

following estimations:

1. The coefficients’s series in (5) are bounded, i.e.

|cj| ≤
ε

4j (j2 − 1)
, j > 2.

2. The error estimate norm (L2
w̃ [0, 1]-norm) can be defined as follows:

‖v(t)− vm(t)‖w̃ <
L

12
√
m3

.

3. If v(m)(t) ∈ C[0, 1], then the absolute error bound holds:

‖v(t)− vm(t)‖ ≤ ∆ Πm+1

(m+ 1)!

√
π, ∆ = max

t∈[0,1]
v(m+1)(t), and Π = max {1− t0, t0} .

For more details about VLPs and their approximation (5), see [25].

Theorem 2.

The β-order of the RFE fractional derivative for the function vi(t) defined in (5) may be

evaluated as follows [23]:

RFEDβ vi(t) =
i∑

j=dβe

cjχi,j,β

[
Gβ,p(t, ξ0) +Gβ,p(t, ξm) + 4κ1 + 2κ2

]
, (7)

where κ1 and κ2 are defined in (3), and:

χi,j,β =
hΓ(i− j + 1)

3 Γ(i− j + 1− dβe)
× (−1)j2i 4i−jΓ(2i− j)

Γ(j + 1)Γ(2i− 2j + 1)
, Gβ,p(t, ξ) = ξp−dβeRβ[−Ω(t− ξ)β]p=i−j.

Proof. By using Theorem 1 we have:

RFEDβ ti−j =
Γ(i− j + 1)

Γ(i− j − dβe+ 1)
× h

3

[
Gβ,p(t, ξ0) +Gβ,p(t, ξm) + 4κ1 + 2κ2

]
. (8)

The interval [0, 1] is divided into m equal subintervals with step-size h:

h =
1

m
, Gβ,p(t, ξ) = ξp−dβeRβ[−Ω(t− ξ)β]p=i−j, ξk =

k

m
, k = 0, 1, 2, ...,m.
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Connection between the equations (5) and (8), we can evaluate the RFE derivative of vi(t) as

follows:

RFEDβ vi(t) =
i∑

j=0

(−1)j2i 4i−jΓ(2i− j)
Γ(j + 1)Γ(2i− 2j + 1)

RFEDβ ti−j

=
i∑

j=dβe

Γ(i− j + 1)

Γ(i− j + 1− dβe)
× (−1)j2i 4i−jΓ(2i− j)

Γ(j + 1)Γ(2i− 2j + 1)
× h

3
.

[
Gβ,p(t, ξ0) +Gβ,p(t, ξm) + 4κ1 + 2κ2

]
.

(9)

From this result, we may easily get the desired formula (7) and the proof is completed.

3 Numerical implementation

Here, we are going to present a numerical study and simulation by applying the proposed numer-

ical method to solve the fractional 9D Lorenz system. As it is known, this model was derived

using an approach similar to the well-known 3D Lorenz method, by applying the triple Fourier

expansion to the Boussinesq-Oberbeck equations that govern convection in a three-dimensional

spacial domain [26]. The mathematical equations describing this model take the following form:

RFEDαφ1(t) = −σb1φ1 − σb2φ7 − φ2φ4 + b4φ
2
4 + b3φ3φ5, (10)

RFEDαφ2(t) = −σφ2 − 0.5σφ9 + φ1φ4 − φ2φ5 + φ4φ5, (11)

RFEDαφ3(t) = −σb1φ3 + σb2φ8 + φ2φ4 − b4φ2
2 − b3φ1φ5, (12)

RFEDαφ4(t) = −σφ4 + 0.5σφ9 − φ2φ3 − φ2φ5 + φ4φ5, (13)

RFEDαφ5(t) = −σb5φ5 + 0.5φ2
2 − 0.5φ2

4, (14)

RFEDαφ6(t) = −b6φ6 + φ2φ9 − φ4φ9, (15)

RFEDαφ7(t) = −rφ1 − b1φ7 + 2φ5φ8 − φ4φ9, (16)

RFEDαφ8(t) = rφ3 − b1φ8 − 2φ5φ7 + φ2φ9, (17)

RFEDαφ9(t) = −rφ2 + rφ4 − φ9 − 2φ2φ6 + 2φ4φ6 + φ4φ7 − φ2, (18)

where the coefficients bi are computed as:

b1 = 4 1+a2

1+2a2
, b2 = 1+2a2

2(1+a2)
, b3 = 21−a2

1+a2
b4 = a2

1+a2
, b5 = 8a2

1+2a2
, b6 = 4

1+2a2
.

Consider the initial conditions as follows:

φq(0) = φ0
q, q = 1, 2, . . . , 9. (19)
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3.1 Implementing the proposed method

Without loss of generality, we express the system (10)-(18) in the following matrix form:

RFEDαΦ + CΦ + N̄(Φ) = 0, (20)

where Φ(t) = [φ1(t), φ2(t), . . . , φ9(t)]
T ,C = (ci,j); i = 1(1)9 is a 9× 9 matrix, and takes the form:

C =



σb1 0 0 0 0 0 σb2 0 0

0 σ 0 0 0 0 0 0 0.5σ

0 0 σb1 0 0 0 0 −σb2 0

0 0 0 σ 0 0 0 0 −0.5σ

0 0 0 0 σb5 0 0 0 0

0 0 0 0 0 b6 0 0 0

r 0 0 0 0 0 b1 0 0

0 0 −r 0 0 0 0 b1 0

0 r 0 −r 0 0 0 0 1



,

and N̄(Φ) is a vector of all nonlinear components of the equations (10)-(18), and takes the form:

N̄(Φ) =



φ2φ4 − b4φ2
4 − b3φ3φ5

−φ1φ4 + φ2φ5 − φ4φ5

−φ2φ4 + b4φ
2
2 + b3φ1φ5

φ2φ3 + φ2φ5 − φ4φ5

−0.5φ2
2 + 0.5φ2

4

−φ2φ9 + φ4φ9

−2φ5φ8 + φ4φ9

2φ5φ7 − φ2φ9

2φ2φ6 − 2φ4φ6 − φ4φ7 + φ2φ8



.

Now, we are applying the proposed method to solve the system (20) numerically. We are

approximating φq(t), by φmq (t), q = 1, 2, . . . , 9, respectively in the following formula:

φmq (t) =
m∑
i=0

aqi VLsi (t), q = 1, 2, . . . , 9. (21)

By substitution from (21) in the system (20), we get:

RFEDαΦm(t) + CΦm(t) + N̄(Φm(t)) = 0, (22)

where Φm(t) = [φm1 (t), φm2 (t), . . . , φm9 (t)]T , where the functions RFEDαφmq (t), q = 1, 2, . . . , 9 will

be approximated by using the formula (7) as follows:

RFEDαφmq (t) =
m∑

j=dαe

aqj χm,j,α

[
Gα,p(t, ξ0) +Gα,p(t, ξn) + 4κ1 + 2κ2

]
, (23)
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where κ1 and κ2 are defined in (3). Also, N̄(Φm) takes the following form:

N̄(Φm) =



φm2 (t)φm4 (t)− b4 (φm4 (t))2 − b3 φm3 (t)φm5 (t)

−φm1 (t)φm4 (t) + φm2 (t)φm5 (t)− φm4 (t)φm5 (t)

−φm2 (t)φm4 (t) + b4 (φm2 (t))2 + b3 φ
m
1 (t)φm5 (t)

φm2 (t)φm3 (t) + φm2 (t)φm5 (t)− φm4 (t)φm5 (t)

−0.5(φm2 (t))2 + 0.5 (φm4 (t))2

−φm2 (t)φm9 (t) + φm4 (t)φm9 (t)

−2φm5 (t)φm8 (t) + φm4 (t)φm9 (t)

2φm5 (t)φm7 (t)− φm2 (t)φm9 (t)

2φm2 (t)φm6 (t)− 2φm4 (t)φm6 (t)− φm4 (t)φm7 (t) + φm2 (t)φm8 (t)


By collocation the previous system of equations (22) at m of points tr (roots of VLsm(t)), it will

reduce to:
RFEDαΦm(tr) + CΦm(tr) + N̄(Φm(tr)) = 0, (24)

where Φm(tr) = [φm1 (tr), φ
m
2 (tr), . . . , φ

m
9 (tr)]

T , where the functions φmq (tr), q = 1, 2, . . . , 9 will be

defined as in (23) with replace t by tr. Also, N̄(Φm(tt)) is given by:

N̄(Φm(tr)) =



φm2 (tr)φ
m
4 (tr)− b4 (φm4 (tr))

2 − b3 φm3 (tr)φ
m
5 (tr)

−φm1 (tr)φ
m
4 (tr) + φm2 (tr)φ

m
5 (tr)− φm4 (tr)φ

m
5 (tr)

−φm2 (tr)φ
m
4 (tr) + b4 (φm2 (tr))

2 + b3 φ
m
1 (tr)φ

m
5 (tr)

φm2 (tr)φ
m
3 (tr) + φm2 (tr)φ

m
5 (tr)− φm4 (tr)φ

m
5 (tr)

−0.5(φm2 (tr))
2 + 0.5 (φm4 (tr))

2

−φm2 (tr)φ
m
9 (tr) + φm4 (tr)φ

m
9 (tr)

−2φm5 (tr)φ
m
8 (tr) + φm4 (tr)φ

m
9 (tr)

2φm5 (tr)φ
m
7 (tr)− φm2 (tr)φ

m
9 (tr)

2φm2 (tr)φ
m
6 (tr)− 2φm4 (tr)φ

m
6 (tr)− φm4 (tr)φ

m
7 (tr) + φm2 (tr)φ

m
8 (tr)



.

Substitute Eq.(21) in (19), the initial conditions (19) will be converted to the following algebraic

equations:
m∑
i=0

2 (−1)i aqi = φq,0, q = 1, 2, . . . , 9. (25)

We use the Newton-Raphson iteration formula to solve the corresponding nonlinear system of

equations (24)-(25) for the unknowns aqi , q = 1, 2, . . . , 9. Then, the approximate solution can be

obtained by substitution in the formula (21).
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3.2 Implementing the VIM

For comparison, we apply one of the good analytical methods, which is the variational iteration

method, which was introduced in [27]. Due to its ease of application in obtaining approximate

solutions as well as its efficiency has been applied to solve different types of differential equations

in ([28]-[30]). For example, but not limited to, implemented by Odibat and Momani to solve

FDEs [31]. In this subsection, following the discussion presented in [32] (which was the first to

implement VIM to solve FDEs), we use that method to obtain solutions for the proposed system

(10)-(19).

According to the VIM, we can get to the following iteration formula:

φm+1
1 (t) = φm1 (t)−

∫ t

0

Rα[−Ω(t− τ)α].(
RFEDαφm1 (τ) + σ b1 φ

m
1 (τ) + σb2 φ

m
7 (τ) + φm2 (τ)φm4 (τ)− b4 (φm4 (τ))2 − b3 φm3 (τ)φm5 (τ)

)
dτ,

(26)

φm+1
2 (t) = φm2 (t)−

∫ t

0

Rα[−Ω(t− τ)α].(
RFEDαφm2 (τ) + σ φm2 (τ) + 0.5σ φm9 (τ)− φm1 (τ)φm4 (τ) + φm2 (τ)φm5 (τ)− φm4 (τ)φm5 (τ)

)
dτ,

(27)

φm+1
3 (t) = φm3 (t)−

∫ t

0

Rα[−Ω(t− τ)α].(
RFEDαφm3 (τ) + σ b1 φ

m
3 (τ)− σ b2 φm8 (τ)− φm2 (τ)φm4 (τ) + b4 (φm2 (τ))2 + b3 φ

m
1 (τ)φm5 (τ)

)
dτ,

(28)

φm+1
4 (t) = φm4 (t)−

∫ t

0

Rα[−Ω(t− τ)α].(
RFEDαφm4 (τ) + σ φm4 (τ)− 0.5σ φm9 (τ) + φm2 (τ)φm3 (τ) + φm2 (τ)φm5 (τ)− φm4 (τ)φm5 (τ)

)
dτ,

(29)

φm+1
5 (t) = φm5 (t)−

∫ t

0

Rα[−Ω(t− τ)α].(
RFEDαφm5 (τ) + σ b5 φ

m
5 (τ)− 0.5 (φm2 (τ))2 + 0.5 (φm4 (τ))2

)
dτ,

(30)

φm+1
6 (t) = φm6 (t)−

∫ t

0

Rα[−Ω(t− τ)α].(
RFEDαφm6 (τ) + b6 φ

m
6 (τ)− φm2 (τ)φm9 (τ) + φm4 (τ)φm9 (τ)

)
dτ,

(31)

φm+1
7 (t) = φm7 (t)−

∫ t

0

Rα[−Ω(t− τ)α].(
RFEDαφm7 (τ) + r φm1 (τ) + b1 φ

m
7 (τ)− 2φm5 (τ)φm8 (τ) + φm4 (τ)φm9 (τ)

)
dτ,

(32)
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φm+1
8 (t) = φm8 (t)−

∫ t

0

Rα[−Ω(t− τ)α].(
RFEDαφm8 (τ)− rφm3 (τ) + b1 φ

m
8 (τ) + 2φm5 (τ)φm7 (τ)− φm2 (τ)φm9 (τ)

)
dτ,

(33)

φm+1
9 (t) = φm9 (t)−

∫ t

0

Rα[−Ω(t− τ)α].
(
RFEDαφm9 (τ)− r φm2 (τ)− r φm4 (τ)+

φm9 (τ) + 2φm2 (τ)φm6 (τ)− 2φm4 (τ)φm6 (τ)− φm4 (τ)φm7 (τ) + (φm2 (τ)
)
dτ.

(34)

The initial approximations φ0
k(0), k = 1, 2, . . . , 9 satisfy the initial conditions (19). Therefore, the

approximate solution φk(t), k = 1, 2, . . . , 9 by the m-th terms φmk (t), k = 1, 2, . . . , 9, respectively

can be defined as follows:

φk(t) = lim
m→∞

φmk (t), k = 1, 2, . . . , 9. (35)

4 Numerical simulation and discussion

We are going to verify the accuracy and quality of the presented scheme by proffering a numerical

simulation of the system (10)-(18) with distinct values of α, m, r. We take in all figures the same

values of n = 10, σ = 0.25, and the initial conditions:

φ1,0 = φ3,0 = φ9,0 = 0.01, φ2,0 = φ4,0 = φ5,0 = φ6,0 = φ7,0 = φ8,0 = 0.0.

Reiterer et al. [26] observed that when the value of the parameter r is greater than 43.3, the

model exhibit hyper-chaotic behavior, otherwise it remains chaotic. We presented both chaotic

and hyper-chaotic cases by solving the model under study (10)-(18) for r = 14.1−15.1 and r = 55,

respectively. Figures 1-7 represent the obtained numerical solutions for the proposed model by

implementing the given method.

Figure 1, gives the behavior of the approximate solution with different values of α = 1.0, 0.9, 0.8, 0.7,

with m = 6, r = 14.1; Figure 2, presents the behavior of the approximate solution with different

values of r = 14.1, 15.0, 55.0, with m = 7. The results in Figure 2 show that the proposed tech-

nique is a reliable method to simulate both chaotic and hyper-chaotic behavior. Figure 3 gives a

comparison between the results obtained by the proposed technique with those results obtained

by using the RK4 method at (α = 1) with m = 6, r = 14.1. From this figure, we can note an

excellent agree between our technique with RK4 in this special case with integer derivative α = 1,

and this refers that the proposed method is well-done. Figure 4 is potted to represent the residual

error function (REF) of all components of the approximate solution at α = 0.96, r = 14.1 with

distinct values of m = 6, 10. Through these results, we can increase the speed of the numerical

computation by controlling in the order of approximation m. Figure 5 is given to compare the

numerical solution obtained by implementing VLPs method with those obtained by using the
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Fig. 1: The solution φi(t), i = 1(1)9 versus different values of α.

VIM, by evaluating the REF in each method, at α = 0.95, r = 14.1 with m = 5 in VLPs method

and m = 9 in VIM. The results through this figure confirm that the given technique is accurate,

computationally efficient. Finally, Figures 6 and 7 present the phase projections on the φ6 − φ7

and φ6−φ9 planes, for different values of r, with m = 8, α = 0.99. From these Figures 6-7, we can

see that the phase portraits obtained are consistent with those of Reiterer et al. [26], and Kouagou

et al. [33]. This indicates that the presented technique is capable of handling highly dimensional

chaotic systems.

In general, and conclusively, it can be seen that the behavior of the numerical solution resulting

from the application of the proposed method depends on the values of α, r, and m. Through the

accuracy of these results, we can confirm that the proposed method is a suitable for solving the

proposed model in its fractional form with the operator RFE. And that the method used is more

efficient and has fast convergence.
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Fig. 2: The solution φi(t), i = 1(1)9 versus different values of r.
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Fig. 3: The solution φi(t), i = 1(1)9 by VLPs and RK4 methods α = 1.

13



Fig. 4: The REF of φi(t), i = 1(1)9 versus different values of m.

14



Fig. 5: The REF of VLPs method against VIM.
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Fig. 6: Phase portraits on the φ6 − φ7 plane for different values of r.
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Fig. 7: Phase portraits on the φ6 − φ9 plane for different values of r.
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5 Conclusions

In this study, a numerical simulation was presented by finding the numerical solutions of the

proposed model for different values of the RFE kernel fractional-order α, and the order of approx-

imation m. To evaluate the method and measure its efficiency and accuracy, the residual error

function was calculated, and a comparison was made with the variational iteration method and

RK4 method. From that, we can confirm that the presented scheme is very suitable to study this

model numerically effectively. We can also control and reduce the accuracy of the error by adding

additional terms from the approximate solution series by increasing m. Finally, we conclude that

the differential operator used here is more suitable for describing the proposed model through

the presented numerical simulations. The results of the comparison were represented by graphs

which showed that the proposed technique is computationally accurate and efficient and a reliable

method for solving complex dynamical systems with chaotic and hyper-chaotic behavior. In the

future, we hope to deal with this model, but more largely, by using another type of fractional

derivative or another type of polynomials as a generalization for this study. Numerical simulation

work is carried out with the help of the Mathematica software package.
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