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Abstract. Structural systems may experience negative moments due to dynamic excita-
tions and inertia e�ects. Composite metal deck slabs are typically designed to withstand
positive moments and reinforced at the bottom, with minimal thermal reinforcement at the
top. However, under dynamic impact loading, insu�cient reinforcement at the upper part
may cause these slabs to fail under negative moments. Therefore, this study investigates
the performance of composite metal deck slabs under free drop weight impact loading. The
research consists of two main parts: generating a data set through �nite element simulation
analysis and training machines based on the collected data. The LS-DYNA commercial
software was used to analyze 165 models with three parameters: slab lengths, striker
weights, and striker velocities. In the machine learning component, the Finite element
modeling (FEM) results were utilized to train the machines and to accurately predict the
performance of these slabs. The outcomes were reported in terms of the maximum negative
moment, maximum deection, and elastic and plastic behaviour of the slab. The study
revealed that at high striker velocities, the specimens experienced an ultimate internal
negative moment within the range of 60 to 80 kN.m.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

1.1. Overview
When it comes to constructing building oors, com-
posite metal deck slabs are often the preferred option.
This type of structural system usually includes a
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metal deck sheet, concrete slab, shear studs, thermal
reinforcement, and girders. The metal deck sheet serves
two main functions within this system: providing a
framework for construction and reinforcement for the
tensile concrete component [1]. Figure 1 [2] depicts the
schematic arrangement of this system. The use of com-
posite metal deck slab system as a dependable ooring
system in the industry o�ers numerous bene�ts. These
include fast construction, no need for jacking support,
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Figure 1. Composite oor with steel pro�le sheeting [2].

a lightweight structural system, ease of handling and
installation, and high strength. However, there are
also some limitations to this system. Despite the metal
deck serving as the bottom reinforcement in the design,
there is minimal thermal reinforcement provided for the
top part of the structural system. The performance of
the composite slab system is generally satisfactory as
long as it is not exposed to signi�cant negative moment.
However, sudden and substantial negative moment can
lead to potential failure and compromise the composite
performance and structural integrity of the system,
particularly near the supports. This scenario is more
likely to occur when the ooring is expected to bear
high dynamic impact loading, which may generate
negative moments in the structural ooring system
even in the case of simply supported slabs.

While there are dependable methods available for
analyzing structural components that undergo static
loads [3{7], designing and analyzing structural systems
under extreme dynamic excitation, such as impact
loading, can be challenging for design engineers. One
alternative solution for designers is to employ incre-
mental dynamic analysis, which involves assessing both
load and material properties in the static domain [8].
However, conducting �nite element analysis and exper-
imental testing are more precise approaches, as noted
by numerous researchers [9{18]. Several researchers
have studied the behavior of reinforced concrete slabs
and beams under dynamic loading [8,19{23]. However,
only a handful of studies have focused on composite
metal deck slabs [24,25], with researchers employing
numerical and experimental approaches to address
the associated issues. The limited research and the
weakness of composite metal deck slabs in resisting
negative moments create a knowledge gap, leading to a
partial understanding of the design and performance of
this ooring system under severe dynamic loads. This
study aims to bridge this gap by expanding knowledge
and providing more information on this topic.

1.2. Research goal
In modern times, researchers often turn to machine-
learning techniques to improve the computational as-
pects of engineering applications [26{41]. The focus

Figure 2. Details of reinforcing in specimens.

of this paper is to develop a computational approach
that accurately models the behavior of composite metal
decks when subjected to free drop weight impact load-
ing. The initial steps involved conducting a parametric
study using �nite element simulation and analysis. Sub-
sequently, a �nite dataset was generated to facilitate
the use of Machine Learning (ML) algorithms for train-
ing machines in the next stage of the computational
approach. Trained machines are capable of predicting
the performance of thousands of models within a very
short period of time. Therefore, the second phase
of the computational approach can be regarded as
a time-e�cient alternative to the �rst phase, with
less computational cost. However, the accuracy of the
predictions relies on several factors, such as the level
of correctness of the trained machines, the size of
the dataset used for training the machines, and the
arrangement and correlation of data within the dataset.

The proposed computational approach is antici-
pated to enhance the understanding of the performance
of composite metal deck slabs under impact loading.
Three key domains are slated for examination:

� The elastic and plastic behavior of slabs;

� The maximum deection;

� The maximum negative moment.

1.3. Numerical model
The initial accepted model for this section is a drop
weight impact test on a composite metal deck slab, as
described in reference [20]. The slab model measures
2200 mm in length and 930 mm in width, with a
variable thickness ranging from 50 to 115 mm. The
thermal metal bars and cross-section of the metal deck
sheet are shown in Figures 2 and 3, respectively. The
thermal metal bars have a diameter of 6.5 mm, while
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Figure 3. The shape and properties of the metal deck and dimensions are in mm.

the metal deck sheet has a thickness of 1 mm. A girder
in the form of an IPE300 ange is used as a �xture.
The shear stud measures 90 mm in overall length, with
an 80 mm body and a 10 mm head. The head diameter
is 35 mm, and the body diameter is 22 mm.

The LS-DYNA environment was utilized for con-
structing numerical FE models of the components
mentioned. To account for the dynamic excitation
nature of loading, the dynamic explicit option was
also chosen as the analyzing method. Numerical
simulations included three types of elements: solid,
shell, and truss. The concrete slab, shear studs, rigid
�xture, and striker were modeled using eight-node
solid elements, each with three translation degrees of
freedom per node. The metal deck sheet was modeled
using quadrilateral shell elements with four nodes per
element, with membrane and bending behavior. Each
node of these shell elements had three translational
and rotational degrees of freedom. For the remaining
components, which were thermal bars, 3D 2-node truss
elements with three translational degrees of freedom
per node were used. The mesh size for the numerical
model elements was optimized through a convergence
study, resulting in the mesh size used in this work [25].

The selection of an appropriate material is crucial
when numerically modeling structures subjected to
impact loading, especially for nonlinear analysis. At
high strain rates, materials can exhibit unexpected
behavior. Concrete and steel, for example, are more
prone to brittle response and higher strength under
such conditions. To model the concrete part in the
present study, MAT-CMCS (Material 159) was chosen
due to concrete's strain rate dependence. The contin-
uous surface cap model (CSCM), which is widely used
by researchers to capture concrete behavior under high
strain rate loading, was employed. Table 1 [25] provides
details of the material properties used in the numerical
simulation for concrete.

The current CSCM model is de�ned by 37 input
parameters. These parameters were determined using

Figure 4. Engineering stress-strain diagram for the metal
deck.

Table 1. Material properties of concrete [25].

Density (kg/m3) 2400

Compressive strength (MPa) 30

Tensile strength (MPa) 2.8

Elastic modulus (GPa) 30

Shear modulus (GPa) 18

Poisson's ratio 0.18

the User's Manual for LS-DYNA Concrete Material
Model 159 [47], based on the uncon�ned compression
strength and aggregate size. For concrete aggre-
gates, ASTM C136 [48] was used for sieve analysis,
with no size greater than 19 mm. The material
model for the metal deck and shear studs is MAT-
PIECEWISE-LINEAR-PLASTICITY (Materials 24),
which accounts for strain rate e�ects and nonlinear
properties. Deck stress-strain data points were derived
from the diagram in Figure 4, which was obtained using
an engineering stress-strain diagram based on ASTM
A370 [49] and a metal deck coupon. These data points
were then converted to true values in the material
model. The material model for steel bars is MAT-
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Table 2. Material properties of metal deck [20].

Density (kg/m3) 7850

Yield stress (MPa) 275.8

Ultimate stress (MPa) 336.77

Elastic modulus (GPa) 170

"ult (%) 30.76

Poisson's ratio 0.3

Table 3. Material properties of metal bars [25].

Density (kg/m3) 7850

Yield stress (MPa) 331.22

Ultimate stress (MPa) 456.51

Elastic modulus (GPa) 200

"ult (%) 18.55

Poisson's ratio 0.3

Table 4. Material properties of metal shear studs [25].

Density (kg/m3) 7850

Yield stress (MPa) 347.43

Ultimate stress (MPa) 559.62

Elastic modulus (GPa) 200

"ult (%) 28.31

Poisson's ratio 0.3

PLASTIC-KINEMATIC (Materials 3). Tables 2, 3,
and 4 show the material properties for metal deck sheet,
steel bars, and shear studs, respectively [25]. Since the
�xture and striker are assumed to be rigid bodies, a
rigid material with a density of 7850 kg/m3 was chosen
for them. As previously mentioned, de�ning the strain
rate is an important aspect of numerical modeling due
to the high velocity of impact loading. To account for
the e�ect of strain rate on steel materials, the CEB code

criteria were applied [50]. The following equations,
namely the Dynamic Increase Factor (DIF) formulas
(Eqs. (1) and (2)), were used for the steel material to
incorporate strain rate e�ects:

DIF(steel yield) =
�

_"
10�4

�0:074+0:4 fy
414

; (1)

DIF(steel yield) =
�

_"
10�4

� 0:019+0:01 fu414

: (2)

In which _", fy, and fu are steel strain rate, steel yield
stress and steel ultimate stress, respectively. To model
interfaces between components of the model, the
contacts are introduced as AUTOMATIC-SURFACE-
to-SURFACE and AUTOMATIC-SURFACE-to-
SURFACE-TIEBREAK. A friction coe�cient of 0.13
is assumed between the deck and the slab. Table 5
provides information on the contact types between
various parts of the model.

To reduce computational running time, only one-
quarter of the composite slab was modeled, as shown
in Figure 5. The x-y and y-z planes are planes of
symmetry for both the slab geometry and applied load
in this model. The impact load was applied by the rigid
striker and allowed to move only in the y direction, with
a speci�ed initial velocity [25]. Figure 6 depicts the
boundary conditions applied to the parts in the model.
In this �gure, X, Y , and Z represent the translational
degree of freedom, while RX, RY , and RZ indicate
rotational angles with respect to the X, Y , and Z axes,
respectively.

1.4. Proposed parametric studies
A veri�ed model is used to conduct a parametric study,
with the slab length, striker weight, and striker velocity
being the three primary variables. Table 6 summarizes
the suggested parameter ranges. FEM analysis results
are presented in Figure 7, which display the rela-
tionship between the parameters (slab length, striker

Table 5. Contact types between di�erent parts [25].

Striker-Slab AUTOMATIC-SURFACE-to-SURFACE
Striker-Deck AUTOMATIC-SURFACE-to-SURFACE
Striker-Bars AUTOMATIC-SURFACE-to-SURFACE
Fixture-Slab AUTOMATIC-SURFACE-to-SURFACE
Fixture-Deck AUTOMATIC-SURFACE-to-SURFACE
Fixture-Bars AUTOMATIC-SURFACE-to-SURFACE
Shear studs-Slab AUTOMATIC-SURFACE-to-SURFACE
Shear studs-Deck AUTOMATIC-SURFACE-to-SURFACE
Shear studs-Bars AUTOMATIC-SURFACE-to-SURFACE
Shear studs-Slab Tied
Deck-Fixture (for elements around shear studs) Tied
Deck-Slab AUTOMATIC-SURFACE-to-SURFACE-TIEBREAK
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Figure 5. One quarter FE model in LS-DYNA.

Figure 6. Details on boundary conditions in the model.

velocity, and striker weight) and the corresponding
outcomes (maximum negative moment or maximum
deection). Based on the plots in Figure 7, the
following trends can be observed:

� The maximum negative moment should not ex-
ceed 70 kN.m for striker velocities greater than
3600 mm/s and striker weights greater than 400 kg;

� The maximum negative moments remain constant

when they reach the ultimate limit, while the de-
ection continues to increase;

� The plastic deection range is signi�cantly larger
than the elastic deection range;

� The plastic distribution shifts to the right side in
striker velocity distribution plots and has less over-
lap with the elastic distribution. This separation is
more pronounced when the distribution is based on
striker weights;

Table 6. Outline of parametric studies.

Slab length (m) Striker weight (kg) Striker velocity (mm/s)

2 25/ 50/ 75/ 100/ 150/ 200/ 300/ 400/ 600/ 800/ 1000 1600/ 2600/ 3600/4600/ 5600

2.5 25/ 50/ 75/ 100/ 150/ 200/ 300/ 400/ 600/ 800/ 1000 1600/ 2600/ 3600/ 4600/ 5600

3 25/ 50/ 75/ 100/ 150/ 200/ 300/ 400/ 600/ 800/ 1000 1600/ 2600/ 3600/4600/ 5600
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Figure 7. Results from FE analysis and the correlation of results and features with each other. Data with label E (blue
points) illustrate elastic behavior and data with label P (orange points) represent plastic behavior.

Table 7. Number of data based on the behavior of the
system.

System
behavior

Number of models in
each category

Plastic 127
Elastic 38

� Only 23% of models remain in the elastic domain,
see Table 7.

2. ML model

The current section details the development of a
computational approach to predict the performance
of a vast array of models. To achieve this goal, ML
algorithms are utilized to train a machine, with the
primary challenge being the optimization of hyper-
parameters to improve machine performance. With
su�cient accuracy, a trained machine can predict
the performance of composite metal deck slabs under
impact loading. Subsequent sections will illustrate
the proper training of machines to predict the elastic
and plastic behavior of these slabs. Initially, binary
classi�cation is employed to distinguish between elastic
and plastic data, followed by regression to predict
maximum negative moments and maximum deection
values based on key parameters.

2.1. Main steps of the ML model
This research utilizes an ML approach that involves
three primary stages:

1. Importing, discovering, and visualizing the data to
get insight;

2. Preparing the data for ML algorithms;

3. Selecting and training the models.

The initial phase involved importing the data as a CSV
�le into Google Colab. To organize the dataset, a data
frame was examined. Additionally, the Seaborn library
was utilized to create visual plots, as shown in Figure 7,
providing a more comprehensive understanding of the
raw data's initial condition. These tools distinctly illus-
trate that the dataset comprises 165 data points, and
each data point is characterized by three primary fea-
tures: slab length, striker weight, and striker velocity.

During the second phase, the dataset was pre-
pared for the application of ML algorithms. The
clarity of the data and the presence of missing values
were assessed, and any issues were resolved. As some
classi�cation algorithms are sensitive to scaling, the
data was standardized. The target values, plastic
and elastic, were encoded to ensure that they were
interpretable by the algorithms. Lastly, to evaluate the
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accuracy and performance of the machines, the dataset
was divided into training and testing sets.

The �nal step involved applying Scikit-Learn
classi�cation algorithms to prepare the data for binary
classi�cation, with the hyperparameters being �ne-
tuned. The following algorithms were used: K-Nearest
Neighbors (KNN), Logistic Regression (LR), Decision
Tree (DT), Random Forest (RF), Multilayer percep-
tron (MLP), Naive Bayes (NB), Stochastic Gradient
Descent (SGD), and Support Vector Machine (SVM).
In addition, Support Vector Regression (SVR) was
utilized as the primary algorithm in the regression
component.

2.2. Composite slabs behavior classi�cation
In earlier sections, an assessment of the behavior of
composite metal deck slabs was carried out via FE
analysis. However, each analysis was found to be
a time-consuming process, making it an impractical
computational method for analyzing a large number
of models. Consequently, to predict the elastic or
plastic behavior of these slabs under impact loading,
ML algorithms were employed. The trained machines
are capable of making predictions on thousands of
data points in under a minute, making them far more
e�cient and e�ective when compared to tedious FE
analysis. The machines were trained for di�erent algo-
rithms, including KNN, LR, DT, RF, MLP, NB, SGD,
and SVM, with their hyperparameters appropriately
�ne-tuned. Various algorithms were used during the
training process to determine which performed better
in classifying the dataset. The primary criteria for
evaluating the performance of the trained machines
were scores from cross-validation (with 3-fold) on the
training set, the accuracy of predictions on test sam-
ples, F1 score, and confusion matrix. The confusion
matrix is a table that represents the performance of
a trained machine in a classi�cation problem and can
be applied to a dataset where the actual label of data
is speci�ed. The values in the diagonal cells of the
confusion matrix illustrate that the predicted labels by
the machines for the data are true and equal to the
actual labels.

In binary classi�cation, the values are commonly
referred to as True Negative (tn) and True Positive (tp),
which are found in the diagonal cells of the confusion
matrix. The non-diagonal cells contain values that in-
dicate the di�erence between the predicted and actual
labels, which are called False Positive (fp) or False
Negative (fn) in binary classi�cation. Table 8 displays
a schematic layout of the confusion matrix for a binary
classi�cation problem. The F1 score, which is one of the
performance evaluation criteria for trained machines,
can be computed using the precision and recall values
from the confusion matrix, as demonstrated by Eqs.
(3), (4), and (5):

Table 8. Schematic representation of confusion matrix in
binary classi�cation. Negative and positive are labels of
data in this table.

Actual Predicted
Negative Positive

Negative True negative False positive
Positive False negative True positive

F1 =
�

1
recall�1+precision�1

�
=2� precision� recall

precision+ recall
; (3)

precision =
�

tp
tp + fp

�
; (4)

recall =
�

tp
tp + fn

�
: (5)

The machines that exhibited the best performance
were trained using RF, SVM, and KNN algorithms,
respectively. The hyperparameters optimized for these
algorithms can be found in Table 9. The machine
trained with the RF algorithm had zero errors and
achieved exact predictions for both the training and
test datasets. Conversely, the NB algorithm had the
lowest accuracy with a score of only 91.7%. Table 10
outlines the precision, accuracy, and ranking of each
algorithm used in the study. Additionally, Figure 8
presents a 3D plot of the predictions made by the top-
ranked machine on the elastic region. The classi�cation
results for this dataset indicated that RF, SVM, and
KNN algorithms outperformed other methods. This
outcome was not surprising, particularly for SVM, as
it is known to be one of the most reliable classi�cation
methods for many problems. However, a potential
drawback of SVM and RF methods is their training
speed when applied to large datasets. Nonetheless,
the small dataset size used in this study mitigated this
weakness.

Figure 8 depicts the machine's predicted elastic
region (green volume) and demonstrates its ability
to capture all data points exhibiting elastic behavior.
However, data points related to plastic behavior fall
outside of this region. Despite this, one must question
the reliability of the machine's predictions in compar-
ison to FE analysis and experimental measurements.
The small dataset used in this study necessitates
additional information to con�dently rely on the ML
approach's prediction results for composite slab design.
This assertion is supported by the results presented in
Table 11, where reducing the training data by 10%
while increasing the test sample size by the same
amount led to less reliable predictions.
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Table 9. Tuned hyperparameters for the �rst three ranked machines in the classi�cation of composite slabs behavior.

Method Tuned hyperparameters

RF nestimators = 100, Max depth=4, Max features=2
minsamples leaf = 0:001, minsamples split = 0:01

KNN Number of neighbors = 3
SVM  = 0:1 kernel=rbf C = 100

Table 10. Performance of trained machines in the classi�cation of data with train set size equal to 0.85 dataset.

Method Rank Average CV
score (%)

Test prediction
accuracy (%)

Train data F1

score (%)
Test data F1

score (%)
RF 1 96.4 100.0 100.0 100.0

SVM 3 97.1 100.0 98.6 100.0
KNN 2 90.8 100.0 98.6 100.0
MLP 4 92.3 95.8 100.0 97.0
LR 5 93.6 100.0 96.4 100.0

SGD 6 91.5 100.0 95.5 100.0
DT 7 92.8 92.0 97.8 91.4
NB 8 87.2 91.7 89.5 94.1

Table 11. Performance of trained machines in the classi�cation of data with train set size equal to 0.75 of the dataset.

Method Rank Average CV
score (%)

Test prediction
accuracy (%)

Train data F1

score (%)
Test data F1

score (%)
KNN 1 90.2 100.0 98.4 100.0
RF 2 95.1 95.2 100 96.8

SVM 3 95.9 95.2 98.9 96.8

Figure 8. 3D illustration of prediction obtained by
Random Forest algorithm. The white and red points
represent the data with plastic and elastic labels in the
training set respectively. The green volume shows the
prediction of the machine for the elastic region.

The performance of the machines is negatively
a�ected by reducing the size of the training dataset,
with errors primarily occurring in the prediction of data
in the elastic region. The previous test set included

Figure 9. Confusion-matrix for test dataset when the
machine is trained by Random Forest algorithm on a train
dataset size equal to 0.75 of the whole dataset.

seven data points labeled as elastic, whereas the new
test set included 11 such points. The RF algorithm
made all of its mistakes in only two of the new test
set's elastic-labeled data points. This concentration of
errors in a smaller portion of the data (as shown in
the confusion matrix in Figure 9) can result in uncer-
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Figure 10. Prediction of the trained machine on maximum negative moments in composite metal deck slabs.

tainty regarding the machine's performance. However,
these errors have a positive aspect as they lead to
a more conservative design approach. If a specimen
remains in the elastic domain, but the prediction is for
plastic behavior, then the designers must improve the
performance of the specimens by modifying the rein-
forcement or geometry, which results in overdesigning
a component. Conversely, if the machine misidenti�es
a plastic specimen as elastic, it leads to design failure.
Therefore, a larger test dataset can help produce more
conservative design and prediction results. To enhance
the reliability of the trained machines, more data with
a more random distribution is needed, with particular
emphasis on the border between the elastic and plastic
regions.

2.3. Prediction of maximum negative moment
and deection

The design of composite metal deck slabs requires
consideration of both deection and negative moments.

Table 12. Tuned hyperparameters for machines doing
regression for negative moments and deections.

Regression target Tuned hyper parameters

Moment  = 0:2, C = 5, " = 0:05
Deection  = 0:05, C = 50, " = 0:05

To obtain data for these properties, previous studies
used FE analysis and selected logarithmic scales for
the parameters and target values. The machines were
then trained on the scaled dataset, and their hyper-
parameters were optimized for performance. Table 12
presents the values of other hyperparameters such as
C, , and �. The results of the prediction based on the
maximum negative moments are illustrated in Figure
10, with the color bars indicating the percentage dif-
ference between the predicted and actual values of the
maximum negative moment at each point. Figure 10(a)
shows the normal distribution of errors in estimating
the maximum negative moments based on the three
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Figure 11. Maximum negative moment versus maximum deection which is obtained from Finite Element (FE) analysis
and machine learning approach: (a) Error percentage for deections are illustrated in data point color; (b) Error
percentage for negative moments are illustrated in data point color; and (c) Real data from FE analysis.

parameters, with no noticeable concentration of biased
predictions in any particular region.

This indicates that the machine's predictions
have been appropriately weighted for di�erent regions,
which is due to the proper preparation and scaling
of data before algorithm application. Figure 10(d)
illustrates the trend of maximum negative diagrams
based on striker weight and velocity. Comparing the
impact of these two parameters on the diagram slopes
reveals the stronger inuence of striker weight, which
is also evident by examining Figure 10(c) and (b). In
conclusion, the trained machines produce reasonable
predictions of maximum negative moment values, with
striker weight and velocity having a signi�cant impact
on the results.

The ML model for predicting maximum negative
moments in composite slabs is trained using deection
target values, including hyper parameters tuning as
shown in Table 12. The trained model can predict max-
imum deections with a square root mean square error
of 3.49 and 4.59 for train and test data, respectively.
Figure 11 demonstrates the model's performance in
predicting moment versus deection diagrams. Figure

11(c) shows the actual dataset, while Figure 11(a)
and (b) depict the model's predictions. The trained
model captures the total trace in the moment-deection
diagram. Figure 11(a) color-codes the data points
based on the percentage error in deection prediction,
with the highest error being around 19%. Similarly,
Figure 11(b) color-codes the data points based on
the percentage error in predicting maximum negative
moments, with the maximum observed error being
around 22%.

Upon comparing the images, it is evident that the
di�erence between the predicted and actual deections
is more than 140 mm, making it impossible to express
the di�erence in percentage. However, in the elastic
domain, the di�erence between the predicted and
actual deections is comparatively small and can be
expressed in terms of error percentages. The errors
in both diagrams are distributed reasonably and the
images containing error data can be relied upon to
monitor the performance of the machine from the
aspect of over�tting. The test and train data in the
dataset are uniform and compatible, indicating that
the machine is not solely reliant on the initial training
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Figure 12. Sections from the elastic domain in constant
values of slab length.

data and can make accurate predictions on the test
data as well.

3. Discussion

In the previous sections, the performance of composite
metal deck slabs under free drop weight impact loading
was examined using a ML approach and Finite Element
(FE) analysis. The elastic domain of these slabs was
determined based on the results obtained from the
trained machines, as shown in Figure 8. For a better
understanding of changes in the elastic domain, some
sections were taken from the constant slab length and
plotted, as shown in Figure 12. It was observed that the
diagrams of striker weight against striker velocity for
the three groups of slabs showed step charts, which are
the primary features of the RF algorithm's predictions.
Additionally, a visible elastic area was present under
the diagrams when the striker velocity was below 3 m/s.

Increasing the length of the slab was found to
increase the potential for the slabs to remain in the
elastic domain. However, for short slabs with a length
smaller than 2 m, the elastic capacity was observed to
be reduced. The trend of the sections in Figure 12
con�rmed that the elastic capacity in regions where
the striker velocity exceeded 4 m/s was not signi�cant.
Figure 13 presents a di�erent assessment of the striker
velocity versus slab length in the elastic domain. The
rectangular patterns in the �gure indicate the use of
the RF algorithm, while the color bar speci�es the
value of the striker weight in each step. The yellow
region of the elastic domain corresponds to a high-
weight striker with a velocity lower than 2 m/s and
slab length greater than 2 m, whereas the purple region

Figure 13. Sections from the elastic domain in constant
values of striker weights.

indicates a low-weight striker with a velocity greater
than 4 m/s. Other regions denote the elastic domain
based on the combination of features.

To gain a better understanding of the problem,
the trained machines in the regression part can be uti-
lized to obtain additional results. Figure 14 illustrates
the performance of the trained machines in predicting
data for slabs with a length of 2 m. Figure 14(a) com-
pares the predictions of the machine for a maximum
simulated negative moment and the actual moment
values from the dataset versus striker weight. The
machine performs well in predicting moments when
the striker velocity is below 3.6 m/s. However, for
higher striker velocity values, the predictions become
less precise, particularly for heavier strikers. The errors
in the high-velocity domain become more signi�cant
with heavier strikers. Figure 14(b) shows the maximum
deection predicted by the machine versus striker
weight. It is apparent that the errors in predictions
are uniformly distributed along the diagram trace. To
evaluate the performance of the trained machines, the
formulas proposed by Emami and Kabir [25] can be
employed. The proposed formulas, namely Eqs. (6)
and (7), are calibrated as follows:

u = 0:0684�m+ 7:3685; (6)

M =

8>>>>>>>>><>>>>>>>>>:

�0:0272� (24:8� ln(0:0684m+ 7:3685) + 292:89)2

+17:93� (24:8� ln(0:0684m+ 7:3685) + 292:89)
�2988:8 50 � m � 200

�0:0272� (24:8� ln(0:0684m+ 7:3685) + 292:89)2

+17:93� (3:7508� ln(0:0684m+ 7:3685) + 355:31)
�2988:8 200 � m � 2200

(7)

These formulas use to represent deection and to
indicate the maximum negative moment, while m
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Figure 14. Machine's performance in prediction of the maximum negative moment and maximum deection in slabs with
2 m in length.

Figure 15. Comparison between the trained machine's predictions and the formula which were proposed by Emami and
Kabir [25].

represents the weight of the striker. Figure 15(a) and
(b) compare the results obtained from the prediction
of the trained machines and the results from the
proposed formulas. It is observed that there is a
discrepancy of about 15% in predicting the ultimate
negative moment of the systems. This di�erence can
be explained in a few ways. Firstly, both methods
are predictive, so there may be some variation in the
results. Secondly, there is signi�cant inconsistency at
the beginning of the diagrams with lighter strikers,
whereas the suggested formula is suitable for strikers
heavier than 50 kg. Additionally, the dissimilarity
between these two predictions seems to be linked to
the method of applying contact type between the metal
deck and rigid �xture in the FE model. As explained
earlier, Emami and Kabir [25] assumed the contact

between the rigid �xture and metal deck to be a fully
tied contact. However, in the present study, only the
elements around the shear studs, which are similar
to welded regions in real slabs, were assumed to be
tied to the rigid �xture, and other regions had normal
friction contact. This may decrease the maximum
negative moment carrying capacity of the sections near
the support region.

The ML predictions for maximum deections are
closer to previous measurements compared to ultimate
negative moments, as shown in Figure 15(b). The
change in contact type between the metal deck and
rigid �xture also a�ects the predictions, particularly
for high deection values. The trained machines can
be used to extend the results, as seen in Figures 16{
19, which show predictions for maximum negative
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Figure 16. Machine's performance in prediction of the maximum negative moment and maximum deection in slabs with
2 m in length.

Figure 17. Machine's performance in prediction of the maximum negative moment and maximum deection in slabs with
2.5 m in length.

Figure 18. Machine's performance in prediction of the maximum negative moment and maximum deection in slabs with
3 m in length.
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Figure 19. Machine's performance in prediction of the maximum negative moment and maximum deection in slabs with
3.5 m in length.

moments and maximum deections of composite metal
deck slabs in common lengths of 1{4 meters. The non-
linear trend for maximum negative moments and linear
trend for maximum deections are notable features.
For a constant slab length and striker velocity, the sys-
tems gradually reach their moment bearing capacity as
striker weight increases. This trend is more pronounced
with higher striker velocity. When velocities exceed
1 m/s, the maximum negative moment diagrams be-
come at lines once striker weight approaches 1000
kg, indicating the slabs have reached their ultimate
moment capacity for such weights. Further increases
in striker weight beyond these limits may cause more
damage in the material's plastic state. The maximum
negative moments achievable by these slabs range from
60 to 80 kN.m, but this range is only applicable when
the striker velocities and weights do not exceed 1 m/s
and 1000 kg, respectively.

4. Conclusions

This study investigates the behavior of composite metal
deck slabs subjected to impact loading using two
computational tools: Finite Element (FE) analysis and
Machine Learning (ML). A total of 165 FE models were
generated to explore the e�ect of slab length, striker
velocity, and striker weight on the maximum negative
moments and deections. The results show that the
striker velocity and weight have a considerable impact
on the behavior of composite slabs under impact
loading.

To enhance the computational method's e�ciency
in terms of cost and time, a machine-learning approach
was employed after the FE analysis. The main ob-
jective of this approach was to train machines with
high accuracy to predict the performance of numerous

models in a short duration. The dataset used for
training the machines consisted of the initial data and
outcomes of the parametric study. The desired tasks
for the machines were to make predictions on the slabs'
elastic and plastic behavior, as well as the maximum
negative moment and maximum deection.

After the machines were trained and the hyper
parameters were tuned, the Random Forest (RF), K-
Nearest Nighbor (KNN), and Support Vector Machine
(SVM) algorithms demonstrated the most e�ective per-
formance in classifying the elastic and plastic behavior
of composite slabs under impact loading. Because
the dataset was small and straightforward, and the
features were correlated with each other in order, the
machine trained with the RF algorithm was able to
predict with 100% F1 and test scores. In this machine,
the average cross-validation score within three folds
was over 96% consistent. Using the trained machine,
elastic and plastic behavior domains of these slabs were
determined, and the characteristics of these domains
were analyzed. It was discovered that slabs longer
than 2.5 m can provide higher elastic capacity. The
signi�cant inuence of striker velocity and weight on
the plastic behavior of these slabs was also taken into
consideration.

The machines were trained using the SVR algo-
rithm for predicting the maximum negative moments
and maximum deections. After hyperparameter
tuning, the trained machines were able to produce
accurate predictions with low error. The machines
captured the overall trend in the negative moment
versus deection diagrams and were able to predict
the negative moment amounts in both the plastic and
elastic domains. The inuence of each feature on the
prediction results was discussed, and the accuracy of
the results was compared to FE results and current
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data. It was observed that at high striker velocities,
the specimens exhibited an ultimate internal negative
moment ranging from 60 to 80 kN.m.

List of notations

"ult Steel ultimate strain
DIFsteel yield Dynamic increase factor for steel yield

stress
DIFsteel failureDynamic increase factor for steel

ultimate stress
_" Steel strain rate
fy Steel yield stress
fu Steel ultimate stress
F1 Score for evaluating trained machines

performance
u Maximum deection
m Weight of striker
M� Maximum negative moment

References

1. Evans, H.R. and Wright, H.D. \Steel-concrete com-
posite ooring deck structures", CRC Press, pp. 31{62
(1988). https://www.taylorfrancis.com/chapters/edit/
10.1201/9781482286366-4/steel

2. Mohammed, B.S., Al-Ganad, M.A., and Abdul-
lahi, M. \Analytical and experimental studies on
composite slabs utilising palm oil clinker con-
crete", Constr Build Mater, 25, pp. 3550{3560
(2011). https://doi.org/10.1016/J.CONBUILDMAT.
2011.03.048

3. Ma, W., Becque, J., Hajirasouliha, I., et al. \Cross-
sectional optimization of cold-formed steel channels to
Eurocode 3", Eng Struct., 101, pp. 641{651 (2015).
https://doi.org/10.1016/j.engstruct.2015.07.051

4. Lowe, D., Roy, K., Das, R., et al. \Full scale ex-
periments on splitting behaviour of concrete slabs
in steel concrete composite beams with shear stud
connection", Structures, 23, pp. 126{138 (2020).
https://doi.org/10.1016/j.istruc.2019.10.008

5. Ye, J., Hajirasouliha, I., Becque, J., et al. \Opti-
mum design of cold-formed steel beams using Particle
Swarm Optimisation method", J Constr Steel Res.,
122, pp. 80{93 (2016). https://doi.org/10.1016/j.
jcsr.2016.02.014

6. Hedaoo, N.A., Gupta, L.M., and Ronghe, G.N.
\Design of composite slabs with pro�led steel
decking: a comparison between experimental and
analytical studies", International Journal of Ad-
vanced Structural Engineering, 4, pp. 1{15 (2012).
https://doi.org/10.1186/2008-6695-3-1

7. Fang, Z., Fang, H., Huang, J., et al. \Static be-
havior of grouped stud shear connectors in steel-
precast UHPC composite structures containing thin

full-depth slabs", Eng Struct., 252, 113484 (2022).
https://doi.org/10.1016/j.engstruct.2021.113484

8. Zineddin, M. \Dynamic response and behavior of
reinforced concrete slabs under impact loading",
Int J Impact Eng., 34, pp. 1517{1534 (2007).
https://doi.org/10.1016/J.IJIMPENG.2006.10.012

9. Wang, W., Zhang, D., Lu, F., et al. \Experimental
study and numerical simulation of the damage mode of
a square reinforced concrete slab under close-in explo-
sion", Eng Fail Anal., 27, pp. 41{51 (2013). https://
doi.org/10.1016/J.ENGFAILANAL.2012.07.010

10. Yao, S., Zhang, D., Chen, X., et al. \Experimental
and numerical study on the dynamic response of
RC slabs under blast loading", Eng Fail Anal., 66,
pp. 120{129 (2016). https://doi.org/10.1016/J. ENG-
FAILANAL.2016.04.027

11. Thiagarajan, G., Kadambi, A.V., Robert, S., et
al. \Experimental and �nite element analysis of
doubly reinforced concrete slabs subjected to blast
loads", Int J Impact Eng., 75, pp. 162{173 (2015).
https://doi.org/10.1016/J.IJIMPENG.2014.07.018

12. Yankelevsky, D.Z., Karinski, Y.S., and Feldgun,
V.R. \Dynamic punching shear failure of a RC at
slab-column connection under a collapsing slab im-
pact", Int J Impact Eng., 135, pp. 103401 (2020).
https://doi.org/10.1016/J.IJIMPENG.2019.103401

13. Sainz-Aja, J., Pombo, J., Tholken, D., et al.
\Dynamic calibration of slab track models for
railway applications using full-scale testing",
Comput Struct., 228, p. 106180 (2020).
https://doi.org/10.1016/J.COMPSTRUC.2019.106180

14. Yang, B., Wang, H., Yang, Y., et al. \Numerical
study of rigid steel beam-column joints under impact
loading", J Constr Steel Res, 147, pp. 62{73 (2018).
https://doi.org/10.1016/j.jcsr.2018.04.004

15. Zhao, L., Yu, Z.X., Liu, Y.P., et al. \Nu-
merical simulation of responses of exible rock-
fall barriers under impact loading at di�erent po-
sitions", J Constr Steel Res, 167, 105953 (2020).
https://doi.org/10.1016/j.jcsr.2020.105953

16. Huo, J., Wang, H., Li, L., et al. \Experimental
study on impact behaviour of stud shear connec-
tors in composite beams with pro�led steel sheet-
ing", J Constr Steel Res, 161, pp. 436{449 (2019).
https://doi.org/10.1016/j.jcsr.2018.04.029

17. Guo, Q. and Zhao, W. \Design of steel-concrete
composite walls subjected to low-velocity impact",
J Constr Steel Res, 154, pp. 190{196 (2019).
https://doi.org/10.1016/j.jcsr.2018.12.001

18. Jung, J.-W., Yoon, Y.-C., Jang, H.W., et al.
\Investigation on the resistance of steel-plate
concrete walls under high-velocity impact",
J Constr Steel Res., 162, 105732 (2019).
https://doi.org/10.1016/j.jcsr.2019.105732



1840 F. Emami and M.Z. Kabir/Scientia Iranica, Transactions A: Civil Engineering 31 (2024) 1825{1841

19. Sadraie, H., Khaloo, A., and Soltani, H.
\Dynamic performance of concrete slabs
reinforced with steel and GFRP bars under
impact loading", Eng Struct., 191, pp. 62{81 (2019).
https://doi.org/10.1016/J.ENGSTRUCT.2019.04.038

20. Zhao, C., Lu, X., Wang, Q., et al.
\Experimental and numerical investigation of
steel-concrete (SC) slabs under contact blast
loading", Eng Struct., 196, 109337 (2019).
https://doi.org/10.1016/J.ENGSTRUCT.2019.109337

21. Al Rawi, Y., Temsah, Y., Baalbaki, O., et al.
\Experimental investigation on the e�ect of impact
loading on behavior of post- tensioned concrete slabs",
Journal of Building Engineering, 31, 101207 (2020).
https://doi.org/10.1016/J.JOBE.2020.101207

22. Guo, J., Cai, J., and Chen, W. \Inertial E�ect on RC
Beam Subjected to Impact Loads", International Jour-
nal of Structural Stability and Dynamics, 17, 1750053
(2016). https://doi.org/10.1142/S0219455417500535

23. Kong, X., Fang, Q., Wu, H., et al. \Numerical
predictions of cratering and scabbing in concrete
slabs subjected to projectile impact using a
modi�ed version of HJC material model",
Int J Impact Eng., 95, pp. 61{71 (2016).
https://doi.org/10.1016/J.IJIMPENG.2016.04.014

24. Izatt, C., May, I.M., Lyle, J., et al. \Perfora-
tion owing to impacts on reinforced concrete slabs",
Proceedings of the Institution of Civil Engineers-
Structures and Buildings, 162, pp. 37{44 (2009).
https://doi.org/10.1680/stbu.2009.162.1.37

25. Emami, F. and Kabir, M.Z. \Performance
of composite metal deck slabs under impact
loading", Structures, 19, pp. 476{489 (2019).
https://doi.org/10.1016/j.istruc.2019.02.015

26. Ding, X., Hasanipanah, M., Nikafshan Rad, H., et al.
\Predicting the blast-induced vibration velocity using
a bagged support vector regression optimized with
�rey algorithm", Eng Comput., 37, pp. 2273{2284
(2021). https://doi.org/10.1007/s00366-020-00937-9

27. Kabir, H. and Garg, N. \Machine learning enabled
orthogonal camera goniometry for accurate and ro-
bust contact angle measurements", Scienti�c Reports,
13(1), 1497 (2023). https://doi.org/10.1038/s41598-
023-28763-1

28. Kardan, Y.H.J.-B.-O. and authorMohammad-T.A.
\Experimental and numerical investigation of bridge
pier scour estimation using ANFIS and teaching{
learning-based optimization methods", Eng Comput.,
35, pp. 1103{1120 (2019).

29. Naser, M.Z. \Can past failures help identify vulnerable
bridges to extreme events? A biomimetical machine
learning approach", Eng Comput., 37(2), pp. 1099{
1131 (2021).

30. Kiani, J., Camp, C., and Pezeshk, S. \On the appli-
cation of machine learning techniques to derive seis-
mic fragility curves", Comput Struct., 218, pp. 108{
122 (2019). https://doi.org/10.1016/J.COMPSTRUC.
2019.03.004

31. Zhang, R., Chen, Z., Chen, S., et al. \Deep long
short-term memory networks for nonlinear struc-
tural seismic response prediction", Comput Struct.,
220, pp. 55{68 (2019). https://doi.org/10.1016/
J.COMPSTRUC.2019.05.006

32. Sakong, J., Woo, S.-C., and Kim, T.-W. \Deter-
mination of impact fragments from particle analysis
via smoothed particle hydrodynamics and k-means
clustering", Int J Impact Eng., 134, 103387 (2019).
https://doi.org/10.1016/J.IJIMPENG.2019.103387

33. Bortolan Neto, L., Saleh, M., Pickerd, V., et
al. \Rapid mechanical evaluation of quadrangu-
lar steel plates subjected to localised blast load-
ings", Int J Impact Eng., 137, 103461 (2020).
https://doi.org/10.1016/J.IJIMPENG.2019.103461

34. Capuano, G. and Rimoli, J.J. \Smart �nite ele-
ments: A novel machine learning application", Comput
Methods Appl Mech Eng., 345, pp. 363{381 (2019).
https://doi.org/10.1016/J.CMA.2018.10.046

35. Feng, Y., Gao, W., Wu, D., et al. \Machine learn-
ing aided stochastic elastoplastic analysis", Com-
put Methods Appl Mech Eng., 357, 112576 (2019).
https://doi.org/10.1016/J.CMA.2019.112576

36. Zohdi, T.I. \Dynamic thermomechanical modeling and
simulation of the design of rapid free-form 3D printing
processes with evolutionary machine learning", Com-
put Methods Appl Mech Eng., 331, pp. 343{362 (2018).
https://doi.org/10.1016/J.CMA.2017.11.030

37. Wu, J.-L., Sun, R., Laizet, S., et al. \Representa-
tion of stress tensor perturbations with application in
machine-learning-assisted turbulence modeling", Com-
put Methods Appl Mech Eng., 346, pp. 707{726 (2019).
https://doi.org/10.1016/J.CMA.2018.09.010

38. Fang, Z., Roy, K., Mares, J., et al. \Deep learning-
based axial capacity prediction for cold-formed steel
channel sections using Deep Belief Network", Struc-
tures., 33, pp. 2792{2802 (2021).
https://doi.org/10.1016/j.istruc.2021.05.096

39. Fang, Z., Roy, K., Chen, B., et al. \Deep
learning-based procedure for structural design of
cold-formed steel channel sections with edge-sti�ened
and un-sti�ened holes under axial compression",
Thin-Walled Structures., 166, 108076 (2021).
https://doi.org/10.1016/j.tws. 2021.108076

40. Fang, Z., Roy, K., Mares, J., et al. \Deep learning-
based axial capacity prediction for cold-formed steel
channel sections using Deep Belief Network", Struc-
tures, 33, pp. 2792{2802 (2021). https://doi.org/
10.1016/j.istruc.2021.05.096

41. Fang, Z., Roy, K., Ma, Q., et al. \Application of deep
learning method in web crippling strength prediction
of cold-formed stainless steel channel sections under



F. Emami and M.Z. Kabir/Scientia Iranica, Transactions A: Civil Engineering 31 (2024) 1825{1841 1841

end-two-ange loading", Structures, 33, pp. 2903{2942
(2021). https://doi.org/10.1016/ j.istruc.2021.05.097

42. Bligh, Y.D.M.A.A.-O. and R. \Evaluation of LS-
DYNA Concrete Material Model 159", United States,
Federal Highway Administration, O�ce of Research
(2007).

43. Castedo, R., Segarra, P., Ala~non, A., et al. \Air
blast resistance of full-scale slabs with di�erent com-
positions: Numerical modeling and �eld valida-
tion", Int J Impact Eng., 86, pp. 145{156 (2015).
https://doi.org/10.1016/J.IJIMPENG.2015.08.004

44. Sadiq, M., Xiu Yun, Z., and Rong, P. \Simulation anal-
ysis of impact tests of steel plate reinforced concrete
and reinforced concrete slabs against aircraft impact
and its validation with experimental results", Nuclear
Engineering and Design. 273, pp. 653{667 (2014).
https://doi.org/10.1016/J.NUCENGDES.2014.03.031

45. Saini, D. and Shafei, B. \Concrete constitu-
tive models for low velocity impact simulations",
Int J Impact Eng., 132, 103329 (2019). https://
doi.org/10.1016/J.IJIMPENG.2019.103329

46. Ala~n�on, A., Cerro-Prada, E., V�azquez-Gallo, M.-J.,
et al. \Mesh size e�ect on �nite-element modeling of
blast-loaded reinforced concrete slab", Eng Comput.
34, pp. 649{658 (2018).

47. Murray, Y.D. \Users Manual for LS-DYNA Concrete
Material Model 159", United States, Federal Highway
Administration, O�ce of Research (2007).

48. ASTM: ASTM C136/C136M-14 \Standard Test
Method for Sieve Analysis of Fine and Coarse Ag-
gregates", ASTM International, West Conshohocken.
(2014). https://doi.org/10.1520/ C0136-C0136M-14

49. ASTM: A370 \Standard Test Methods and De�nitions
for Mechanical Testing of Steel Products", (2014).

50. \CEB-FIP model code 1990: design code", London:
Telford (1993).

Biographies

Fakhreddin Emami a PhD student at the University
of South Carolina, has a strong interest in the com-
putational mechanics of metamaterials. He utilizes a
diverse range of computational tools to create novel
materials that possess extraordinary properties that
are not naturally occurring.

Mohammad Zaman Kabir is a Professor of Struc-
tures and Solid Mechanics at the Department of Civil
and Environmental Engineering at Amir Kabir Univer-
sity of Technology in Tehran, Iran. Professor Kabir
earned his PhD in 1995 from the Solid Mechanics
Division at the Department of Civil Engineering at
the University of Waterloo in Ontario, Canada, where
his research focused on the stability of thin-walled
laminated composite members. Professor Kabir has
authored numerous papers on topics such as composite
structures, structural stability, structural optimization,
prefabricated sandwich panels, and retro�tting struc-
tures using FRP fabrics. His current research inter-
ests include strengthening structures under excessive
loading, innovative materials for structures, lightweight
structures, and the application of 3D printing in the
civil engineering industry.


