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Abstracts 

In this study, the Modified Adolescent Identity Search Algorithm (MAISA) is proposed to 

optimize the weight of skeletal structures. The MAISA is a population-based method, similar 

to other metaheuristic methods. The most advantages of the proposed algorithm are its 

simplicity and having only one setting parameter. This research aims to increase the balance 

between exploration and exploitation, improve the convergence rate, and reduce the 

possibility of being trapped in local points. The applied changes extend the global search at 

the beginning of the optimization process, and as the number of iterations increases, the 

possibility of local search increases non-linearly. To evaluate the performance of the 

proposed method, several benchmark skeletal structure problems have been designed and 

optimized using the LRFD method under the requirements of the AISC design regulations. 

The objective function is to calculate the minimum weight of a structure by selecting 

appropriate discrete sections and considering the deformation and stress constraints. To 

demonstrate the superiority of the MAISA algorithm, its results have been compared with 

some popular metaheuristic algorithms. The results show that the proposed algorithm 

performs better than other metaheuristic methods. 

Keywords: Modified Adolescent Identity Search Algorithm, Metaheuristic Method, 

Optimal Design, Optimization of Skeletal Structures, Optimization of Frame Structures. 

1. Introduction 

In general, optimization is the process of minimizing or maximizing the solution of real 

problems, while considering the limitations and constraints of the problem. This response in 

skeletal structures includes the minimum weight of structures, the best possible configuration 

and the best connection between nodes. The use of gradient-based methods imposes heavy 

costs on the system, so researchers have resorted to the use of metaheuristic methods. During 

the last three decades, these methods have received special attention. The main difference 

between metaheuristic methods is the relationship between the obtained answers from 

previous iterations and finding new answers. In other words, because metaheuristic methods 

are probabilistic, researchers are looking for relations that increase the chance of finding the 

best solution. In metaheuristic methods, exploration and exploitation, which are two essential 

components, are directly related to the search ability of an algorithm. The exploration 

component leads to more exploration in the global search space to find better solutions. The 

exploitation component also improves their quality by extending the search around the 

solutions which are obtained from exploration. The main challenge of metaheuristic methods 

is to establish a balance between exploration and exploitation. 

Recently, many metaheuristic algorithms are proposed which shown good performance in 

solving optimization problems. These algorithms can be classified into three general 
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categories: Standard algorithms, Modified or Upgraded algorithms, and Hybrid algorithms, 

which will be explained in the following paragraphs. 

Standard algorithms: Standard algorithms refer to the primary methods that were 

developed for solving optimization problems. The following algorithms are among the 

Standard algorithms: The Genetic Algorithm (GA) [1], which was developed by Holland 

using Darwin's theory of evolution. In this algorithm, cross-mechanisms and mutations are 

used to produce a new generation. Goodarzimehr et al. [2] proposed a novel metaheuristic 

method called Special Relativity Search (SRS) for solving optimization problems. The Cat 

Swarm Optimization algorithm (CSO) [3] that was developed by Chu et al. based on two 

major behaviors of cats: seeking and tracking baits. The Chemical Reaction Optimization 

algorithm (CRO) [4], which was introduced by Lam and Li, It is inspired by the processes of 

molecular reactions. The molecules decomposition or synthesis with each other till stopping 

criteria satisfy. The Charged System Search algorithm (CSS) [5] that was developed by 

Kaveh and Talatahari, which uses Colomb law of electrostatics and Newtonian laws of 

mechanics. The Teaching–Learning Based Optimization (TLBO) [6] algorithm, which is 

developed by Rao et al. it’s inspired by observing the relationship between teacher and 

students and the level of student learning. The Mine Blast Algorithm (MBA) [7] that was 

introduced by Sadollah et al. by observing the method of mine blasting, in which some parts 

are thrown as a result of a mine explosion that collides with other mines, causing them to 

explode. The Vibrating Particles System (VPS) [8] optimization method that was presented 

by Kaveh and Ghazaan, it’s inspired by the free vibration of single degree of freedom 

systems. The Grasshopper Optimization Algorithm (GOA) [9], which was designed by 

Mirjalili et al. is one of the basic metaheuristic algorithms that was inspired by the social 

behavior of grasshoppers and how affected by its surrounding. In this algorithm, updating the 

position of each grasshopper depends on the distance of each grasshopper from the entire 

population in the current iteration, and the position of the best grasshopper. The Black 

Widow Optimization (BWO) [10] algorithm was proposed by Hayyolalam and Pourhaji 

Kazem. The BWO is inspired by the Cannibalism behavior of a special type of spider. The 

black widow spider kills its male partner after mating and considers it as bait for herself. This 

behavior represents the elimination of inappropriate responses that lead to the convergence of 

the proposed algorithm. 

Modified or Upgraded algorithms: Some researchers have identified the strengths and 

weaknesses of Standard algorithms, and modified or improved them. The purpose is to 

increase the convergence speed, not to get stuck in the local optimal points and also to 

increase the run speed of the algorithm. Therefore, it is possible that a basic method has been 

upgraded by several researchers in different ways. For these algorithms, the words improved, 

modified, enhanced, or advanced are commonly used for naming. It is expected that classical 

algorithms such as PSO and GA have attracted the attention of many scientists to improve 

their performance, and based on these methods, many modified algorithms have been formed. 

An example of a modified particle swarm algorithm was the MPSO algorithm proposed by 

Yitong et al. [11]. Also, the modified particle swarm algorithm introduced by Tian and Shi 

[12], Goodarzimehr et al. [13] developed a hybrid PSOGA for solving geometrically 

nonlinear space structures, and PSOST developed by Baghlani and Makiabadi [14], and the 

improved particle swarm algorithm developed by Liu [15], are all examples of the modified 

methods based on the PSO algorithm. Also Shuffled Shepherd Optimization Method (SSOA) 

[16] is inspired by  the instrumental use of human beings from the instinct of animals to 
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achieve their goals, and then the authors introduced Enhanced Shuffled Shepherd 

Optimization Algorithm (ESSOA) [17] by modifying initialization phase and adding new 

statistically equation to main body. Also, Kaveh and zaerreza utilized ESSOA algorithm for 

evaluating a new framework for reliability-based design optimization (RBDO) [18]. 
Goodarzimehr et al. [19] developed weighted chaos game optimization (WCGO) for solving 

structural problems with dynamic constraints. The Improved Grey Wolf Optimizer algorithm 

(I-GWO) [20] was proposed by Nadimi-Shahraki et al.. This algorithm has used an 

instinctive strategy in wolves for individual attacks and prey hunting for improvement. Topal 

et al. [21] proposed hybrid method based on PSO and GA for solving maximization of the 

fundamental frequency of the FG-CNTRC quadrilateral plates. Kumari et al. developed the 

Modified Grasshopper Optimization Algorithm (MGOA) [22] by introducing new coefficient 

for balancing exploration and exploitation. Enhanced Rao Algorithm (ERao) [23] developed 

by revising the statistical mechanism and modifying the boundary control mechanism. 

Hybrid Algorithms: Applying several algorithms in a hybrid process is one of the most 

effective methods for solving optimization problems. In this approach, by examining two or 

more metaheuristic algorithms and identifying their strengths and weaknesses, a new hybrid 

algorithm will be developed. The aim is to strike a balance between global search capability 

(exploration) and local search capability (exploitation), that has led researchers to propose 

and develop many hybrid algorithms over the past decade. Shojaee et al. [24] introduced the 

MMA-IDPSO  algorithm, which optimizes the topology and size of truss structures. 

Talatahari et al. proposed the Hybrid Teaching-Learning-Based Optimization and Harmonic 

Search algorithm (TLBO-HS) [25] for optimizing large-scale structures. Also, Talatahari et 

al. [26] used the Hybrid Symbiotic Organisms Search and Harmony Search algorithm (SOS-

HS) to optimize the size of structures. Omidinasab and Goodarzimehr [27] proposed a Hybrid 

Particle Swarm and Genetics algorithm (PSO-GA) for the optimal design of truss structures 

with discrete variables. Jiang et al. [28] used the STSA  algorithm, which combines the TSA 

and SCA algorithms, to optimize and solve large-scale and complex problems. Kaveh and 

Rajabi developed Hybrid Imperialist Competitive Algorithm (ICA) and Biogeography Based 

Optimization (BBO) that was named Migration-Based Imperialist Competitive Algorithm 

(MBICA) [29]. 

Optimization is used in most engineering fields such as mechanics, economics, electronics, 

civil engineering, geophysics, molecular modeling, and etc. For example, Wang et al. 

introduced two gradient methods for the inverse wave problem [30,31]. Perin et al. [32] 

utilized GWO for optimum design of synchronous generator. Optimization has been used 

specifically in civil engineering to design structures. For example, Tan and Lahmer [33] used 

Robust Design Optimization (RDO) for the shape design of arch dams. Frame and truss 

structures are among the common and widely used structures in civil engineering, which are 

economical and safe. Frames are one of the most widely used structures and the reduction of 

their weight saves resources and reduces costs. Two-dimensional frames consist of many 

straight members connected by rigid joints. The stiffness relations of frames can be achieved 

by combining the stiffness relations of trusses and beams, because if a frame is affected by 

external forces, its members can be exposed to axial forces, bending moments, and shear 

forces. The objective function in these problems is the weight of the structure and its 

constraints of deformation and stress introduced in the design regulations. One of the first 

researchers who studied the discrete optimization of steel frames for the first time was Camp 

et al. [34], who optimized steel frame structures using the ant colony optimization algorithm. 
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Also, Kaveh and Shojaee utilized ACO algorithm to optimize several applicable problems 

[35]. Ghatte [36] developed a Hybrid Firefly and Biogeography-Based Optimization 

Algorithms (FA-BBO) for the optimal design of steel frames based on flashing patterns and 

biogeography-based optimization (BBO). Kaveh et al. [37] proposed the Advanced Charged 

System Search algorithm (ACSS) for the optimal design of steel structures. They used the 

idea of opposition-based learning to improve the performance and enhance the capabilities of 

the standard CSS algorithm. 

The standard AISA algorithm has a high ability in solving optimization problems due to 

the lack of control parameters and the ability to balance between two opposing components 

of exploration and exploitation. Therefore, the Modified Adolescent Identity Search 

Algorithm (MAISA) is used to optimize skeletal structures. Identity is a combination of 

different behaviors, thoughts, abilities, and beliefs that a person acquires during adolescence. 

During this period, a person hesitates about many issues around him and sometimes disagrees 

with others and even his parents to achieve his goals and desires. In fact, in this period, a 

person wants to move from childhood dependence to independence and have more 

independence in the family and school environment and decide for himself. Mathematical 

simulation of how adolescents' personalities are formed during this process has led to the 

emergence of this algorithm. 

In Section 2, the optimal design process of frame structures will be discussed, in Section 3. 

the formulation of the MAISA algorithm is extended. In Section 4. The efficiency of the 

proposed method is evaluated by numerical examples and in Section 5. discusses and 

concludes the performance of the proposed algorithm. 

2. Problem statement 

Recently, one of the main goals in structural optimization is minimizing the weight of the 

structure's elements. Metaheuristic algorithms are a great tool to fulfill this goal, in which the 

first population is randomly generated, and then by making a balance between exploration 

and exploitation, the population is promoted and at the end of each iteration, the obtained 

solutions are compared with the constraints of the problem, which are mainly displacements, 

stresses, and position of nodes in civil engineering problems. In order to qualitatively express 

the search conditions of the population in the feasible space, the search space is displayed in 

two dimensions and three dimensions in Fig. (1b) to Fig. (1g) show how adolescents search 

in this space. In Fig. (1b), the red and green dots represent the initial population produced and 

the position of the best person is shown in green. In each iteration, adolescents search and 

explore this space and with each iteration, the adolescents get closer to the optimal solution, 

and finally, all people converge to the optimal point (Fig. (1g)). 

A structural optimization problem can be formulated as follows: 

(1) 

1 2

     ( )

( ) 0 1, 2, ...,

{ , ,..., ,..., }j n

k
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Minimize f A

Subject to A k N

d
A a a a a ÎR

  



 

where ( )f A  is the objective function, A is the vector of variables (we will see in the next 

sections 
iA a ) and 

k
  represents the constrains of the problem, where 

c
N is the number of 

constraints. In structural optimization problems, the main goal is usually to minimize the 

weight of the structure by considering design constraints. Design variables are selected as the 
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cross sections of elements, which are usually selected from discrete categories. Therefore, the 

optimization problem is defined by using the following equation. 

(2) 
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in which W(A) is the structure weight, ,j jS  and jL are cross-section, material density and 

length of the jth elements, respectively. 
d

s  and j

  are constraints conditions for steel 

frames.  
d

s  is the displacement violation and 
j

 is stress violation based on LRFD 

requirements in AISC specification (Equation H1-1) [38]. 
s and u  denote the displacement 

of the sth story and allowable displacement equal to (story height)/300. Pu is the required axial 

force, Mu represents the required bending moment, Pn denotes the nominal axial capacity, and 

Mn is the nominal bending capacity.
c
 and 

b
 are resistance factors (

c
 =0.9 for tension and 

0.85 for compression, and 
b
 =0.9 for flexure).  Ne represents the number of members and Nn 

denotes the number of stories. Dj is the available profile list, and t is the total number of 

profiles. 

The penalty method is a systematic method for controlling and limiting the error due to 

violation of the constraint, which is formed using the Riley-Ritz method. The penalized 

weight is calculated based on the penalty function as follows: 

(3) 2

1( ) ( )[1 ]A W A
    

where ( )A  is the penalized weight, 𝜂 is the constraint violation function, and  𝜀
1
 and 𝜀

2
 

denote the coefficients of the penalty function. The violation of the constraint is defined as: 

(4) 
en NN

d

s j

s j
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and the penalty value   is equal to: 

(5) 
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3. Standard Adolescent Identity Search Algorithm (AISA) 

The Adolescent Identity Search Algorithm (AISA) [39] was developed in 2020 by Bogar 

and Beyhan for electronic optimization problems. This algorithm is a population-based 

method that was inspired by how adolescent identity is formed. Adolescence is a specific 

period of life that is different from other stages of growing up in terms of its characteristics 

and conditions. One of these important characteristics is the adolescent's desire to gain 

independence. The adolescent tends to display his abilities and forces and prove his power 

and ability to those around him. He wants to act alone and not rely on those around him as 
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much as he can, especially his parents. One of the causes of defiance, stubbornness, and 

aggression by adolescents is seeking independence. Independence provides the initial basis 

for his entry into society and prepares him for the acceptance of social responsibilities. 

However, its incorrect orientation will be accompanied by problems for him and those around 

him. During this period, the adolescent is no longer considered a child and has not yet fully 

matured. He is on the border between childhood and adulthood and faces the pressures and 

expectations of both periods. During this period, the adolescent becomes very worried and 

anxious, so he cannot organize the various aspects of his personality in a properly 

coordinated and acceptable way. Adolescence is one of the most important and sensitive 

periods of human life because in this period, adolescents, to find their identity, take a step 

towards forming a self-reliant personality. There are many questions in the teenager's mind 

that if he cannot find the right answer to them, he may find a shaky and possibly dual 

personality. Identity is a combination of different behaviors, thoughts, abilities, and beliefs 

that a person acquires during adolescence. Family environment and how parents interact with 

adolescents in this period play an important role in the development and formation of the 

adolescent’s personality. Regardless of norms and structures, peer groups also play an 

important role in adolescent development because adolescents spend most of their time at 

school, on the playground, etc. with this group. Experiences gained in the peer group may 

have a positive or negative effect on adolescents, which has an important role in self-

awareness, self-esteem, and the ability to make decisions and take responsibility in an 

environment where adults do not exist. Modeling the process of adolescent identity formation 

is a complex and costly task because many factors are influential in this regard. Briefly, the 

adolescent identity search algorithm can be defined as follows: 

The adolescent's identity is shaped by imitation. This imitation originates from a pattern 

that probably has certain personality traits in the adolescent. These characteristics that formed 

the adolescent's identity are obtained by observing and arguing behaviors and social 

feedback. Sometimes adolescents may lose their social status due to destructive factors and 

undesirable environmental conditions. These states are modeled mathematically as follows 

[39]: 

* 4
1

2 4

3
4

1
1: 3( ),

1 22 : ( ),
3 3

( ), 23:
3

i i

i i p rm

new

i i q

rcase a r a a

a case a r a a r

a r a acase r

 
 


    
  



 (6) 

where ia  represents the identities of person i, and other parameters are defined in next 

section in detail. 

The AISA algorithm does not take into account the fact that adolescents generally desire to 

break norms and break social rules. Therefore, the probability that his personality traits 

decline is less than other presented rules. This is why the AISA algorithm considers the 

selection of each of the three cases equally (Equation (6)). To modify this issue, some 

changes have been made to the formulation of the problem, which is described in detail. 

4. Modified Adolescent Identity Search Algorithm formulation (MAISA) 

This algorithm works similarly to adolescent identity development. As the adolescent takes 

the people who behave better within the norms of society as a model, this algorithm also 

finds the most optimal solution among the multitude of answers. If no adolescent achieves the 

desired values, the optimization problem would be considered unsolvable, and this is a 
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possible situation of not being able to solve the social problems of the society [39]. In the 

proposed method, by modifying the balance between the two components of exploration and 

exploitation using a control parameter, the balance between global search (exploration) and 

local search (exploitation) is increased, which reduces the cost of analysis. 

The MAISA method can be summarized in five main steps, which are as follows: 

Step 1: In this method, similar to other optimization methods, uniform random population 

production is used (Equation (7)) to create the initial population, which is quantified by using 

the objective function. 

(7) 
(0,1) ( ), 1,2,..., ; 1,2,...,i

j j j j ja L r U L i N j n     

 

where, a
i
j represents the jth characteristic of the person i. N represents the number of people, n 

represents the number of design variables, and L and U represent the lower and upper bounds 

of the design variable, respectively. r(0,1) is a random number between 0 and 1. 

Step 2: In this step, new personalities are formed and if the new features are better than the 

previous ones, they will be replaced in the next steps. Although each person's personality is 

affected by numerous factors, in this algorithm it is assumed that each person randomly 

chooses one of the three important states mentioned in the previous sections. Selecting any of 

these three cases requires obtaining a control parameter that is proportional to the number of 

current iteration to max iteration, starting with small values and increasing non-linearly as the 

number of iteration increases. Higher CP values increase the local search capability and 

convergence rate, while lower CP values increase the global search capability and decrease 

the convergence rate. 

(8) 
0.25

sin( )
2 2

iter

iter

iter Max
CP Ep

Max

 
  

 
in this relation, Ep is a control parameter that determines the maximum value of CP and its 

value is experimentally considered to be 0.5. 

Case 1: If a random number called r4 is greater than CP, the new properties of the person are 

generated according to Equation (9): 

(9) *

1( )i i i

newa a r a a  
 

in the above relation, r1 is a random number in the range [0,1] and a
*
 is the best identity that 

exists among individuals, which is defined as follows: 

(10)  * ˆ, arg min 1,2,..., ,
jm j l

j j l ja a m f l N j   
 

where ˆ l

jf is the jth characteristic of the person l that exists in the F̂  matrix. To create this 

matrix, the following procedure is performed: 

The matrix of identities (H) is normalized and becomes the Ĥ  matrix. 

(11) 

1 1 1

1 2

2 2 2

1 2

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ
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n

n

N N N

n N n

a a a

a a a
H

a a a


 
 
 
 
 
  

 

Using Chebyshev polynomials, the Γ regressor matrix is defined as follows: 
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(12) 
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Then, the weight vector can be calculated by Equation (13). 

(13) 
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1 1 1 ( )
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Finally, the relative values of the fitness function are obtained through Equation (14) as 

follows: 

(14) ˆ i i i
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(15) 
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in which, 
i

j  is the sub-regressor vector of the ith person and the jth identity. 

Case 2: If the random number r4 is in the interval 40.5CP r CP  , the intended person will 

model the best person and try to make his / her character look like the best person. The new 

identities of the individual are produced according to Equation (16): 

(16) 2( )i i p rm

newa a r a a  
 

where, a
rm

 is the attribute of the best person and a
p
 is the attribute of the pth person (provided 

that p ≠ rm). 

Case 3: Sometimes, the adolescent suffers from behavioral and moral deviations due to 

destructive factors, which causes his personality to decline. In algorithm, this case occurs 

when r4 is less than 0.5CP and the new identity is generated using Equation (17): 

(17) 3( )i i i q

newa a r a a  
 

in which, a
q
 is a vector of negative properties which is defined as follows: 

(18) 1[1 1 1]q u T

na a 
 

in this relation, a
u
 is a negative identity that is randomly selected. 

In summary, one of the following three cases occurs for each person: 

(19) 

*

1 4

2 4

3 4

1: ( ),

2 : ( ), 0.5

( ), 0.53:

i i

i i p rm

new

i i q

case a r a a r CP

a case a r a a CP r CP

a r a a CP rcase


  


    
   


 

Step 3: If a person violates the feasible search space, at this stage, by generating a new 

random feature, the person is returned to the allowed environment. 

Step 4: In this step, the quality of the new character created in the second step is compared 

with the previous values of each person and if it is better, it will replace them. 
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Step 5: In the last step, if the termination criterion rule is established, the algorithm will 

end and the best person will be introduced as the answer. In the MAISA algorithm, similar to 

most existing algorithms, the maximum number of iterations of the algorithm is selected as 

the final criterion. 

The flowchart shown in Fig. 2 summarizes how the MAISA algorithm works. 

 

 

 

 

5. Practical examples 

In the following section, several benchmark steel frames are examined. For each of these 

examples, 20 independent runs were performed. It should be noted that in 1-bay, 8-story steel 

frame, 3-bay, 15-story steel frame, and 3-bay, 24-story steel frame, the values of  𝜀1 and 𝜀2  

are considered to be 1 and 2, respectively. In the following section, the results obtained are 

compared with other similar methods in tables to better compare the results obtained from 

different algorithms. The details of each of the cases are discussed in more detail in the next 

parts. 

5.1. 1-bay, 8-story steel frame 

The 8-storey steel frame is under lateral load as shown in Fig. 3. The modulus of elasticity 

of steel is 200 Gpa and its specific gravity is considered to be 76.8 3
kN

m
. The members of 

this 2D frame are divided into 8 groups, the sections of which are selected from 267 W-

shaped rolled sections according to AISC. The only constraint is the displacement of the roof 

floor, which is limited to 5.08 cm. 

 By comparing the results obtained from solving the frame of the 1-bay, 8-story frame, the 

MAISA algorithm is in the first place in the comparison. This algorithm has reduced the 

structure weight by almost 1.92% compared to the AISA algorithm (Table 1). Due to the lack 

of results of mean weight and standard deviation of other algorithms, it is not possible to 

make an accurate comparison in these cases, but the AISA algorithm has performed better 

than MAISA by more than 1.34% in the average weights. Fig. 4 shows the optimal response 

of each run, which indicates their slight dispersion. Fig. 5 is a diagram of the convergence 

history of the MAISA and AISA method. 

5.2 3-bay, 15-story steel frame 

The 3-bay, 15-story frame is considered shown in Fig. 6 is considered here. The frame 

consists of 105 members, whose sections are selected from all 267 rolled W-shaped sections. 

The frame is divided into 11 groups, including one group for the beams, 5 groups for the side 

columns, and 5 groups for the middle columns. In this example, the resistance and 

displacement constraints are considered based on the requirements of AISC-LRFD, and the 

maximum lateral displacement of the last floor is limited to 23.5 cm. The unbraced length for 

each beam is considered to be one-fifth the length of the span length and it is assumed that 

the columns are non-braced along their length. The properties of the materials are equal to E 

= 200 GPa and Fy = 248.2 MPa. 
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The MAISA algorithm has the best performance compared to the other methods listed in 

Table 2. This algorithm has reduced the weight of the structure by almost 0.53% compared to 

the TLBO method and reduced the weight of the structure by 0.97% compared to AISA, 

which is in fourth place in terms of the best answer. Also, by examining the average of the 

answers obtained from 20 independent runs, the MAISA algorithm obtained about 0.41% 

lower average than the AISA algorithm which is in second place in this comparison. The 

standard deviation is an indicator that measures how the data is scattered in a collection by its 

average. A low standard deviation indicates the stability of the answers of an algorithm. 

Therefore, smaller standard deviation values of the proposed algorithm compared to other 

ones indicate that the answers obtained from this algorithm are more stable (Fig. 7). 

Fig. 8 shows the optimal answer for each run. As mentioned, the proposed method has high 

stability. Therefore, a low scatter of points proportional to the mean line and low standard 

deviation is not far from expectation. By comparing the convergence diagram in fig. 9, it can 

be seen that the MAISA algorithm has reached the optimal solution faster. Drift is defined as 

the ratio of the difference between the above and below displacements of a floor to the height 

of that floor. Because excessive displacement of the structure causes the destruction of non-

structural components and also disturbs the peace of its inhabitants, the regulations limit its 

amount.  Fig. 10 shows the drift of the optimal answer to the allowable drift per floor, most of 

which belongs to the 7th floor with value of 0.0037. The stress ratios of the members 

obtained from the best answers are given in Fig. 11. The highest and lowest stress ratios 

occurred in members 4 and 101, respectively, with the values of 1.00 and 0.16. 

5.3 3-bay, 24-story steel frame 

In the third example, a steel frame with 3 bays and 24 stories, as shown in Fig. 12, is 

examined. This frame consists of 168 members and 20 groups, with four groups for the 

beams and 16 groups for the columns. The side columns are separated from the middle 

columns. In this example, the cross-section of the columns is selected from 37 W-14 sections 

and the cross-section of the beams is selected from all W-shaped sections. Similar to the 15-

story frame, the effective length factors of the members are calculated as Kx ≥ 0 for a sway-

permitted frame and the out-of-plane effective length factor is specified as Ky = 1.0. The 

resistance and displacement constraints are based on AISC-LRFD requirements. The Material 

properties are equal to E = 29732 ksi and Fy = 33.4 ksi. 

The MAISA algorithm has the lowest weight compared to the other methods in Table 3. 

Also, by examining the average of the answers obtained from 20 independent runs, the 

MAISA algorithm obtained about 1.29% lower average than the AISA algorithm. By 

comparing the standard deviations in Fig. 13, the better performance of the proposed method 

can be seen. Fig. 14 shows the results of each of the 20 runs. This graph shows the small 

scatter of optimal answers to the mean weight ratio, which somehow shows the standard 

deviation. The low number of obtained answers in this example indicates the high ability of 

this method to solve optimization problems with a higher number of variables. Also, the 

MAISA algorithm has converged faster than the AISA method, which can be seen in Fig. 15. 

Fig. 16 shows the drift of each floor, where the highest value belongs to the 13rd and 16rd 

floors and it’s equal to 0.00587. Fig. 17 shows the stress ratio for each of the 168 frame 

members. Due to the grouping of members, the stress ratio scatter is seen in this graph. The 

highest stress ratio is in element 14 with a ratio of 0.94 and the lowest stress ratio is in 

element 167 with a value of 0.06. 
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6. Discussion and conclusion 

In this study, a method to improve the performance of the adolescent identity search 

algorithm was presented. The main purpose of this article was to balance the local search 

with the global search. To improve the way particles are searched in the global space or 

around themselves, a control parameter was introduced according to which, as the number of 

iterations increases, the particles move from the global space search to the local one. To 

evaluate the effectiveness of the proposed method, three practical problems were solved. The 

results of the optimal designs obtained from this algorithm showed that this method can be 

used as an ideal algorithm in the optimal design of structures. As shown in the graphs, the 

stories’ drift values were close to the maximum allowable values and the member stress ratios 

had values close to one, which demonstrates the considerable ability of the proposed method 

for solving optimization problems. This method was compared with the AISA algorithm and 

some similar metaheuristic algorithms. The results showed that, although both AISA and 

MAISA methods had a good performance in optimizing the weight of structures the MAISA 

showed better performance. Also, by examining the obtained average weights, it was 

concluded that the MAISA algorithm has high reliability because the obtained average weight 

was less than the average weight of other compared methods. For investigating the stability 

of the obtained results, the standard deviation of these methods was compared. Lower 

standard deviation results meant that the answers of this algorithm compared to the other ones 

are more stable. Despite the positive aspects mentioned, it is suggested to increase the 

convergence rate in future works by adding new ideas to the algorithm to reduce the 

computational cost. 
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Fig. 18: a) 3D view of the search space, b-g) how people search in the defined search space 
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Fig. 19: The MAISA flowchart 
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Fig. 20: Topology, member groups and loading of the 1-bay, 8-story steel frame 

 

Fig. 21: The optimal answer of the 1-bay, 8-story frame in each independent run 
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Fig. 22: The convergence diagram of the 1-bay, 8-story frame 

 

 

Fig. 23: Topology, member groups and loading of the 3-bay, 15-story steel frame 
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Fig. 24: The standard deviation values of the compared algorithms 

 

Fig. 25: The optimal answer of the 3-bay, 15-story frame in each independent run 
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Fig. 26: The convergence diagram of the 3-bay, 15-story frame 

 

Fig. 27: The drift ratio of each story in the optimal solution 
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Fig. 28: The stress ratio of each member in the optimal solution 
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Fig. 29: Topology, member groups and loading of the 3-bay, 24-story steel frame 
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Fig. 30: The standard deviation values of the compared algorithms 

 

 

Fig. 31:The optimal solution of the 3-bay, 24-story frame in each independent run 
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Fig. 32: The convergence diagram of the 3-bay, 24-story frame 

 

 

Fig. 33: The drift ratio of each story in the optimal solution 
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Fig. 34: The stress ratio of each member in the optimal solution 
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Table 1: Performance comparison for the 1-bay, 8- story frame. 

Group No. 
EBA 

[40] 

PSOPC 

[41] 

PSOPC+ACO 

[41] 

ES-DE 

[42] 

Present work 

AISA MAISA 

1 W18×35 W18×35 W18×35 W18×40 W18×35 W18×40 

2 W16×31 W14×26 W16×31 W18×35 W14×34 W18×35 

3 W16×31 W16×26 W14×22 W14×22 W14×34 W14×22 

4 W12×14 W14×26 W12×16 W12×14 W12×16 W12×14 

5 W18×35 W24×62 W21×48 W18×46 W16×26 W18×35 

6 W18×35 W18×35 W18×40 W18×35 W16×45 W18×35 

7 W18×35 W16×31 W16×31 W18×35 W18×35 W18×35 

8 W16×31 W12×30 W16×36 W12×19 W10×33 W14×22 

WBest (kN) 31.86 34.21 32.29 31.77 31.70 31.09 

WAvg. (kN) N/A N/A N/A 33.65 32.30 32.74 

Std N/A N/A N/A 2.32 0.29 0.62 

 

Table 2: Performance comparison for the 3-bay, 15-story frame. 

Group No. 
ES-DE 

[42] 

TLBO 

[43] 

EWOA 

[44] 

SSOA 

[45] 

Present work 

AISA MAISA 

1 W18×106 W12×96 W14×99 W14×90 W21×111 W24×104 

2 W36×150 W27×161 W27×161 W36×170 W18×143 W24×146 

3 W12×79 W27×84 W27×84 W27×84 W12×79 W18×76 

4 W27×114 W24×104 W24×104 W27×114 W14×109 W26×114 

5 W30×90 W10×68 W21×68 W24×68 W10×77 W12×72 

6 W10×88 W30×90 W18×86 W18×86 W24×104 W14×90 

7 W18×71 W8×48 W21×48 W21×48 W8×67 W18×60 

8 W18×65 W24×68 W14×68 W14×68 W18×86 W18×60 

9 W8×28 W8×28 W8×31 W8×31 W8×28 W5×19 

10 W12×40 W10×39 W10×45 W10×39 W12×40 W14×43 

11 W21×48 W21×50 W21×44 W21×44 W21×44 W21×44 

WBest (kN) 415.06 390.42 392.00 393.23 392.19 388.37 

WAvg. (kN) 438.26 423.67 403.99 407.89 398.31 396.68 

Std 14.65 11.35 N/A 12.52 4.17 5.94 
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Table 3: Performance comparison for the 3-bay 24-story frame. 

Group No. 
ACO 

[34] 

HS 

[46] 

CBO 

[47] 

ES-DE 

[42] 

Present work 

AISA MAISA 

1 W30×90 W30×90 W27×102 W30×90 W30×90 W30×90 

2 W8×18 W10×22 W8×18 W21×55 W24×62 W24×55 

3 W24×55 W18×40 W24×55 W24×48 W24×55 W21×44 

4 W8×21 W12×16 W6×8.5 W10×45 W24×162 W18×158 

5 W14×145 W14×176 W14×132 W14×145 W14×159 W14×176 

6 W14×132 W14×145 W14×120 W14×109 W14×159 W14×120 

7 W14×132 W14×176 W14×145 W14×99 W14×90 W14×132 

8 W14×132 W14×132 W14×82 W14×145 W14×109 W14×99 

9 W14×68 W14×132 W14×61 W14×109 W14×48 W14×61 

10 W14×53 W14×109 W14×43 W14×48 W14×53 W14×48 

11 W14×43 W14×109 W14×38 W14×38 W14×34 W14×43 

12 W14×43 W14×82 W14×22 W14×30 W14×34 W14×30 

13 W14×145 W14×82 W14×99 W14×99 W14×90 W14×90 

14 W14×145 W14×61 W14×109 W14×132 W14×90 W14×120 

15 W14×120 W14×74 W14×82 W14×109 W14×109 W14×90 

16 W14×90 W14×48 W14×90 W14×68 W14×68 W14×82 

17 W14×90 W14×34 W14×74 W14×68 W14×82 W14×74 

18 W14×61 W14×30 W14×61 W14×68 W14×48 W14×53 

19 W14×30 W14×22 W14×30 W14×61 W14×34 W14×38 

20 W14×26 W14×22 W14×22 W14×22 W14×26 W14×22 

WBest (kip) 220.47 214.86 215.87 212.39 207.79 207.60 

WAvg. (kip) 229.56 222.62 225.07 N/A 215.21 212.43 

Std 4.56 N/A N/A N/A 4.37 3.29 

 


