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Abstract. One of the main di�culties in the development of meshless methods using
the Moving Least-Squares approximation, such as Mixed Discrete Least-Squares Meshless
(MDLSM) method, is the imposition of the essential boundary conditions. In this paper,
the RPIM shape function, which satis�es the properties of the Kronecker delta condition,
is employed in the Mixed Discrete Least-Squares Meshless (MDLSM) method for solving
the elasticity problems. Accordingly, two new MDLSM formulations are proposed in this
article, namely RPIM-based MDLSM and coupled MLS-RPIM MDLSM formulation. The
essential boundary conditions can be imposed directly on the both presented methods. The
proposed methods are used for the solution of three benchmark elasticity problems, and
the results are presented and compared with the available analytical solutions and those of
MLS-based MDLSM formulations. In addition, in each example, di�erent types of nodal
distributions, uniform, and re�ned con�gurations are considered to test the performance
of the presented methods. The numerical tests indicate higher accuracy of the suggested
approaches in comparison with the MLS-based MDLSM method.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

In the past decades, a group of so-called meshless
or mesh-free methods has become one of the hottest
areas of research in computational mechanics. The
main objective of meshless methods is to alleviate the
constrained structure of the mesh and to construct
the approximation entirely in terms of nodes. Various
meshless methods have been introduced and developed
to solve di�erent PDE problems that cannot be easily
treated by traditional Finite Element Method (FEM).

Some of the well-known meshless methods can be
listed here such as Di�use Element Method (DEM) [1],
the Element-Free Galerkin (EFG) method [2], the point
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interpolation meshless method based on radial basis
functions (RPIM) method [3], the Reproducing Kernel
Particle Meshless (RKPM) method [4], Moving Particle
Semi-implicit (MPS) method [5], and Meshless Local
Petrov-Galerkin (MLPG) method [6].

A Discrete Least-Squares Meshless method
(DLSM) was proposed by Arzani and Afshar [7] to solve
the elliptic problems. Unlike the EFG method which
requires background mesh for numerical integration
procedure, this method did not involve any integration
procedure; therefore, it did not need any background
mesh. The method was later extended to simulate
free surface problems [8]. The Collocated Discrete
Least-Squares Meshless (CDLSM) [9,10] method was
later proposed to improve the accuracy of the DLSM
method and used to solve elasticity and 
uid 
ow
problems. A Mixed Discrete Least-Squares Meshless
(MDLSM) method has been recently introduced [11,12]
for an e�ective solution to planer elasticity problems.
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Furthermore, a number of robust, adaptive re�nement
techniques have been recently presented in order to
improve the e�ciency of the MDLSM method [13-15].

The original DLSM and MDLSM method use
the Moving Least-Squares (MLS) approximation to
construct shape functions. One of the main di�culties
in the implementation of MLS-based meshless ap-
proaches, such as MDLSM method, is the imposition of
the essential boundary conditions since the MLS shape
functions, in general, do not satisfy the Kronecker
delta condition. Therefore, the essential boundary
conditions cannot be directly enforced in the MDLSM
method. For this, the penalty method [11] has been
used to impose the essential boundary conditions on
MDLSM approach. The penalty coe�cient must be
chosen large enough in order to impose the boundary
conditions, but it should not exceed the maximum
value so that it could avoid ill-posed coe�cient ma-
trices. This maximum value is di�erent depending on
machines precision and numerical method used.

The radial point interpolation shape functions
(RPIM) was employed by GR Liu and Gu in mesh-
free weak-form methods [3,16]. The major advantage
of RPIM is that the shape function possesses the
Kronecker delta properties paving the way for easier
implementation of the essential boundary conditions.
Recently, a coupled EFG-RPIM method is proposed to
resolve the problem of enforcing the essential boundary
conditions in EFG method using RPIM approxima-
tion [17].

In this paper, the RPIM shape functions are
employed in the MDLSM method to solve the elas-
ticity problems. In order to use RPIM in MDLSM
formulation, two di�erent approaches are proposed in
this article. In the �rst approach, the unknown nodal
parameters are approximated using the RPIM shape
functions; in the second approach, coupled MLS-RPIM
shape functions are used in which the RPIM approxi-
mation is only applied to the boundary nodes with the
MLS shape functions used for the interior nodes. Both
formulations allow for direct imposition of the essential
boundary conditions removing the need for the penalty
method. Performances of the proposed methods are
tested by three benchmark examples from the literature
on regular and adapted nodal distributions, and the
results are presented and compared with those of
available analytical solutions. The results indicate the
superior accuracy of the proposed methods compared
to the conventional MDLSM. Furthermore, it is shown
that the RPIM-based formulation is more 
exible and
accurate than the conventional and coupled MLS-
RPIM formulation on the adapted nodal arrangements,
while the coupled MLS-RPIM formulation shows a
better performance than the RPIM-based formulation
on the regular nodal distributions.

The layout of the paper is as follows. In Section

2, the RPIM shape function is introduced. The orig-
inal MDLSM and proposed formulations using RPIM
approximation for solving elasticity problems are given
in Section 3. The numerical results are presented in
Section 4. And, �nally, some concluding remarks are
addressed in Section 5.

2. Meshless shape functions

Several techniques have been developed to construct
shape functions for meshless methods [16]. In this
section, the RPIM shape function, used in the proposed
approaches, is presented as follows:

2.1. Radial point interpolation shape functions
(RPIM)

The RPIM was employed by GR Liu and Gu in weak-
form meshless methods [3,16]. In this method, the
unknown function �(X) is approximated by:

�(X) =
nX
i=1

Ri(X)ai +
mX
j=1

Pj(X)bj = RT (X)a

+ PT (X)b; (1)

with the constraint condition as:
nX
i=1

Pj(Xi)ai = 0 (j = 1; 2; :::;m); (2)

where ai and bj are the unknown interpolation con-
stants, m is the number of polynomial basis functions,
Pj(X) is monomial in the space coordinate X = (x; y),
n is the number of nodes in the support domain of point
X, and Ri(X) is the Radial Basis Function (RBF).

There are many types of radial basis functions.
In this paper, Multi-Quadrics Radial Basis Function
(MQ-RBF) is employed as follows:

Ri(X) = (r2
i + (�dc)2)q; (3)

where dc is the characteristic length attributed to the
nodal distribution, � and q are the RBF dimensionless
shape parameters, and ri =

p
(x� xi)2 + (y � yi)2.

The shape parameters of MQ-RBF can highly a�ect
the performance of the RPIM approximation. In this
paper, value q = 1:03 is used, which was suggested
by Wang and Liu [18]. Preliminary numerical tests
on di�erent examples indicated that the value of � =
3 leads to better results in the analysis of the 2D
elasticity problems by MDLSM method.

Constants ai and bj in Eq. (1) are then determined
by enforcing Eq. (1) to be satis�ed at n nodes in the
in
uence domain of point X. Eqs. (1) and (2) can be
re-written in matrix form as:

�� = GC! C = G�1 ��; (4)
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where:

CT =
�
a1 a2 ::: an b1 b2 ::: bm

�
1�(n+m) ;

��T =
�
�1 �2 ::: �n 0 0 ::: 0

�
1�(n+m) :

And, the matrix G in Eq. (4) is de�ned as follows:

G =
�
R0 Pm
PT

m 0

�
(n+m)�(n+m)

; (5)

where R0 and Pm are de�ned as:

R0 =

26664
R1(r1) R2(r1) � � � Rn(r1)
R1(r2) R2(r2) � � � Rn(r2)

...
...

. . .
...

R1(rn) R2(rn) � � � Rn(rn)

37775
n�n

; (6)

and:

PT
m =

2666664
1 1 � � � 1
x1 x2 � � � xn
y1 y2 � � � yn
...

...
. . .

...
Pm(x1) Pm(x2) � � � Pm(xn)

3777775
m�n

(7)

Since the matrix R0 is symmetric, the matrix G will
also be symmetric. Eq. (1) can be re-written using
Eq. (4) as follows:

�(X) = RT (X)a + PT (X)b =
�
RT (X) PT (X)

�
C

! �(X)=
�
RT (X) PT (X)

�
G�1 ��; (8)

where the RPIM shape functions can be shown as:

�NT (X) =
�
RT (X) PT (X)

�
G�1

= [N1(x) N2(x) � � � Nn(x) Nn+1(x)

� � � Nn+m(x)]: (9)

Hence, the RPIM shape functions corresponding to the
n unknown nodal values are obtained as:

NT (X) =
�
N1(x) N2(x) � � � Nn(x)

�
: (10)

The RPIM shape functions can be calculated in an
alternative form by solving Eq. (4) and substituting
the solution into Eq. (1):

NT (X) = RT (X)Ga + PT (X)Gb

=
�
N1(x) N2(x) � � � Nn(x)

�
: (11)

where:

Gb = (Pm
TR0

�1Pm)�1Pm
TR0

�1; (12)

and:
Ga = R0

�1(In�n �PmGb): (13)

The RPIM shape functions pass through the nodal
values. Therefore, RPIM shape functions, given in
Eq. (10), possess the Kronecker delta property.

More detailed information on the RPIM approxi-
mation and the Radial Basis Functions (RBF) can be
found elsewhere [3,16,18,19].

3. Mixed discrete least-squares meshless
method for elasticity

The conventional MDLSM and proposed formulations
using RPIM approximation for solving elasticity prob-
lems are given in this section.

3.1. MLS-based MDLSM formulation
Consider the following partial di�erential equation
governing 2D linear elasticity problems [20]:

���u� (�+ �)r(r:u) = f in 
; (14)

with the following displacement and traction boundary
conditions:8><>:u = u�

on �u
v = v�8><>:�xnx + �xyny = t�x

on �t
�xynx + �yny = t�y

(15)

where 
 is the problem domain that incorporates
an elastic material; �t and �u are the traction and
displacement boundaries, respectively; nx and ny are
direction cosines of the normal to the boundary; t�x, t�y
and u�, v� are components of the prescribed tractions
and displacements in the Cartesian coordinate system,
respectively.

The parameters � and � are the Lame constants
de�ned for plain stress problems as:

� =
Ev

(1�2v)(1+v)
>0 and � =

E
2(1 + v)

>0; (16)

where E is the elasticity modulus and v is the Poisson
ratio.

In addition, stresses can be de�ned in terms of the
displacement components as follows:

�x = (�+ 2�)
@u
@x

+ �
@v
@y
;

�y = �
@u
@x

+ (�+ 2�)
@v
@y
;

�xy = �
�
@u
@y

+
@v
@x

�
: (17)
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Rewriting Eq. (14) in terms of stresses leads to:

@�x
@x

+
@�xy
@y

= �fx in 
;

@�xy
@x

+
@�y
@y

= �fy in 
: (18)

Eqs. (17) and (18) can be rewritten in a matrix form
as follows:

S(�) + F = 0; (19)

where � and F are vectors of unknowns and forcing
terms de�ned as:

� =
�
u v �x �y �xy

�T ; (20)

F =
�
0 0 0 �fx �fy�T : (21)

And, S(:) is the �rst-order di�erential operator de�ned
as:

S(:) = S1(:)x + S2(:)y + S3(:); (22)

where S1, S2, and S3 are de�ned by the following
matrices:

S1 =

266664
(�+ 2�) 0 0 0 0

� 0 0 0 0
0 � 0 0 0
0 0 1 0 0
0 0 0 0 1

377775 ;

S2 =

266664
0 � 0 0 0
0 (�+ 2�) 0 0 0
� 0 0 0 0
0 0 0 0 1
0 0 0 1 0

377775 ;

S3 =

266664
0 0 �1 0 0
0 0 0 �1 0
0 0 0 0 �1
0 0 0 0 0
0 0 0 0 0

377775 : (23)

The boundary conditions of Eq. (15) are also re-written
in a matrix form as:

D�� F� = 0; (24)

where F � and D are de�ned as:

F� =
�
u� v� t�x t�y

�
; (25)

and:

D =

26641 0 0 0 0
0 1 0 0 0
0 0 nx 0 ny
0 0 0 ny nx

3775 : (26)

The residuals at the typical node i can be de�ned as:

R
i = (S�)i + Fi in 
; (27)

R�i = (D�)i � Fi on �: (28)

A least-squares functional for typical node i can,
therefore, be de�ned using penalty approach:

Ii = (RT

R
)i + �(RT

�R�)i: (29)

And, the least-squares functional for the whole domain
can be de�ned as:

IM =
n
X
i=1

(RT

R
)i + �

n�X
i=1

(RT
� 5R�)i; (30)

where � condition is the penalty coe�cient that should
be large enough to satisfy the boundary desired accu-
racy. n
 and n� are the number of nodes in the domain
and on the boundaries, respectively.

Minimizing the least-squares functional with re-
spect to the vector of unknown nodal parameters �
leads to:

K� = F; (31)

where:

Klm =
n
X
i=1

[S(Nl)]
T
i [S(Nm)]i +

�
n�X
i=1

[D(Nl)]
T
i [D(Nm)]i ; (32)

and:

Fl =
n
X
i=1

[S(Nl)]
T
i Fi + �

n�X
i=1

[D(Nl)]
T
i F�i ; (33)

where Nl is the MLS shape function [11] of node l. It
can be noted that the MLS approximation generally
does not pass through the nodal values. Thus, the
MLS shape functions do not satisfy Kronecker delta
condition.

More detailed explanations of this shape function
can be found elsewhere [11,16].

3.2. Proposed RPIM-based MDLSM
formulation

In this approach, the unknown parameters are approx-
imated using the RPIM shape functions. Since RPIM
satis�es Kronecker delta property, the displacement
boundary conditions can be imposed as conveniently
as in conventional FEM, and there is no need for using
the penalty method. The stress boundary conditions
are enforced via the least-squares functional as follows.
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The least-squares functional for the whole domain
is de�ned as:

IR =
n
X
i=1

(RT

R
)i +

n�X
i=1

(RT
�R�)i; (34)

where the residuals R
 and R� are de�ned in Eqs. (27)
and (28). Minimizing the least-squares functional with
respect to the vector of unknown nodal parameters �
leads to:

K� = F; (35)

where:

Klm =
n
X
i=1

h
S( ~Nl)

iT
i

h
S( ~Nm)

i
i
+

n�X
i=1

h
D( ~Nl)

iT
i

h
D( ~Nm)

i
i
; (36)

and:

Fl =
n
X
i=1

h
S( ~Nl)

iT
i

Fi +
n�X
i=1

h
D( ~Nl)

iT
i

F�i ; (37)

where ~Nl is the RPIM shape function of node l. The
�nal sti�ness matrix K is square (5N�5N), symmetric
and positive-de�nite matrix in which N is the total
number of nodes.

3.3. Proposed MDLSM formulation using
coupled MLS-RPIM shape functions

Consider an arbitrary support domain containing n
typical nodes. As shown in section two, MLS ap-
proximation requires the solution of m � m linear
equation system, while n � n linear system should be
solved in the RPIM method, where m is the monomial
basis functions. Generally, n is much bigger than m;
therefore, the computing e�ort of RPIM is, in general,
more than MLS.

In this section, an alternative approach is pro-
posed in order to avoid increased computational cost
of solving large-scale problems while improving the
e�ciency of the boundary condition imposition on
MDLSM method. In this approach, coupled MLS-
RPIM shape functions are used to approximate the
trail functions in which the MLS shape functions
are used for the nodes inside the problem domain,
and the RPIM approximation is only applied to the
boundary nodes. Therefore, The displacement bound-
ary conditions are imposed directly, and the stress
boundary conditions are applied via the least-squares
functional. This requires the following modi�cations in
the conventional formulation.

In the proposed approach, the least-squares func-
tional is formed as Eq. (34) leading to the matrices

Klm and Fl de�ned by Eqs. (35)-(37), with the shape
function ~N de�ned by the following condition:

If i 2 fn�g ! ~N = NRPIM

Else! ~N = NMLS; (38)

where NRPIM and NMLS are the RPIM and MLS shape
functions, respectively.

The �nal sti�ness matrix K is square (5N � 5N),
symmetric and positive de�nite matrix in which N is
the total number of nodes.

4. Numerical examples

In this section, three benchmark examples from elas-
ticity with analytical solution are solved using the pro-
posed RPIM-based MDLSM, MDLSM using coupled
MLS-RPIM shape functions, and the original MLS-
based MDLSM approaches on uniform and adapted
nodal distributions. The results are presented and
compared with the available exact solutions. It should
be noted that all the adapted con�gurations are made
manually by the engineering judgments. The examples
include:

1. Cantilever beam;
2. Cylinder subjected to internal pressure;
3. In�nitive plate with a circular hole.

In this paper, a normalized value of least-squares
functional is used as the residual error estimator in
which the total residual error eg is de�ned as:

eg =
p
Iq
�T�

; (39)

where I is the value of least-square functional de�ned
in Eqs. (30) and (34) for each proposed method, and �
is the vector of unknowns.

Furthermore, in all problems, the second order
polynomial basis (P = 2;m = 6) is used to construct
MLS shape functions. The radius of the support
domain of node i is calculated as follows:

dw = �dm; (40)

where dm is the distance of mth nearest node to point
i, m is the number of terms used in polynomial basis
P (m = 3 for linear polynomial basis and m = 6
for quadratic polynomial basis), and � is a constant
coe�cient that varies between 2 to 3 determined by a
trail-and-error procedure. Penalty coe�cient used in
MLS-based MDLSM method is taken to be � = 108.

All the problems are solved on an Intel(R)
Core(TM)2 Duo T9550 Machine with 2.67GHz CPU
and 6.00 GB of DDR2 RAM.
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Figure 1. A cantilever beam subjected to load at the end.

4.1. Example 1: Cantilever beam
A cantilever beam subjected to a concentrated load
at the free end (Figure 1) is considered as the �rst
example. The analytical solution of this example is
available [20] as follows:

u = � Py
6EJ

�
3x(2L� x) + (2 + v)(y2 � c2)

�
;

V =
P

6EJ
�
x2(3L� x) + 3vy2(L� x) + (4 + 5v)c2x

�
�xx = �P (L� x)y

J
;

�yy = 0;

�xy =
P
2J
�
c2 � y2� ; (41)

where L is the length of the beam, v is the Poisson's
ratio, and J is the moment of inertia of the rectangular
cross-sectional beam with the unit thickness de�ned as
J = 2c3=3. This example is solved using the proposed
approaches and original MDLSM method under the
plane stress condition with the following constraints:
P = 1, E = 1000, v = 0:25, L = 8, and c = 1.

In this example, two uniform nodal distributions
of 85 and 451 nodes and an adapted con�guration
containing 364 nodes are considered for solving this
problem, as shown in Figure 2. The results are
presented and compared in Table 1. In addition,
the variation of stress �xx along the upper boundary
and the horizontal displacement ux along the bottom
boundary are plotted for each nodal distribution (Fig-
ures 3 and 4). As seen from the results, the MDLSM
method using coupled shape functions produces more
accurate results on uniform con�gurations, while the
RPIM-based MDLSM has been able to produce more
accurate results on the adapted distributions.

Figure 2. Three nodal con�gurations (Example 1).

4.2. Example 2: Cylinder subjected to internal
pressure

The second example considered in this paper is a
cylinder subjected to internal pressure (Figure 5). Due
to the symmetry, just a quarter of the cylinder is
simulated. The analytical solution of this problem [20]
is:

�r =
r2
1P

r2
2 � r2

1

�
1� r2

2
r2

�
; (42)

�� =
r2
1P

r2
2 � r2

1

�
1 +

r2
2
r2

�
: (43)

The boundary conditions are shown in Figure 6. This
example is solved using the proposed methods with
r1 = 1, r2 = 5, P = 1, v = 0:3, and E = 1 under
the plane stress condition.

Once again, two uniform nodal distributions of
106 and 765 nodes and an adapted con�guration
containing 481 nodes are considered for solving this
problem, as shown in Figure 7. The results are
presented and compared in Table 2. Furthermore,
the variation of stress �xx along x = 0 and y =
0 boundaries is plotted for each nodal arrangements
(Figures 8 and 9). The results illustrate the accuracy
of using RPIM shape functions in the MDLSM method.

Table 1. Comparison of total residual errors in Example 1.

Total residual error
Nodal distribution Uniform Uniform Adapted

Total number of nodes 85 451 364

Shape functions
MLS 0.0158 0.0050 0.0028

RPIM 0.0161 0.0040 8.07�10�4

Coupled MLS-RPIM 0.0068 0.0018 0.0016
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Figure 3. Normal stress �xx along y = 1 (Example 1): (a) Coarse uniform distribution with 85 nodes; (b) �ne uniform
distribution with 451 nodes; and (c) re�ned distribution with 364 nodes.

Figure 4. Vertical displacement v along y = �1 (Example 1): (a) Uniform distribution with 85 nodes; (b) uniform
distribution with 451 nodes; and (c) adapted distribution with 364 nodes.

Figure 5. A cylinder subjected to internal pressure. Figure 6. A quarter of the cylinder and its boundary.

Table 2. Comparison of total residual errors in Example 2.

Total residual error
Nodal distribution Uniform Uniform Adapted

Total number of nodes 106 765 481

Shape functions
MLS 0.1931 0.0095 0.0011

RPIM 0.2003 0.0109 4.32�10�4

Coupled MLS-RPIM 0.1099 0.0074 0.0010
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Figure 7. Three nodal con�gurations (Example 2).

Figure 8. Normal stress �xx along y = 0 (Example 1): (a) Uniform distribution with 106 nodes; (b) uniform distribution
with 765 nodes; and (c) adapted distribution with 481 nodes.

Figure 9. Normal stress �xx along x = 0 (Example 1): (a) Coarse uniform distribution with 106 node; (b) �ne uniform
distribution with 765 nodes; and (c) re�ned distribution with 481 nodes.

4.3. Example 3: In�nite plate with a circular
hole

The �nal example considered in this paper is an
in�nitive plate with a circular hole subjected to a
uniaxial traction (t), as shown in Figure 10. The
analytical solution for this example is available [20] as
follows:

ur =
t

4G

�
r
�
! � 1

2
+ cos(2�)

�
+

�r2

r
�
1 + 55(1 + !) cos(2�)

�� �r4

r3 cos(2�)
�
;

u� =
t

4G

�
(1� !)

�r2

r
� r � �r4

r3

�
sin(2�);

�xx= t
�
1� �r2

r2

�
3
2

cos(2�)+cos(4�)
�

+
3�r4

2r4 cos(4�)
�
;

�yy = �
�

�r2

r2

�
1
2

cos(2�)� cos(4�)
�

+
3�r4

2r4 cos(4�)
�
;

�xy=�t
�
�r2

r2

�
1
2

sin(2�)+sin(4�)
�
� 3�r4

2r4 sin(4�)
�
; (44)
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Figure 10. An in�nite plate with a circular hole under a
uniaxial load t.

Figure 11. Uniform and adapted nodal con�gurations
(Example 3).

where G is the shear modulus, ! = (3 � v)=(1 + v),
and v is the Poisson's ratio.Due to the symmetry, the
problem is solved using only a quarter of the plate with
the dimension of 5�r where �r is the radius of the hole.

The symmetry boundary conditions are imposed on
the bottom and left boundaries; no traction boundary
condition is applied at the hole boundary, and the
traction boundary conditions are imposed on the top
and right boundaries. This example is solved using
t = 1, E = 1000, and v = 0:3 under the plane stress
condition.

This example is solved considering three uni-
form distributions of 117, 426, and 628 nodes and
another three adapted distributions of 260, 480, and
809 nodes (Figure 11). The normal stress, �xx,
along x = 0 boundary is shown for each nodal
arrangement (Figure 12). The residual errors are also
compared in Tables 3 and 4. As can be seen from
the results, the coupled MLS-RPIM based MDLSM
has produced more accurate results on the uniform
nodal distributions, while the RPIM-based-MDLSM
shows superior performance on the re�ned con�gura-
tions.

5. Conclusion

In this paper, the RPIM shape functions are used
in the MDLSM method to solve elasticity problems.
Two di�erent approaches are suggested to incorporate
RPIM in MDLSM formulation, namely the RPIM-
based MDLSM and the coupled MLS-RPIM-based
MDLSM formulation. In both approaches, the es-
sential boundary conditions can be imposed directly
removing the need for penalty methods. The pro-
posed methods were used for the solution of three
benchmark elasticity problems, and the results are
presented and compared with the available analytical
solutions and those of MLS-based MDLSM formula-
tion. Uniform and adapted con�gurations of di�er-
ent scales are also considered to test the e�ciency
and reliability of the presented methods. The re-
sults indicated that both suggested approaches are,
in general, more accurate than the MLS-based formu-
lation. Furthermore, the coupled MLS-RPIM-based
MDLSM has indicated more accuracy on the uniform
nodal distributions, while the RPIM-based MDLSM
has shown more accuracy on the re�ned con�gura-
tions.

Table 3. Comparison of total residual error for adapted nodal con�gurations in Example 3.

Total residual error

Adapted nodal distributions Coarse Mild Fine

Total number of nodes 260 480 809

Shape functions
MLS 0.0049 0.0016 5:93� 10�4

RPIM 0.0010 2:67� 10�4 1:26� 10�4

Coupled MLS-RPIM 0.0046 0.0014 5:57� 10�4
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Table 4. Comparison of total residual error for uniform nodal con�gurations in Example 3.

Total residual error
Uniform nodal distributions Coarse Mild Fine

Total number of nodes 117 426 628

Shape functions
MLS 0.1654 0.0174 0.0128

RPIM 0.0843 0.0160 0.0096
Coupled MLS-RPIM 0.0963 0.0144 0.0095

Figure 12. Normal stress �xx along x = 0 (Example 3).
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