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Abstract. Surface waves dispersion is studied in a two-layer half-space consisting of a
�nite liquid layer overlying a transversely isotropic solid half-space. A couple of complete
potential functions are utilized to uncouple the equation of motion of the transversely
isotropic solid along with a displacement potential for the liquid. The frequency equation
and velocity dispersion curves are developed. Several solid materials are considered for
the bed, and both phase and group velocity curves are calculated. Higher modes are also
discussed and the respective curves are plotted. Various special cases are considered by
letting the liquid layer depth take zero value, to form a solid half-space, or very large values
to form a full-space bi-material. Moreover, an isotropic bed material can be obtained as a
special case by appropriately setting the respective elastic constants. Reduced frequency
equations and numerical results are derived for each case to con�rm the results with existing
ones.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Propagation of elastic surface waves in various media
has been of importance and interest in di�erent �elds of
science such as seismology, earthquake engineering, ma-
terial engineering, geophysical studies, etc. The media
consisting of a liquid layer lying over an isotropic solid
half-space has been studied by scientists interested in
�elds such as ocean engineering, etc. [1-3].

However, in a wide range of cases, there are
observations revealing the existence of anisotropy in
Earth's crust. It is believed that the fact of following
a preferred pattern instead of random orientations by
materials depositing in the water and also existence of
vertically aligned microcracks result in the transverse
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isotropy of the geologic materials [4]. This anisotropy
can considerably a�ect the dispersive properties of
surface waves. Studying wave propagation in trans-
versely isotropic solids is the research subject of many
investigators due to its importance in di�erent �elds of
science and technology. Stoneley [5] was the �rst to
point that transverse isotropy signi�cantly inuences
the wave propagation in a medium in comparison with
isotropic one. Later, elastodynamics of transversely
isotropic media was subsequently studied by Synge [6],
Buchwald [7], and Payton [8].

Rahimian et al. [9] presented an e�cient ana-
lytical formulation to obtain the response of a three-
dimensional transversely isotropic half-space to a time-
harmonic surface loading. Khojasteh et al. [10]
extended the previous work to present explicit ex-
pressions for the three-dimensional dynamic Green's
functions in a transversely isotropic half-space and
investigated the wave propagation. They continued the
work for a two-layer half-space [11] as well. Also, Kho-
jasteh et al. subsequently studied wave propagation in
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transversely isotropic bi-materials, tri-materials, and a
multilayered half-space [12-14].

Surface waves dispersion in a model of a liquid
layer overlying a transversely isotropic half-space has
been investigated in some papers. Abubakar and
Hudson [15] studied the dispersive properties of sur-
face waves in such a system in the two-dimensional
case. Sharma et al. [16,17] obtained the frequency
equation of a three-layer model consisting of a liquid
layer lying over poroelastic and anisotropic layers.
Sharma [18] also tackled the dispersion of Stoneley
waves in an oceanic crust model. In addition to
Kumar and Miglani [19], Kumar and Kumar [20]
solved the problem for the proposed oceanic crust
models. In this paper, the dispersive characteristics
of a three-dimensional earth crust model, consisting
of a homogeneous transversely isotropic elastic me-
dia overlaid by a homogeneous compressible liquid
layer, are investigated utilizing the potential method
presented by Rahimian et al. [9] and extended by
Khojasteh et al. [10]. The velocity dispersion curves of
surface waves are plotted. Arrival times of the waves
are distinctly dependent on the elastic properties of
the bed. Analyzing this phenomenon to realize the
earth crust's characteristics by reverse calculation is
of signi�cant importance in marine seismology and
underground geophysical explorations. The formula-
tion can also be utilized to derive Green's functions of
stress and displacement �elds for various load types
in such a system which is applicable to earthquake
engineering.

2. Statement of the problem and governing
equations

The geometry of the system and the coordinate axes
selected for the problem are shown in Figure 1. For
the homogeneous transversely isotropic half-space, the
time-harmonic equations of motion are expressed as [9]:

Figure 1. Geometry of the system.
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where the time factor exp(i!t) is suppressed. In order
to uncouple these equations, a couple of potential func-
tions introduced by Eskandari-Ghadi [21] are applied.
These two potential functions, F and �, are related to
displacement components ur, u�, and uz as:
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Rewriting the equation of motion (Eq. (1)) in terms
of the potential functions yields to the two separate
partial di�erential equations as:�
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where:

s0 =
1p�2

: (8)

Note that s1 and s2 are not zero or pure imaginary
numbers with respect to the positive de�niteness of the
strain energy function [22]:

c33c44s4 +
�
c213 + 2c13c44 � c11c33

�
s2 + c11c44 = 0:

(9)

The two real roots of this equation can be easily
obtained since no unknowns of odd order exist in
Eq. (9). Hence s1 and s2 are obtained by Eq. (10) as
shown in Box I. With respect to the angular direction,
Fourier series expansion is now applied as follows:

[F (r; �; z); �(r; �; z)] =
1X
�1
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(11)

Also, with respect to the radial direction, mth order
Hankel transform may be expressed as:h
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Applying Hankel transform and Fourier series expan-
sion, one may arrive at the two following ordinary
di�erential equations for transformed components of
and F and � as [9]:
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The unknown functions Am, Bm, Cm, Dm, Em, and
Fm will be determined from the boundary conditions.

s1; s2 =

s
�(c213 + c13c44 � c11c33)�p(c213 + c13c44 � c11c33)2 � 4c33c11c244

2c33c44
(10)

Box I
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�1, �2, and �3 are multi-valued functions and are made
single-valued by specifying the branch cuts emanating
from the branch points ��1 = �!p�s=c11, ��2 =
�!p�s=c44, and ��3 = �!p�s=c66 on the complex �-
plane, such that the real parts of �1, �2, and �3 remain
non-negative for all values of � [10]. The positive sign
of these branch points denotes the wave numbers of
the body waves, P, SV, and SH, respectively. Unlike
an isotropic media, transverse isotropy of the medium
causes di�erent velocities for SV and SH waves in this
kind of solids [5]. The Fourier components of the
transformed stress and displacement can be expressed
as [10]:
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For the compressible liquid, the governing equation of
time-harmonic motion in cylindrical coordinate system
is [1]:

K
�l
r2'(r; �; z) = �!2'; (19)

where ', K, and �l are the displacement potential,
bulk modulus, and density of the liquid, respectively.
The displacement components and pressure can now be
expressed in terms of ' as:
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Similar to the solid substratum, the procedure of
Fourier series expansion is followed with respect to
the angular direction, and applying mth-order Hankel
transform is followed with respect to the radial direc-
tion:
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where the inverse transform can be used to return to
the real domain as:
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The same is followed for stress and displacement com-
ponents. The respective ordinary di�erential equation
of motion in terms of ~'mm can be obtained as:�
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A general solution to this equation is:
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where:
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Here, cl =
p
K=�l is the velocity of the compressional

wave in the liquid, and Sm and Rm will be calculated
from the boundary conditions, where Rm is associated
with the amplitude of the transmitting wave from
the bottom boundary, and Sm is associated with the
reecting wave amplitude from the free surface of the
liquid.

Fourier factors of stress and displacement compo-
nent in the transformed mode are written as:
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3. Boundary conditions and frequency
equation

The boundary conditions for the problem under con-
sideration are given below. The expressions provided
in Eqs. (18) along with Eqs. (27) are utilized. The
coe�cients Am, Cm, and Em are omitted according to
the radiation condition.

The free surface condition requires the vanishing
of the liquid pressure, P :
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�zz(z = 0) = 0: (28)

This imposes:

Sm(�) = �Rm(�): (29)

At the interface of the solid and liquid, i.e. at z = h,
the boundary conditions imply continuity of the normal
component of the displacements of the two media:
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Meanwhile, since the liquid does not support shear
stresses, the two tangential stress components, �z� and
�rz, vanish at the interface:

�z�(z = h) = 0; (32)

�rz(z = h) = 0: (33)

These two conditions yield to the following equations,
respectively:�
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The normal stress continuity is preserved at the solid-
liquid interface:
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Two separate sets of equations for the �ve remaining
unknown functions, Bm, Dm, Fm, Sm, and Rm, are
now provided. These equations constitute the matrix
given by Eq. (38) as shown in Box II, where:

�i = (�3 � �2)�2
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c66
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i

�
�i; i = 1; 2: (39)

The nontrivial solution is obtained when the determi-
nant of the matrix vanishes, that is:

det[A] = 0: (40)

The expression for �m is separated from the other
unknowns and reduces to �3 = 0. According to
the assumed non-viscos nature of the liquid, no Love
wave is expected to appear at the interface which
is mathematically observed here, since no roots are
obtained in the expression given for �m, except one
determining the SH wave-number.

Eq. (40) provides the frequency equation with re-
spect to the two-layer half-space; it relates �, the wave-
number, to ! which is the angular frequency; it presents
the dispersive properties of the system. For any value
of !, there is at least one root, �R > max(��1 ; ��2), as-
sociated with the Rayleigh wave-number which satis�es
the frequency equation. Dependent on the liquid layer

A =

2664 e��1h#1 e��2h#2 �4e��4h ��4e��4h

e��1hc33�1 e��2hc33�2 ��s!2e��4h ��s!2e��4h

2�c44�1e��1h 2�c44�2e��2h 0 0
0 0 1 �1

3775 : (38)

Box II
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depth, frequency of the excitations, and properties
of the liquid and bed material, there might be other
roots which are associated with the higher modes.
Notwithstanding, only a single root may exceed the
value !=cl which will be associated with the Stoneley-
or Scholte-wave-number. If the compressional wave
velocity of the liquid is higher than the SV wave
velocity, the only possible root will be related to the
Stoneley wave and no higher modes will appear.

4. Special cases

To draw a comparison between the results obtained
here with some existing ones, several special cases of
the problem are now considered:

- Case 1. If �h tends to in�nity or equivalently the
liquid layer depth takes very large values compared
to the wavelength, the velocity of the surface waves
tends to the Stoneley - or Scholte-wave velocity,
propagating in a bi-material full space consisting of
liquid and transversely isotropic solid half-spaces.
This results in the wave-number, �st, of Stoneley
wave showing exact agreement with the frequency
equation presented by Abubakar and Hudson [15]:

�l!2(�2#1 � �1#2) + c33�4(�2�1 � �1�2) = 0: (41)

- Case 2. If �h tends to zero, meaning that the
wave-length becomes very large in comparison to
the depth of the liquid layer, the frequency equation
reduces to that of a Rayleigh wave for a transversely
isotropic solid half-space developed by Khojasteh et
al. [10], i.e. �1�2 � �2�1 = 0.

- Case 3. If the solid material is considered to
be isotropic, the wave-numbers associated with the
body waves become �P = !

p
�s=(2�+ �) and �SH =

�SV = !
p
�s=�, and the frequency equation reduces

to the equation developed by Ewing [3] for an
isotropic bed material underlying a liquid layer.

- Case 4. If the solid material is reduced to an iso-
tropic medium and �h tends to zero, the Rayleigh
wave velocity for isotropic half-space is obtained. As
a more speci�c case, where � = �, the well-known
function for Rayleigh wave velocity is deduced [10]
as: cR = 2p

3+
p

3

q
�
�s : Also, if the solid is simpli�ed

to an isotropic case and �h becomes very large, the
interface Stoneley wave is obtained for a full-space
bi-materials system consisting of liquid and isotropic
solid half-spaces. These special cases are numerically
veri�ed in the following section.

5. Numerical results and discussion

The derived frequency equation in the previous section
implicitly expresses the wave-number, �, in terms of !,

Table 1. Material properties.

Material Ev=Eh �h �c11 �c12 �c13 �c33 "(%)

1a 1 0.25 3.00 1.00 1.00 3.00 0
2b 2 0.33 3.00 1.12 1.03 5.51 22.78
3b 3 0.17 2.65 0.52 0.79 7.91 33.25
4b 4 0.25 2.72 0.72 0.86 12.93 39.48

aIsotropic; bTransversely isotropic, �s = 2500 kg/m3,
�cij = cij=c44, and c44 = 10 GPa.

which provides the surface waves velocity. By means of
a computer program written in Mathematica, the roots
of the equation are calculated and the dispersion curves
are obtained consequently. The non-dimensional phase
and group velocities of the surface wave are plotted
versus another dimensionless variable,  = �ncnh=2�cl,
in semi-logarithmic �gures. Four solid materials, whose
elastic properties are presented in Table 1, are consid-
ered as the underlying medium. The elastic constants
are normalized with respect to c44. In this table, the
materials are sorted with respect to the anisotropy
parameter, ", which is de�ned as follows [23]:

" =
c11 � c33

2c33
� 100: (42)

Material 1, shown in Table 1, is an isotropic material;
hence, its anisotropy parameter is equal to zero. In all
con�gurations, the liquid is taken to be water with the
properties: �l = 1000 kg/m3 and K = 2:2 GPa.

The positive de�niteness of the strain energy is
considered when de�ning the material. The elasticity
constants should comply with the requirements be-
low [21]:

c11 > jc12j; (c11 + c12)c33 > 2c213; c44 > 0: (43)

The phase velocity associated with the �rst mode, and
the next three higher modes for systems consisting
of half-space of kind Materials 2 and 4 (Table 1)
underlying a water layer are provided in Figures 2

Figure 2. Phase and group velocities for the �rst four
modes of Material 4 underlying a water.
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Figure 3. Phase and group velocities for the �rst four
modes of Material 2 underlying a water layer.

Figure 4. Phase velocity of the �rst modes for four bed
materials as the bed.

and 3. The results show exact agreement with those
presented by Abubakar and Hudson [15]. It can be
observed that the higher modes take a maximum value
of cuto� phase velocity equal to the velocity of SV
wave propagation in the solid substratum, i.e. cSV =p
c44=�s. Nevertheless, for the �rst mode, it takes the

Rayleigh wave velocity for the respective vacuum-solid
half-space system.

The dimensionless phase velocities of the �rst
modes of three transversely isotropic materials along
with one isotropic material underlying a �nite water
layer are shown in Figure 4. It can be observed
that the curve for the isotropic material is in exact
agreement with the results presented by Ewing et
al. [3]. An isotropic solid can be degenerated from
a transversely isotropic one appropriately setting the
elasticity constants as c11 = c33 = � + 2�, c12 =
c13 = �, and c44 = c66 = �. In an isotropic material,
�1 =

p
�2 � �2

P , and �2 = �3 =
p
�2 � �2

S .
As it is apparent in Figures 2, 3, and 5, all values

of the phase velocities for higher modes fall above the
value cl, whereas, for the normal mode, there are values
of the velocity less than c1 which tend to the asymptotic
value of Stoneley or Scholte wave velocity. Stoneley

Figure 5. Group velocities of the �rst modes for four bed
materials as the bed underlying a layer of water.

waves can always arise in the systems of contacting
liquid and solid media. Nevertheless, it should be noted
that in contacting solid layers, the possibility of this
type of surface waves depends on the properties of the
layers [3]. The Stoneley branch of the curve arises in
a higher value of �h as the elastic constants of the
material increase. Normal mode group velocities for
the de�ned materials as the solid half-space are plotted
in Figure 5 for comparison. Unlike the phase velocity,
the group velocity takes a minimum value (Airy phase)
which occurs at a higher �h value in the higher modes.
All the �gures indicate that the velocities of SV wave in
the solid domain and the P wave in the liquid mainly
control the range of the values that the dispersion
curves covers.

6. Summary and conclusion

In this paper, dispersion of generalized Rayleigh waves
is studied in a model of a homogeneous compressible
�nite liquid layer lying over a transversely isotropic
solid half-space. Hankel transform and Fourier series
expansion along with the method of potential functions
are used to deal with the equations of motion. The dis-
persive nature of the surface waves is described through
the derived frequency equation. Various special cases
are studied to con�rm the formulation and numerical
results with the existing solutions. In this regard, both
the mathematical formulation and numerical results
are derived for several simpler half- and full spaces
degenerated from the most general case. The results
are compared and con�rmed with the existing ones.
The �gures clearly show that the material anisotropy
can play an important role in the dispersive characteris-
tics of surface waves. The considerable inuence of the
liquid layer depth relative to the wave-length, as well
as the bed material properties, on the characteristics
of the phenomenon as well as the elastic properties of
the bed can be observed from the �gures presented for
di�erent bed materials. The velocity dispersion curves
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reveal the fact that the di�erence between the velocities
of SV and SH waves in a VTI solid is important for
the lower limit of the velocities of higher modes. As
in this case, the lower limit is the SV wave velocity
which is di�erent from the SH wave velocity. This
indicates the importance of the anisotropy, as the SV
and SH wave velocities may signi�cantly di�er in the
highly anisotropic materials, and hence in the velocity
dispersion curves. Consequently, neglecting the e�ect
of the anisotropy may clearly results in considerable
inaccuracies.

The obtained results can be e�ciently extended
to calculate the elastodynamic response of described
system subjected to dynamic excitations which is being
processed by the authors and can be e�ectively applied
to solve bed-uid-structure problems.

Nomenclature

c Dispersive wave velocity;
cij Elasticity constants;
cl Velocity of compressional wave in the

liquid;
cn nth mode interface wave velocity;
cR Rayleigh wave velocity;
cSV SV wave velocity;
Eh Young's moduli in the direction normal

to the plane of transverse isotropy;
Ev Young's moduli in the plane of

transverse isotropy;
F Potential function;
h Liquid layer depth;
Jm Bessel function of the �rst kind and

mth order;
K Liquid bulk modulus;
kp Dilatational wave-number;
ks Distortional wave-number;
m Hankel integral transform order;
P Liquid dynamic pressure;
r Radial coordinate;
s1; s2 Roots of strain energy function;
t Time variable;
ur Displacement component in r-direction;
uz Displacement component in z-

direction;
u� Displacement component in �-

direction;
" Anisotropy parameter;
� Angular coordinate;
� Lame's constant;
� Lame's constant;

�h Poisson ratio characterizing the e�ects
of horizontal strain on complementary
horizontal strain;

� Hankel's parameter and wave-number;
�R Rayleigh wave-number;
�st Stoneley wave-number;
�n nth Mode wave-number;
�l Liquid density;
�s Solid density;
�ij Stress components;
� Potential function;
! Frequency.

References

1. Stoneley, R. \The e�ect of ocean on Rayleigh waves",
Mon. Not. R. Astro. Soc. Geophys. Suppl., 1, pp. 349-
356 (1926).

2. Haskell, N.A. \The dispersion of surface waves in
multilayered media", Bull. Sesmol. Soc. Am., 43, pp.
17-34 (1953).

3. Ewing, W.M., Jardetzky, W.S. and Press, F., Elastic
Waves in Layered Media, McGraw-Hill Book Com-
pany, INC., New York, Toronto, London (1957).

4. Crampin, S. \Review of wave motion in anisotropic
and cracked elastic media", Wave Motion, 3, pp. 343-
391 (1981).

5. Stoneley, R. \The seismological implications of ae-
olotropy in continental structures", Roy. Astron. Soc.
Mon. Notices, Geophysical Supplement, 5, pp. 343-353
(1949).

6. Synge, J.L. \Elastic waves in anisotropic media", J.
Math. Phys., 35, pp. 323-334 (1957).

7. Buchwald, V.T. \Rayleigh waves in transversely
isotropic media", Q. J. Mech. Appl. Math., 14(4), pp.
293-317 (1961).

8. Payton, R.G., Elastic Wave Propagation in Trans-
versely Isotropic Media, Martinus, Nijho�, the Nether-
lands (1983).

9. Rahimian, M., Eskandari-Ghadi, M., Pak, R.Y.S. and
Khojasteh, A. \Elastodynamic potential method for
transversely isotropic solid", J. Eng. Mech, ASCE,
133(10), pp. 1134-1145 (2007).

10. Khojasteh, A., Rahimian, M., Eskandari, M. and
Pak, R.Y.S. \Asymmetric wave propagation in a
transversely isotropic half-space in displacement po-
tentials", Int. J. Eng. Sci., 46, pp. 690-710 (2008).

11. Khojasteh, A., Rahimian, M., Pak, R.Y.S. and Eskan-
dari, M. \Asymmetric dynamic Green's functions in a
two-layered transversely isotropic half-space", J. Eng.
Mech. ASCE, 134(9), pp. 777-787 (2008).

12. Khojasteh, A., Rahimian, M. and Pak, R.Y.S. \Three-
dimensional dynamic Green's functions in transversely
isotropic bi-materials", Int. J. Solids. Struct., 45, pp.
4952-4972 (2008b).



A. Bagheri et al./Scientia Iranica, Transactions A: Civil Engineering 23 (2016) 2469{2477 2477

13. Khojasteh, A., Rahimian, M. and Eskandari, M.
\Three-dimensional dynamic Green's functions in
transversely isotropic tri-materials", J. Math. Model.,
37, pp. 3164-3180 (2013).

14. Khojasteh, A., Rahimian, M., Eskandari, M. and Pak,
R.Y.S. \Three-dimensional dynamic Green's functions
for a multilayered transversely isotropic half-space",
Int. J. Solids. Struct., 48, pp. 1349-1361 (2011).

15. Abubakar, I. and Hudson, J.A. \Dispersive properties
of liquid overlying an aelotropic half-space", Geophys.
J. Roy. Astr. Soc., 5, pp. 217-229 (1961).

16. Sharma, M.D., Kumar, R. and Gogna, M.L. \Surface
wave propagation in a liquid saturated porous solid
layer overlying a homogeneous transversely isotropic
half-space and lying under a uniform layer of liquid",
Int. J. Solids. Struct., 127, pp. 1255-1267 (1991).

17. Sharma, M.D., Kumar, R. and Gogna, M.L. \Surface
wave propagation in a transversely isotropic elastic
layer overlying a liquid saturated porous solid half-
space and lying under the uniform layer of liquid",
Pure. Appl. Geophys., 133(3), pp. 523-539 (1990).

18. Sharma, M.D. \Dispersion in oceanic crust during
earthquake preparation", Int. J. Solids. Struct., 36,
pp. 3469-3482 (1999).

19. Kumar, R. and Miglani, A. \Surface wave propagation
in an oceanic crust model", Acta Geophys. Polonica,
52(4), pp. 443-456 (2004).

20. Kumar, R. and Kumar, R. \Analysis of wave motion in
transversely isotropic elastic material with voids under
an inviscid liquid layer", Can. J. Phys., 87(4), pp. 377-
388 (2009).

21. Eskandari-Ghadi, M. \A complete solutions of the
wave equations for transversely isotropic media", J.
Elast., 81, pp. 1-19 (2005).

22. Lekhnitskii, S.G., Theory of Anisotropic Elastic Bod-
ies, Holden-Day, San Francisco (1963).

23. Ben-Menahem, A. and Sena, A.G. \Seismic source
theory in strati�ed Anisotropic Media", J. Geophyis.
Res., 95, pp. 15, 395-15,427 (1990).

Biographies

Amirhossein Bagheri received his BSc degree in
Civil Engineering from Sharif University of Technology
in 2008, MSc degree in Hydraulic Structures Engineer-
ing from University of Tehran in 2011. He is currently
a PhD candidate of Hydraulic Structures Engineering
in University of Tehran, working in �elds such as
wave propagation and soil-water-structure interactions.

Three contributions have been published by him in
international journals and conferences. He was also
ranked 383rd among more than 800,000 applicants
participated in the nationwide undergraduate program
entrance exam. He has published �ve papers in
scienti�c journals and also several conference papers.

Ali Khojasteh, currently an Assistant Professor in
the University of Tehran, received his BSc in Civil
Engineering from the University of Shiraz, Iran in
2003, and MSc and PhD degrees from the University
of Tehran, Iran, in 2005 and 2009, respectively, both
ranked 1st among graduates.

His research interests are computational mechan-
ics, wave propagation in solids/uids, mechanics of
composites, BEM, soil-structure Interaction. He was
ranked 262nd among more than 800,000, 7th among
more than 15000, and 9th among more than 15000
participating in the nationwide undergraduate, MSc
program entrance exams and the Civil Engineering
Olympiad, respectively. More than 15 contributions
have been published in the international journals by
him.

Mohammad Rahimian, currently the Full Professor
of Civil Engineering Department at the University of
Tehran, received his BSc degree in Civil Engineering
from the University of Tehran. He received his PhD
degree in Ecole National Des Ponts et Chaussees,
France, in 1981. His research �elds are earthquake
engineering, wave propagation in anisotropic materials,
soil-structure-uid interaction, etc. He is the former
chair and assistant to chair of the University of Tehran
and the former chair of the Faculty of Engineering of
the University of Tehran. Near 50 papers published in
ISI indexed journals and 6 written or translated books
are of his scienti�c works.

Reza Attarnejad received his PhD degree in 1990
from UPC in Spain focused on computational mechan-
ics on continuous media. He is currently the (full)
Professor of Structural Engineering Division of Civil
Engineering Department at University of Tehran and
also was the former chairman of the division. He
has extensive publications on his specialties which are
uid-structure interaction, structural dynamics, FEM,
applied mathematics, and semi-analytical methods.
He has punlished near 70 papers in the ISI indexed
international journals.




