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Abstract. 18 

    Many parameters affect the behavior of tall buildings under seismic loads, some of which are the main 19 

shock-after shock records and using some lateral load resistance systems in reinforced concrete tall 20 

buildings. End shear walls are a kind of shear walls, connecting their end in tall buildings. This study was 21 

conducted on two 30-story reinforced concrete structures, which were subjected to sequences of far fault 22 

records and analyzed by the nonlinear time history analysis. The results indicated a 51% decrease in 23 

maximum inter-story drift in 30 stories with end shear walls under sequence records. The normal Q-Q plots 24 

(quantile-quantile plot) presented approximately 20% reduction in the excepted normal domain in X and Y 25 

directions, respectively, in 30 stories with end shear walls. The kurtosis coefficient declined by 61 and 92% 26 

in the X and Y directions in 30-story structure end shear walls, respectively. Therefore, the end shear wall 27 

increased the confinement effects by decreasing the dispersion data of inter-story drift and improving 28 

seismic behavior. 29 
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    Studies have suggested various lateral load systems methods, revealing the significant role of seismic 38 

behavior on high-rises. RC shear walls contribute to the proper performance of structures. As a result of 39 

severe tensions at the end flanges of the shear walls, the parameter was improved by connecting the end 40 

walls in all stories. The system has become more stable and complex by adding the end shear wall. 41 

Furthermore, the layout of the core walls gave the overall structure system torsion strength and hardness, 42 

and the extension of the corners limited floor deflection.  43 

    Shen et al. (2019) conducted a 20-story frame-core tube subject to evaluate the behavior of shear walls in 44 

RC structures under sequence records and sequential ground motions and showed the effects of sequential 45 

records on the structural design [1]. Jamnani et al. (2018) focused on energy distribution in RC structures 46 

subjected to repeated records and found that the effect of sequence earthquakes should be considered in 47 

assessing the reliability of structures [2]. In addition, the exceeding probability of a severe damage state rises 48 

from 35.3% to 62.1% due to the solid aftershocks by vulnerability assessment of the 32-story structure [3]. 49 

Some tall buildings were evaluated by single and multiple peaks, indicating that multiple earthquakes 50 

significantly increased the risk of structural frailer [4]. Akhavan Salmassi et al. (2022) assessed the seismic 51 

behavior of tall RC buildings with end shear walls. The results showed that the structures with end shear 52 

walls had a 50% lower drift ratio than structures without end shear walls [5].  53 

    The main shock-aftershock records were also used in studies concerning risk-based assessment. 54 

Shokrabadi and Burton (2018) presented the importance of seismic risk from aftershocks in designing 55 

structures [6]. In addition, the vulnerability assessment of the structure subjected to the main shock-56 

aftershock showed that the maximum effects of aftershocks can exceed 15% [7]. As a result of the 57 

probabilistic model for the RC frame subjected to sequence records, the MS-AS sequence is more uncertain 58 

than the MS sequence [8]. Wang et al. (2022) analyzed the fragility of mega-sub controlled structures 59 

subjected to sequence records and demonstrated that the additional LRB improved seismic behavior [9] [8]. 60 

Zhang et al. (2019) examined the seismic risk of tall buildings by main shock and aftershock. The maximum 61 

exceedance probability was related to the coupling beam rotation demand [10]. Zhang and Burton (2021) 62 
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studied tall buildings and aftershocks and indicated a framework for optimal decision-making for earthquake 63 

damage [11].                                                                 64 

    On the other hand, Huang et al. (2022) evaluated the seismic performance of RC frames with viscoelastic 65 

dampers subjected to sequence records. The IDA results presented a better performance in lead viscoelastic 66 

damper, as much as 21.08% in the median after shock PGA demands [12]. Some other studies have 67 

investigated tall buildings by nonlinear time history analysis and found recognition patterns to assess the 68 

residual structural capacity of damage [13]. In addition, the energy-based method was applied for tall 69 

buildings under sequence records. Studies have concluded that the Max ISDR of the shear walls is less than 70 

1% for the main shock and MS-AS records [14].  71 

    Moreover, Mantawy and Anderson (2014) investigated tall buildings under sequence records and 72 

indicated significant damage due to low-cycle fatigue [15]. Examining the seismic fragility through the IDA 73 

method increased the seismic vulnerability under sequence records [16]. While performance-based criteria 74 

are desirable for new construction and retrofitting, developing such guidelines can be complicated [17]. 75 

Studying the performance of reinforced concrete subjected to sequence records indicated that residual drift 76 

and displacement accumulate each aftershock [18]. Tauheed and Alam (2021) suggested that the strength 77 

and stiffness decreased with increasing aftershocks [19].  78 

    Additionally, the response of reinforced concrete frames with stiffness irregularities under sequence 79 

records is analyzed in-depth [20]. Naserpour and Fathi (2022) examined post-tensioned wall frames and 80 

indicated that the conventional model posed extensive damage to the structural elements, leading to a 81 

damage index of 0.78% and residual drifts of 0.42% under seismic loads [21]. Abdelnaby and Elnashai 82 

(2015) assessed numerical modeling and reinforced frames under sequence records and indicated that the 83 

sequence earthquake significantly affects earthquake safety [22]. According to the proposed method, 84 

synthesized MS-AS sequences produced statistically similar results to as-recorded sequences for buildings 85 

subjected to sequence records [23]. In addition, researchers examined the impact of aftershocks on 86 

reinforced concrete structures. The findings presented important uncertainty sources for the post-quake 87 

decisions through a sensitivity study [24]. Several sequence records have been investigated for their impact 88 



4 
 

on moment resistance in reinforced concrete frames [25]. In addition, the effects of seismic sequences on 89 

structures with dissipative behavior indicated that the result of seismic sequence consideration was essential 90 

for design [26]. Reinforced concrete structures subjected to repeated records were also studied and showed 91 

that the ductility demands related to sequence records were estimated by combining the corresponding 92 

demands of the single records [27].  93 

    Based on results from a fragility study and collapse margin capacity evaluation performed on the mega-94 

sub controlled structure system when subjected to a main shock-aftershock excitation, it was determined that 95 

the LRB increased the system's seismic resistance [28]. 96 

    According to the study, "Seismic behavior of reinforced concrete moment resistant structures with 97 

concrete shear wall under main shock-aftershock seismic sequences," [29] the medium height model under 98 

the seismic sequences showed a considerable increase in the relative displacement (about 25% in some 99 

cases), inter-story drift ratio, plastic strain, and residual displacement (42.22 percent rise on average) 100 

compared to the structure that was only subjected to the main shock. 101 

Maximum residual relative floor displacements were reduced by around 40% in frames with post-tensioned 102 

connections compared to frames with simple moment connections, as determined by an evaluation of 103 

flexible steel frame structures with post-tensioned cables to sequences far from fault [30]. Experimental 104 

results from shaking table tests on a reinforced concrete frame exposed to main shock-aftershock sequences 105 

showed that AIR values increased dramatically with increasing damage to the specimen [31]. Taking into 106 

account main shock-aftershock sequences in a seismic fragility assessment of a transmission tower revealed 107 

that aftershocks might exacerbate the accumulated damage to the building and decrease its seismic capacity 108 

[32]. Fragility analysis of containment structures during main shock-aftershock sequences [33] confirms the 109 

need to consider the influence of main shock-damaged levels. A strong aftershock can pollute the efficiency 110 

of period normalization, and the impact of a strong aftershock in the near-fault zone on cumulative damage 111 

can exceed 20% and reach 40%, as stated in Cumulative Damage of Structures under the Main shock-112 

aftershock Sequences in the Near-fault Region [34]. Research comparing the pounding impacts of different 113 

reinforced concrete frames (MRFs) exposed to far-field earthquakes found that shorter MRFs sustained 114 
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much more damage than taller structures owing to pounding [35]. An analysis of the effects of modeling 115 

uncertainties on the residual drift of steel structures during main shock-aftershock sequences revealed that 116 

seismic demands are more sensitive to strength modeling parameters and beam ductility modeling 117 

parameters, with these sensitivities increasing by an average of 20% during aftershocks. Aftershocks 118 

increase the dispersion of peak drift needs significantly [36]. As documented, aftershocks can increase 119 

residual drift demands by as much as 19% for 3-story frames and 15% for 9-story frames at the risk-targeted 120 

maximum assessed earthquake MCER level. The procedure can quantitatively estimate the failure 121 

probability of a main shock damaged structure during aftershocks considering the influence of the spatial 122 

location of the aftershock and the time interval between the main shock and aftershock [37]. This evaluation 123 

is based on a spatiotemporal simulation of the regional earthquake sequence.                                                                           124 

    This literature review aimed to investigate the effect of end shear walls on the nonlinear behavior of RC 125 

tall buildings under sequence records. In tall buildings, end shear walls connect the ends of shear walls in all 126 

stories, and some parameters, such as confinement and resistance reduction effects, influence the behavior of 127 

the buildings. Therefore, this paper evaluates the impact of end shear walls by focusing on mentioned 128 

parameters in RC tall buildings subjected to sequence records by nonlinear time history analysis. 129 

 130 

2. Material and Methods 131 

2.1 Specifications of structures and materials 132 

 133 

    Some 30-story buildings were modeled by ETABS software with and without an end shear wall to study 134 

how it behaves. A three-dimensional analysis was conducted to determine seismic behavior. The mentioned 135 

structures included the reinforced concrete moment frame and shear wall, and the dead and live loads were 136 

as much as 170 and 200 kg/m
2
, respectively. The floor was a reinforced concrete slab, and the connections of 137 

columns and shear walls were rigid at the base. The frame span, floor height, ʋ , fc, and fy are considered as 138 

much as 7 m, 4 m, 0.15, 50 MPa, and 400 N/mm
2
, respectively. The frames were classified into three 139 

dimensions, and OpenSees modeled the structures for nonlinear analysis due to determining frame sections 140 
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in ETABS software. Shear walls are shown in red in Figure 1a, while end shear walls are shown in blue in 141 

Figs. 1b and c, showing a typical frame elevation. 142 

 143 

Tables 1 and 2 represent the buildings and section specifications, respectively.  144 

         145 

      As mentioned in the figures and specifications, these structures were subjected to seismic analysis after  146 

modeling. 147 

 148 

2.3 Simulation of the structures 149 

 150 

   The 30-Story structures were analyzed using linear static analysis, simulated by OpenSees, and their 151 

section properties were determined using ETABS software. Due to nonlinear time history analysis, three 152 

records were required to apply the structures. 153 

   On the other hand, the multi-layer shell element model was used for shear walls. The “ShellMITC4” 154 

command was related to the multi-layer shell element model and subdivided the shear wall into a sufficient 155 

number of layers. According to the dimensions and distribution of reinforcing bars, Figures 2 and 3 156 

indicated different material properties and multi-layer shell elements. Physically, the stresses at the mid-157 

surface of an orthotropic layer are equal to those over a layer thickness[38]. 158 

      The specifications of the primary records are indicated in Table 3, which are far-field and site class D. 159 

On the other hand, the acceleration time and its response are shown in Figs. 4. Moreover, the graph of 160 

energy flux-time of records presents various levels in Figure 5.   161 

 162 

   Table 4 shows the details of sequence records, including combined details and time duration. In addition, 163 

the acceleration-time graphs of sequence records are presented in Fig 6. 164 

Nonlinear time analysis of structures is required in the following. 165 

 166 

2.3.1 verification 167 

 168 

    Para et al. (2019) validated a four-story RC flexural frame using OpenSees algorithms. Figure 7a indicates 169 

the detail of the Parra et al. (2019) frame [39]. In Figure 7b and Table 4, Parra et al.’s (2019) maximum base 170 



7 
 

shear/W (%) and simulation ratios are 10.5% and 11.1%, respectively. 171 

In conclusion, OpenSees performed as intended, with a verification deviation of 5%. 172 

 173 

 174 

 175 

 176 

 177 

3. Results and discussion 178 

 179 

      The 30-story structures were modeled with and without end shear walls. The mentioned structures were 180 

subjected to three sequence records for nonlinear time history analysis. The drift ratio is one of the 181 

significant parameters in seismic behavior in tall buildings. For this purpose, the drift ratios are based on the 182 

story presented in Figure 8. 183 

   The inter-story drift ratios of sequence records shown in Figure 8a are based on the story of CMF1. As 184 

shown in Figure 8a, the gray, blue, and orange colors belong to Combinedsery1, Combinedsery2, and 185 

Combinedsery3 records, respectively. The minimum inter-story ratio in Combinedsery1 (7.44E-04), 186 

Combinedsery2 (3.8E-04), and Combinedsery3 (1.41E-04) record at the first level. Despite the fluctuation 187 

from one to 13-story, the maximum drift ratios were 3.43E-03, 2.34E-03, and 1.26E-03 in Combinedsery1, 188 

Combinedsery2, and Combinedsery3 at seven, four, and 25 stories, respectively. 189 

   On the other hand, the inter-story drift ratios of records based on the CMF2 story are represented in Figure 190 

8b. The gray, blue, and orange colors were related to Combinedsery1, Combinedsery2, and Combinedsery3 191 

records. The minimum inter-story ratio in Combinedsery1, Combinedsery2, and Combinedsery3 records at 192 

the first level were 2.85E-04, 2.92E-04, and 9.95E-05, respectively. In Combinedsery2 and Combinedsery3 193 

records, the maximum inter-story drift ratios were obtained at 1.28E-03 and 7.76E-04 in 9 and 25 levels, 194 

respectively. In the Combinedsery1 record, some initial fluctuations led to 24 levels of 1.67E-03. 195 

   Accordingly, the inter-story drift ratio is based on CMF1 and CMF2 in Figure 8c. The mentioned inter-196 

story drift ratio was obtained from the maximum inter-story drift ratios of three sequence records in CMF1 197 

and CMF2 in every story. The minimum inter-story drift ratios were calculated as much as 7.44E-04 and 198 
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2.92E-04 at the first level of CMF1 and CMF2, respectively. Moreover, some fluctuations resulted in the 199 

maximum mentioned parameters reaching 3.43E-03 and 1.67E-03 at the seven and 24 levels of CMF1 and 200 

CMF2, respectively. 201 

 202 

 203 

 

 

 

 
 

 

 
 204 

Figure 9 shows the maximum drifts of CMF1 and CMF2 subjected to sequence records. There were 205 

substantial differences in the proportion of maximum drifts of CMF1 and CMF2 at different levels. CMF1 206 

drifted 3.43E-03 at the Combinedsery1 record, whereas CMF2 drifted only 1.67E-03 at the Combinedsery1 207 

record. In addition, the least maximum drift difference is at the Combinedsery3 record, where 1.26E-03 was 208 

obtained for CMF1 compared with the 7.76E-04 drift of CMF2. Combinedsery3 records a larger maximum 209 

drift inter-story for CMF1 than for CMF2 (2.34E-03, 1.28E-03). 210 

    Figure 9 demonstrates the maximum inter-story drift under the Combinedsery1 record at 24 levels of 211 

CMF2. According to maximum inter-story drift in 24 floors in CMF2, figure 10a illustrates the nonlinear 212 

time history analysis of drift based on the X and Y directions for the combinedsery1 record in 24 levels. The 213 

SPSS software was used to analyze the data and provided more accurate information in Figure 10a. 214 

Significant differences were observed proportional to CMF1 and CMF2 at box plots outputs. Additionally, 215 

some data in the top and bottom of the box plot in Figure 10b related to CMF1 as the scattered data. CMF2 216 

had less scattered data at the top and bottom of the box plot in Fig 10c than CMF1.  217 

   Furthermore, the CMf2 box plot showed a lower domain, as much as -0.002 and 0.002, than CMF1 by 218 

more domains in -0.003 and 0.003. Hence, the data concentration in CMF2 at the X-direction was more than 219 
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in CMF1. Furthermore, the CMF2 box plot by -0.001 and 0.001 range indicated a lower domain than CMF1 220 

by domains in -0.002 and 0.002 in the Y direction in Figure 10d-e.  221 

   Consequently, the data behavior in CMF2 presented more concentration than that in CMF1 by statistical 222 

studies. The appropriate performance of the end shear walls increases confinement. 223 

       In the following, the normal Q-Q plots were discussed for further investigation of 24 levels of CMF1 224 

and CMF2 structures subjected to Combinedsery1 records (Figure 11). According to the normal Q-Q plot 225 

of XCMF1 in Figure 11a, the excepted normal in the vertical axis was at -5.0 and 5.0 of the domain.  226 

Additionally, the horizontal axis showed a range between -0.003 and 0.003. A normal Q-Q plot of XCMF2 227 

in Figure 11b showed the excepted normal from -4 to 4, and the observed values ranged from -0.002 to 228 

0.002. The XCMF2 data were much closer to the line than the XCMF1 data.  229 

   In Figure 11c, the normal Q-Q plot for YCMF1 shows an excepted normal range of -5 to 5 and an 230 

observed value domain of -0.002 to 0.002. In addition, the mentioned domains of YCMF2 were observed 231 

from -4 to 4 and -0.001 to 0.001 in Figure 11d, respectively. Also, most of the YCMF2 data is located on 232 

line in Figure 11d. 233 

    Figure 12 shows the frequency histogram for 24 levels of CMF2 and CMF1 structures under 234 

combinedsery1. The frequency of CMF1 in the X direction in Combinedsery1 is presented in Figure 11a. 235 

The data frequency was observed between 3000 to 4000, with the standard deviation and mean of 5.948E-4 236 

and 1.52E-5, respectively. Based on the data domain, the data ranges were from -0.003 to 0.003. On the 237 

other hand, the frequency domain ranged from 1500 to 2000 with the standard deviation and mean of 238 

3.158E-4 and -2.23E-6 by accumulating XCMF2 data in Figure 11b. In addition, the frequency of CMF1 in 239 

the Y direction in Combinedsery1 ranged from 3000 to 4000 in Figure 11c. The standard deviation and 240 

mean were as much as 4.732E-4 and 1.21E-5, respectively. The data domain of the horizontal graph 241 

mentioned was from -0.002 to 0.002 in Figure 11c. The frequency of CMF2 in the Y direction of 242 

Combinedsery1 is presented in Figure 11d. The data accumulation was more than in Figure 11c, and the 243 

frequency values were from 1000 to 1200, with the standard deviation and mean of 2.502E-4 and 5.95E-6, 244 

respectively. 245 
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 246 

    Table 5 illustrates the data statistics outputs of X and Y directions drifts in CMF1 and CMF2 structures 247 

in combinedsery1 by SPSS software. The kurtosis and skewness coefficients were significantly lower and 248 

closer to zero in CMF2 compared to CMF1 in both directions. The kurtosis coefficient of X-direction drifts 249 

of Combinedsery1 in CMF1 significantly dropped from 3.579 to 1.361 compared with CMF2. In addition, 250 

the kurtosis coefficient decreased from the Y-direction drift of Combinedsery1 CMF1 (YCMF1) to CMF2 251 

(YCMF2) (4.343 to 0.363). XCMF1 and XCMF2 recorded a skewness coefficient difference of 0.187 and -252 

0.183, respectively.  253 

     Moreover, the skewness coefficient changed from 0.143 to 0.051 in YCMF1 and YCMF2, respectively. 254 

Then, the sig parameter was calculated in zero outputs for all kurtosis coefficient values. The kurtosis 255 

coefficients were significant due to sig parameter values obtained less than 0.05 in Table 5. Descriptive 256 

statistics of drifts in the X direction vs. Y direction of Combinedsery1 for CMF1 and CMF2. 257 

    The kurtosis and skewness coefficient values under excitation indicated that CMF2 drift data was less 258 

dispersed than CMF1. 259 

 260 

4. Conclusion 261 

                          262 

    The nonlinear time history analysis is one of the essential analytical methods in tall buildings. This study 263 

analyzed two 30-story reinforced concrete structures with and without end shear walls for section properties. 264 

The structures were simulated and subjected to three sequences of far-field records by nonlinear time history 265 

analysis. The 3D simulation verification of the 30-story structures showed acceptable ratios. The structures 266 

were subjected to three sequence records, including Combinedsery1, Combinedsery2, Combinedsery3, and 267 

the mentioned records were generated by three far fault records of Northwest China, Morgan Hill, and Loma 268 

Prieta. The nonlinear time history analysis data showed that the end shear walls improved structural 269 

behavior. Thus, the advantages of an end shear wall can be summarized as follows:                        270 

1- Considering some fluctuations in the Combinedsery1 record, the maximum drift decreased by 51% 271 

in 30 stories with end shear walls. 272 
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2- The results indicated the excepted normal drifts in -5.0 and 5.0 domains in 30 stories without end 273 

shear walls structure. In this regard, the normal Q-Q plot showed the excepted normal in -4 and 4 274 

domains for CMF2 in X and Y directions. Thus, the end shear wall declined as much as 20% in the 275 

domain of excepted normal in Q-Q plots. 276 

3- In 30 stories without and with end shear walls in the X direction, the frequency domain of drifts 277 

decreased from 3000 to 4000 to 1500 to 2000. In addition, the mentioned domains were observed 278 

from 3000 to 4000 to 1000 to 1200 in the Y direction. Hence, there was a 50% reduction in data 279 

frequency in 30 stories by the end shear wall. 280 

4- The results indicated that the absolute mean of drift data decreased by 85 and 50% in X and Y 281 

directions in 30 stories with the end shear wall.  282 

5- The significant structural efficiency of the end shear walls increased in tall buildings. The drift ratio 283 

graph in the X direction vs. Y direction showed the maximum reduction of drift ratio at 24 levels of 284 

both structures under the Combinedsery1 record. According to these data: 285 

-The graph of drifts related to the 30-story structure with end shear walls experienced a 286 

significant drop of kurtosis coefficient by 61% and 92% in the X and Y directions, 287 

respectively. The dispersion of drift data for 30-story structures with end shear walls was 288 

lower than those without end shear walls. 289 

- As a result of end shear walls, the skewness coefficient of a 30-story building was reduced 290 

by 2 and 64%, respectively, in the X and Y directions. 291 

- There was a 47% decrease in standard deviation in both the X and Y directions of the 30-292 

story structure with end shear walls. 293 

    Based on the results, the end shear wall outperforms the behavior of the structure under 294 

the sequences records of the far field and improves the seismic behavior. 295 

 296 
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 402 

Table 1. The specifications of buildings  403 

Label Story H (m)  A (m
2
) Plan Dimensions  (m×m) Story 

CMF1- (Without End shear wall) 30 120  36750 35×35 30 

CMF2- (With End shear  wall) 30 120  36750    35×35 30 

 404 
 405 

Table 2. The specifications of the sections  406 

Label Dimension Rebar 

Beam St1-30: (0.5) m wide × (0.7) m deep 8Ф20- Stirrup Ф14@10 

Column St1-15:(1.20) m × (1.20) m, St16-30:(1.00) m × (1.00) m 36Ф32 - 36Ф32 – Stirrup Ф14@15 

Shear Wall St1-30:(35) m long × (0.5) m thick Ф28@10 - Stirrup Ф14@25 

End shear wall St1-30:(11) m long × (0.5) m thick Ф28@10 - Stirrup Ф14@25 

Slab St1-30:(0.15) m thick Ф10@10 

 407 

Table 3. The specifications of far-field earthquake records. 408 

ID No. Event            Station Year Mw d (km) PGA max(g) PGA max(g)/ PGV max(cm/sec) 

R1 Loma Prieta Gilroy Array #4 1989 6.93 14.34 0.419 1.040 

R2 Morgan Hill Gilory Array #4 1984 6.19 11.54 0.349 2.010 

R3 Northwest China-03 Jaishi 1997 6.1 17.73 0.3 1.558 

 409 

Table 4. Verification results. 410 

Analysis type maximum base shear/W (%) 

Article analysis 10.5 

Verification analysis  11.1 

 411 

Table 5. Descriptive statistics of drifts in the X direction vs. Y direction of Combinedsery1 for CMF1 and 412 
CMF2. 413 

 N Std. Deviation Skewness Kurtosis 
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Statistic Statistic Statistic Std. Error Statistic Std. Error 

XCMF1 24023 .00059 0.187 0.016 3.579 0.032 

YCMF1 24023 .00047 0.143 0.016 4.343 0.032 

XCMF2 24020 .00032 -0.183 0.016 1.361 0.032 

YCMF2 24020 .00025 0.051 0.016 0.363 0.032 

Valid N (listwise) 24020      

 414 

 415 
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(a) The typical floor plan of structure without end shear wall 427 
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 455 

(c) The typical frame elevation of structure with end shear wall 456 

Figure 1. The 30-story model 457 

 458 

 
 

 
 

Figure 2. Multi-layer shell element [39]. 
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Figure 3. Distribution of rebar layer [39]. 

 459 

 

 
 

(a) Loma Prieta, acceleration-time. 
 

 
 

(b) Loma Prieta, response acceleration-time. 

 

 
 

(c) Morgan Hill, acceleration-time. 

Time [sec]

403938373635343332313029282726252423222120191817161514131211109876543210

A
c
c
e
le

ra
tio

n
 [
g
]

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

Damp. 5.0%

Period [sec]

3210

R
e
s
p
o
n
s
e
 A

c
c
e
le

ra
tio

n
 [
g
]

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Time [sec]

403938373635343332313029282726252423222120191817161514131211109876543210

A
c
c
e
le

ra
tio

n
 [
g
]

0.3

0.2

0.1

0

-0.1

-0.2

-0.3



18 
 

 
(d) Morgan Hill, response acceleration-time. 

 

 
 

(e) Northwest china-03, acceleration-time. 

 

 
 

(f) Northwest china-03, response acceleration-time. 

Figure 4. The acceleration-time and response acceleration-time graphs of records. 
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 461 

Figure 5. The energy flux-time graphs of records. 462 

 

 
 

Combinedsery1 
 

 
 

Combinedsery2 
 

 
 

Combinedsery3 

Figure 6. The acceleration-time graphs of sequence records. 
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(a) The detail of Parra et al. (2019) frame [39]. 

 

 

(b) Base shear/W (%) – roof drift ratio (%) graphs. 

Figure 7. The verification detail of the frame. 
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(a) Inter-story drift ratio-story CMF1. 

 

 
 

(b) Inter-story drift ratio-story CMF2. 
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(c) Maximum inter-story drift ratio-story CMF1 and CMF2. 

Figure 8. The inter-story drift ratio-story. 

 467 

 

 

Figure 9. The comparison of the maximum inter-story drift values in sequence records. 
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(a) The drift in the X direction vs. Y direction of CMF1 and CMF2 under Combinedsery1. 

 

 
 

(b) The Box plot of drift in the X direction of CMF1 in Combinedsery1. 

 

-2.50E-03

-2.00E-03

-1.50E-03

-1.00E-03

-5.00E-04

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

-3.00E-03 -2.00E-03 -1.00E-03 0.00E+00 1.00E-03 2.00E-03 3.00E-03

Drift- Y direction

Drift- Xdirection



24 
 

 
 

(c) The Box plot of drift in the X direction of CMF2 in Combinedsery1. 
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(d) The Box plot of drift in the Y direction of CMF1 in Combinedsery1. 
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(e) The Box plot of drift in the Y direction of CMF2 in Combinedsery1. 

Figure 10. The drifts and box plots of CMF1 and CMF2 in the X and Y directions in 

Combinedsery1. 
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 479 

 

 
(a) The Normal Q-Q plots of CMF1 in the X direction in Combinedsery1. 
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(b) The Normal Q-Q plots of CMF2 in the X direction in Combinedsery1. 
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(c) The Normal Q-Q plots of CMF1 in the Y direction in Combinedsery1. 
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(d) The Normal Q-Q plots of CMF2 in the Y direction in Combinedsery1. 

Figure 11. The Q-Q plots of CMF1 and CMF2 in X and Y directions in Combinedsery1. 
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(a). The frequency of CMF1 in the X direction in Combinedsery1. 
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(b) The frequency of CMF2 in the X direction in Combinedsery1. 
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(c) The frequency of CMF1 in the Y direction in Combinedsery1. 
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(d) The frequency of CMF2 in the Y direction in Combinedsery1. 

Figure 12. The frequency of CMF1 and CMF2 in X and Y directions in Combinedsery1. 
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