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Abstract 

Online monitoring of high-dimensional processes variability in which the number of variables is 

larger than the sample size is a challenging issue for quality practitioners because the sample 

covariance matrix is not invariable. To deal with this challenge, a generalized multiple dependent 

state sampling (GMDS) chart based on ridge penalized likelihood ratio (RPLR) statistic is 

developed for Phase II monitoring of multivariate process variability under high-dimensional 

setting. The developed control chart benefits from three advantages: (1) departing from the 

conventional covariance matrix charts, it can be efficiently employed for both spars and non-

spars covariance matrices; (2) it is able to detect spars shift patterns in which only a few 

covariance matrix elements are deviated from their nominal values; and (3) it outperforms the 

detectability of  the RPLR chart in terms of average run length (ARL) and standard deviation of 

run length (SDRL). The performance of RPLR, MDS-RPLR, and GMDS-RPLR charts are 

compared using extensive simulation studies by considering different diagonal and/or off-

diagonal covariance matrix disturbances. Moreover, sensitivity analysis are provided to analyze 

how the number of process variables and GMDS parameter affect the run length properties of the 

developed chart.  

Keywords: Covariance matrix, High-dimensionality, Ridge penalized likelihood ratio, 

Generalized multiple dependent state sampling, Spars disturbances. 

1. Introduction 

Control charts can be categorized into univariate and multivariate charts based on the number of 

underlying quality characteristics. Considering the correlation structure among quality 
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characteristics, multivariate control charts are efficient tools to detect sustained shifts in process 

parameters when the sample size is larger than the number of study quality characteristics. 

However, today’s competitive business has forced companies to address a significant number of 

quality dimensions for fulfilling their customers’ expectations, increasing market share as well as 

keeping competitive advantages. Hence, it is essential for quality engineering researches to 

dedicate their attempts to settle a vast amount of recorded data in which the process dimension 

exceeds the sample size. In this regard, control charts available in statistical process monitoring 

(SPM) literature are not usually efficient to analyze many pieces of information. To overcome 

the curse of high-dimensionality, some monitoring schemes such as variable selection-based 

multivariate charts, set-wise exponentially weighted moving average (EWMA) chart, and 

generalized T
2
 (GT) chart. More examples can be found in Chen and Nembhard [1], Li et al. [2], 

Lim and Lee [3], Abdella et al. [4], Wang et al. [5], Yan et al. [6], Feng et al. [7], and Kim et al. 

[8]. 

Monitoring the variability of high-dimensional processes has two major challenges: (1) the 

sample covariance matrix is not invertible because its determinant tends to zero, (2) timely 

reaction to process disturbances is usually impossible since the assignable causes may only affect 

a tiny number of elements in the covariance matrix. In recent years, few attention has been 

devoted to development of monitoring schemes for detection of variability disturbances under 

high-dimensional setting. In this regard, a novel algorithm based on Parallelized Monte Carlo 

simulation to improve the ability of the multivariate exponentially weighted mean squared 

deviation and multivariate exponentially weighted moving variance charts to monitor high-

dimensional process variability was introduced by Gunaratne et al. [9]. Abdella et al. [10] 

introduced an adaptive LASSO-thresholding-based control chart for monitoring high-

dimensional process variability without need of computing the inverse of sample covariance 

matrix. They highlighted the efficiency of their proposed control chart using real-life data 

examples from the semiconductor industry and a milling process. Without sparsity assumption, 

Kim et al. [11] extended a ridge penalized likelihood ratio (RPLR)-based control chart to 

recognize covariance matrix changes under high-dimensionality. Under the sparsity conditions, 

Abdella et al. [12] extended the adaptive LASSO-thresholding-based control chart for Phase I 

monitoring of high-dimensional process dispersion when the in-control covariance matrix is 

unknown. They used simulated and real-life examples to investigate the sensitivity of their 
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suggested chart, named as T-COV, in terms of signal probability metric. Taking the idea of 

tracking changes in the sparse leading eigenvalue between two covariance matrices, Fan et al. 

[13] designed a sparse-leading-eigenvalue-driven control chart for Phase I monitoring of high-

dimensional process variability. They showed that their proposed control chart works better than 

L2-type and L -type control charts. Jafari et al. [14] proposed an adaptive thresholding LASSO 

(ATL) control charting method for Phase II monitoring of high-dimensional covariance matrices 

by considering the impact of gauge inaccuracy. The performance of control chart can be severely 

dependent on sampling strategies specially when even small delays in detection of assignable 

causes imposes significant cost on the production system. In this regard, novel sampling 

strategies such as multiple sampling (MS), ranked set sampling (RSS), multiple dependent state 

(MDS) sampling and repetitive sampling (RS) have been introduced in the literature to enhance 

the sensitivity of different control charts. Interested readers are referred to important references 

such as Maleki et al. [15] and Maleki et al. [16] for MS-based charts, Salmasnia et al. [17], 

Khalafi et al. [18], and Nawaz and Han [19] for RSS based charts, and finally Saghir et al. [20] 

and Shaheen et al. [21] for RS-based ones. In recent years, multiple dependent sampling schemes 

has been successfully employed for further improving of control chart detectability. It can be 

concluded from the relevant literature that the MDS sampling schemes can dominate the other 

prevalent single sampling (SS) strategies. By employing MDS sampling strategies, the null 

hypothesis of in-control process condition can be (1) accepted, (b) rejected (c) conditionally 

accepted/rejected. In this regard, Aslam et al. [22] incorporated variable sample size (VSS) and 

MDS strategies for Phase II monitoring of process mean. An adaptive np control chart equipped 

by MDS sampling scheme was introduced by Zhou et al. [23]. Arshad et al. [24] employed the 

MDS strategy for Phase II monitoring of process variability. On the basis of MDS sampling 

strategy, Naveed et al. [25] proposed an EWMA-based control chart to detect sustained mean 

shifts when the quality characteristic of interest follows a normal distribution. García-Bustos et 

al. [26] focused on Phase II monitoring of correlated Poisson variables based on MDS sampling 

scheme. Aslam et al. [27] employed repetitive group and MDS sampling approaches based on 

the EWMA yield index for product acceptance. 

Since the sample covariance matrix is not positive semi-definite when the number of variables 

goes beyond the sample size, typical control charts established based on the inverse of sample 

covariance matrix are not applicable. Hence, this paper proposes an improved RPLR chart based 
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on the generalized multiple dependent state (GMDS) sampling strategy here after called GMDS-

RPLR chart. The developed chart can effectively detect different types of sustained shift in 

covariance matrix elements without sparsity assumption.  

The rest of this paper is organized as follows: the developed control chart is introduced in 

Section 2. Extensive simulations in terms of the average run length (ARL) and standard deviation 

of run length (SDRL) are carried out to evaluate the detectability of the developed chart in 

Section 3. In Section 4, the sensitivity of the GMDS-RPLR chart to the process dimension and 

repetition parameter is studied. Ultimately, conclusion remarks and future research directions are 

given in Section 5. 

2. Proposed monitoring scheme 

As previously mentioned, high-dimensional settings pose new challenges to the conventional 

multivariate control charts due to the curse of dimensionality. As an efficient monitoring scheme, 

the ridge penalized likelihood ratio (RPLR) can be efficiently used to recognize out-of-control 

covariance matrix patterns without sparsity condition. On the other hand, the sensitivity of 

control charts to identify process faults can be increased by using a proper sampling strategy. 

Hence, this study develops a novel control chart for monitoring high-dimensional covariance 

matrix by combining RPLR statistic with MDS sampling strategy hereafter called MDS-RPLR 

chart. A generalized version of MDS sampling strategy, called GMDS, is also incorporated to 

establish the chart statistic, named as GMDS-RPLR, for further improvement of chart 

detectability. The notations used to establish the MDS-RPLR and GMDS-RPLR statistics are 

given in Table 1. 

[Please insert Table 1 about here] 

Let 1 2( , ,..., ) ; 1,2,...,t t t tn p n t T X x x x  be a p n  matrix of observations collected at sampling 

point t  in which 1 2( , ,..., ) ; 1,...,T

ti ti ti tipx x x i n x  denotes the thi  observation of matrix tX . It is 

also assumed that quality trait tix  follows a multivariate normal distribution with mean vector μ  

and covariance matrix inΣ  when the process is operating in its in-control state. Therefore, the 

likelihood function of observations 1 2, ,...,t t tnx x x  can be written as: 
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where 1Ω Σ  termed as precision matrix denotes the inverse of process covariance matrix. 

Estimation of the precision matrix by maximum likelihood estimator (MLE) is obtained as 

Equation (2). The MLE estimates the unknown parameters of a given probability distribution by 

maximizing a likelihood function in a way that the sampled observations are most probable. 

  ˆ argmin logMLE

t ttr 
Ω

Ω ΩS Ω  (2) 

where   
1

1 n
T

t ti ti

in 

  S x μ x μ represents the sample covariance matrix at sampling point t . It 

can be statistically checked that 
1ˆ MLE

t t

Ω S  when the process dimension is smaller than the 

sample size. However, it is impossible to estimate the precision matrix by MLE under high-

dimensional setting because the sample covariance matrix is not invertible. By taking the idea of 

adding a penalty term to Equation (2), the estimation of precision matrix by the ridge penalized 

likelihood ratio (RPLR) method is given as: 

 ˆ argmin log
2

RPLR

t t intr
 

    
 Ω

Ω ΩS Ω Ω Ω  (3) 

where 
1

in in

Ω Σ  and ; 0    is a tuning parameter which is employed to obtain various levels of 

shrinkage of ˆ RPLR

tΩ . For the tht  taken sample, Equation (4) represents a closed-form to estimate 

the precision matrix based on Equation (3): 

   

1
1

221 1ˆ
4 2

RPLR

t p t in t in  



 
  

      
   

Ω I S Ω S Ω  (4) 

It can be concluded  from Equation (4) that ˆ RPLR

tΩ  tends toward inΩ   when    while in 

situation that 0  , ˆ RPLR

tΩ  approaches 
1

t


S .  Alerting an out-of-control signal is equivalent to 

rejection of null hypothesis 0 : inH Σ Σ  versus the alternative hypothesis 1 : inH Σ Σ . At the tht  

sampling point, the developed GMDS-RPLR control charting method for Phase II monitoring of 

high-dimensional process variability uses the following formula: 

   ˆ ˆln lnRPLR RPLR
t in t t in t tRPLR tr tr   Ω S Ω Ω Ω S  (5) 
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According to Equation (5), ideally, i.e. when the estimated precision matrix ( ˆ RPLR

tΩ ) is equal to 

the in-control precision matrix (
inΩ ), the tRPLR will be zero. As ˆ RPLR

tΩ  deviates from its target 

inΩ , the value of plotting statistic tRPLR  increases. That is to say, the tRPLR  chart statistic will 

be always greater than or equal to zero. Consequently, the control charting method only requires 

the upper control limit to evaluate the process variability status. As can be seen in Figure 1, the 

feasible space for GMDS-RPLR control charting scheme can be partitioned into three regions of 

in-control, out-of-control, and warning. To establish the developed GMDS-RPLR control chart, 

first four parameters  , , , ; ,inner outer inner outerr q UCL UCL UCL UCL q r   are determined such that a pre-

determined value for 
inARL  is obtained.  

[Please insert Figure 1 about here] 

The process variability condition by GMDS-RPLR chart is specified as below: 

1- The process variability will be deemed in-control when the chart statistic is smaller than or 

equal to innerUCL . 

2- The control chart issues an out-of-control signal whenever the GMDS-RPLR statistic exceeds 

outerUCL . 

3- r  additional samples are taken in situation that the GMDS-RPLR statistic falls within the 

warning region ( inner t outerUCL GMDS RPLR UCL   ) . In this case, the process is deemed in-

control if and only if both two following conditions are satisfied: (1 ) the chart statistic for at 

least q  out of r  samples falls within the in-control region; (2) The chart statistic corresponding 

to the remaining samples do not exceed outerUCL . In contrast, the GMDS-RPLR triggers an out-

of-control alert even if one of the mentioned conditions is violated. For more clarification, the 

GMDS-RPLR monitoring scheme is illustrated in Figure 2. 

[Please insert Figure 2 about here] 

3. Performance evaluation of MDS-RPLR and GMDS-RPLR monitoring schemes 
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In this section, seven out-of-control patterns are taken into consideration to evaluate the run 

length properties of the developed MDS-RPLR and GMDS-RPLR monitoring schemes. Note that, 

run length is a geometric random variable which is defined as the number of plotted samples 

taken from the process until the first plotting statistic falls within the out-of-control region. The 

in-control covariance matrix is considered as in pΣ I  and the process dimension is selected as 

10.p   

The out-of-control patterns involve three general structures: (1) diagonal shifts; (2) off-diagonal 

shifts; and (3) joint diagonal and off-diagonal shifts. For each out-of-control pattern, it is 

assumed that when the covariance matrix deviates from pI  to , ; 1,...,7out l l Σ , the occurred 

change remains until issuing an out-of-control signal by the control chart. In rest, each pattern is 

explained in detail. 

Pattern 1: According to Equation 6, under this pattern, the diagonal elements deviate from 1  to 

21   while the values of off-diagonal elements increase from 0  to  .   
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Σ  (6) 

Pattern 2: This pattern is similar to the previous pattern with this difference that the diagonal 

and off-diagonal elements related to first five quality characteristics are affected by the 

assignable cause.  
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Pattern 3: Similar to the previous out-of-control scenarios, this pattern belongs to the third 

mentioned out-of-control structure where the assignable cause affects the variance and 

covariance of the first and second variables.  
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Pattern 4: Under this pattern, the occurrence of assignable cause only changes the variance 

elements while the covariances remain unchanged.   
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Pattern 5: Only the variance of the first variable among all covariance matrix elements deviates 

from its nominal value under the occurrence of the assignable cause.  
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Pattern 6: This pattern is related to the second out-of-control structure in which only the off-

diagonal elements corresponding to the first five quality characteristics increase   units. 
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Pattern 7: This pattern is similar to the latter mentioned one except that only the covariance 

between the first and second variables is affected when the assignable cause occurs.   
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In simulations, the sample size is set at 5n   and the tuning parameter of the developed charts is 

fixed at 10  . The process mean is supposed to be a zero vector with size 10 1 . Moreover, the 

repetition parameter of the MDS-RPLR and GMDS-RPLR charts is considered as 3r   while two 

values of  1,2q  are used for the generalization parameter. To have fair comparisons, the 

values of control limits for the competing charts are calibrated such that 200inARL   which is 

equivalent to probability of Type I error 0.005  . It is remarkable that the probability of Type 

I error means rejecting the null hypothesis that the process is statistically in-control in condition 

that it's actually true. Then, the sensitivity of the developed charts under the defined out-of-

control patterns are compared by considering different shift magnitudes 

 0,0.1,0.2,0.3,0.5,0.75,1 . Obviously, the condition 0   implies that all covariance 

matrix elements remain in-control. The detectability of the RPLR, MDS-RPLR and GMDS-RPLR 

monitoring schemes in terms of the ARL and SDRL metrics under the mentioned out-of-control 

patterns are compared in Tables 2-8.  Note that, the resulting ARLs and SDRLs are extracted 

based on 10000 simulation replicates in MATLAB program.  
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It can be observed from Tables 2-8 that for all shift magnitudes, the MDS-RPLR control charting 

method outperforms the RPLR scheme in detecting all out-of-control patterns. In other words, 

employing MDS strategy significantly enhances the sensitivity of the RPLR control chart. For 

example under out-of-control pattern 1 as a joint diagonal/off-diagonal structure, the out-of-

control ARLs for RPLR are obtained as 71.808, 18.923, 7.931, 3.208, 1.776, and 1.303 for shift 

magnitudes 0.1, 0.2, 0.3, 0.5, 0.75, and 1, respectively. However, the obtained ARLs for the 

GMDS-RPLR chart under the mentioned conditions are 67.751, 14.509, 5.515, 1.820, 1.135, and 

1.017. That is to say for 0.1,0.2,0.3,0.5,0.75,1  , the MDS-RPLR chart performs about 5.65%, 

23.33%, 30.46%, 43.27%, 36.09%, and 21.95% better than the RPLR one. Under pattern 4 in 

which only diagonal elements deviate from their nominal values, the RPLR chart gives 

ARL=181.337, 112.376, 61.302, 13.481, 2.745, and 1.263 for 0.1,0.2,0.3,0.5,0.75,1   whereas 

for the MDS-RPLR chart we have ARL=170.878, 104.994, 47.655, 6.730, 1.166, 1.002. It means 

that under the mentioned shift magnitudes, the MDS-RPLR chart performs about 5.77%, 6.57%, 

22.26%, 50.08%, 57.52%, and 20.66 % better than the RPLR one. Finally, in pattern 6 which 

belongs to the off-diagonal out-of-control structure, the ARL for the RPLR chart are obtained as 

161.569, 92.949, 47.315, 16. 919, 7.912, and 4.811 under the considered shift magnitudes. The 

ARL values decrease to 154.091, 82.466, 41.355, 14.390, 5.745, and 3.096 when the MDS-RPLR 

chart is used for monitoring the process variability. These values confirm 4.31%, 9.09%, 

41.35%, 14.39%, 5.74%, and 28.27% reduction in ARL values when employing the MDS-RPLR 

chart instead of the RPLR one. Moreover, considering all seven out-of-control patterns, it can be 

concluded that the superiority of the MDS-RPLR chart over the competing RPLR chart is more 

tangible under large shift magnitudes. As another important conclusion, it can be seen that for all 

diagonal, off-diagonal and joint diagonal/off-diagonal out-of-control structures, the improvement 

percentage increases as the number of shifted elements increase when the MDS scheme is 

utilized. Similar conclusions can be drawn when taking SDRL into consideration. 

Since the GMDS strategy is more flexible than the simple random and MDS sampling strategies, 

we anticipate to get far better results from GMDS-RPLR chart than the competing RPLR and 

MDS-RPLR ones. As expected, in comparison with RPLR and MDS-RPLR charts, the GMDS-

RPLR gains higher detection power under all seven out-of-control shift patterns. However, the 

superiority of the GMDS-RPLR chart over the MDS-RPLR one is less than that of MDS-RPLR 
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chart over RPLR monitoring scheme. For instance under pattern 1, the sensitivity of the GMDS-

RPLR chart for 1q   and 2q   is averagely about 12.01% and 11.69% more than the MDS-

RPLR scheme while the average improvement percentage of the MDS-RPLR chart over the 

RPLR scheme is 26.79. As seen, for off-diagonal shift structure, i.e., patterns 6 and 7, selecting 

1q   for the GMDS-RPLR monitoring scheme leads to smaller ARLs and SDRLs than 2q  . 

However, for both diagonal and joint sustained shifts, i.e., patterns 1-5, the setting the 

generalization parameter at 2q   results in better performance of the GMDS-RPLR chart in 

reacting to large shift magnitudes. In contrast, designing the GMDS-RPLR by choosing 1q   

increases its detection capability to recognize small and moderate shift magnitudes. 

[Please insert Tables 2-8 about here] 

4. Sensitivity Analysis 

In this section, a sensitivity analysis is carried out to explore how the process dimension and the 

repetition parameter affect the detectability of the proposed control charts. Note that, sensitivity 

analysis is a technique that determines how different values of an independent variable can 

impact a dependent variable under a given set of assumptions. For this purpose, we focus on out-

of-control pattern 1 and consider the same parameter values used in the previous section. In 

addition, three values of 10,12,15p   and 3,4,5r   are selected for process dimension and 

repetition parameter, respectively. The ARLs and SDRLs of the developed control charts for 

different process dimension values when 3r   are reported in Table 9. As can be seen, the 

detection capability of four competing control charts improves as the number of variables 

increases. As instance, we have 18.923ARL   under 0.2   for RPLR control chart when 

10p   whereas the ARL value decreases to 15.064 and 13.424 in cases of 12p   and 15 . Under 

the mention condition, the ARL reduces from 14.509 to 9.365 and 4.003 when employing MDS-

RPLR chart. Finally, for GMDS-RPLR chart (case 1q  ), increasing the number of variables 

from 10 to 12 and 15 leads to decreasing the ARL value from 11.476 to 6.674 and 2.727, 

respectively. As another important finding, it can be concluded that the most tangible ARL 

improvement percentage belongs to GMDS-RPLR chart while increasing the process dimension 

has the least effect on detectability of the RPLR monitoring scheme. For example, under 0.2   

the ARL improvement percentage of RPLR, MDS-RPLR and GMDS-RPLR for 1q   are about 
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20.39%, 35.45%, and 41.84%, respectively when p  increases from 10 to 12. However, a reverse 

trend can be seen when 1   because the ARL values of MDS-RPLR and GMDS-RPLR charts 

under this shift magnitude are very close to 1 even for 10p  . Furthermore, the ARL 

improvement for all competing control charts is more significant when  0.2,0.3 . Similar 

results can be observed when the SDRL metric is taken into account.  

The sensitivity of the developed control charts to repetition parameter is evaluated and the 

resulting ARL and SDRL values are given in Table 10. As seen, the power of the developed 

charts enhances with selecting larger values of r . However, the detection ability of the 

developed monitoring schemes is not significantly dependent on the value of repetition 

parameter. In other words, it seems that taking 3r   additional samples will be adequate when 

the chart statistics falls within  the warning region. 

[Please insert Tables 9-10 about here] 

5. Conclusion 

In today’s highly competitive industrial society, companies are considering more quality 

attributes in order to fulfil their increasing customer expectations. Consequently, this problem 

highlights the necessity of developing control charts for monitoring high-dimensional data 

streams. In this context, a novel monitoring scheme called MDS-RPLR based on the integration 

of the multiple dependent state sampling strategy and the ridge penalized likelihood ration 

statistic was developed. Then, in order to enhance the flexibility of the developed MDS-RPLR 

chart, a generalized version of the MDS strategy was suggested to establish the plotting statistic 

of the RPLR chart named GMDS-RPLR monitoring scheme. Extensive comparative studies based 

on Mont Carlo simulations were carried out to compare the run length properties of the 

developed charts in terms of ARL and SDRL metrics. The obtained results confirmed that under 

three general diagonal, off-diagonal as well as joint diagonal/off-diagonal out-of-control 

structures, the GMDS-RPLR chart works better than both RPLR and MDS-RPLR. However, the 

superiority of the GMDS-RPLR monitoring scheme over the MDS-RPLR chart is less tangible 

than that of the MDS-RPLR chart over RPLR one. The results of sensitivity analysis showed that 

the reaction capability of the developed charts to sustained shift in covariance matrix elements 

improves as the process dimension increases. However, the performance of the developed charts 
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is not much dependent to the value of repetition parameter. While this study focused on 

monitoring of high-dimensional process variability, future research directions can look into 

simultaneous monitoring of mean vector and covariance matrix of high-dimensional data 

streams. Extending nonparametric control charts for monitoring high-dimensional covariance 

matrices can be also a fruitful area as a future direction. 
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Figure 1. Graphical view of GMDS-RPLR chart 
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Figure 2. GMDS-RPLR monitoring scheme 
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Tables 

Table 1. Notations 

Notation Description 

Indices  

t  Index of subgroups 

i  Index of observations 

,j k  Indices of variables 

l   Index of out-of-control scenario 

Distribution parameters   

tX  Matrix of observations in subgroup t   

tix  The thi observation in subgroup t    

tjkx  The thi  observation from 
thj  variable in subgroup t  

p
 Number of variables 

μ
 Mean vector of 

tX  

Σ  Covariance matrix of 
tX  

Ω   Precision matrix of 
tX  

inΣ   In-control covariance matrix of 
tX  

inΩ   In-control precision matrix of 
tX  

,out lΣ   Out-of-control covariance matrix of 
tX  under pattern l   

jk   Covariance of quality characteristics j  and k  

2

j   Variance of 
thj  quality characteristic 

Chart parameters  

   Probability of Type I error 

n   Sample size 

   Tuning parameter of RPLR chart 

r   Repetition parameter of MDS-RPLR and GMDS-RPLR charts 
q   Generalization parameter of GMDS-RPLR chart 

UCL   Upper control limit of RPLR chart 

innerUCL   Inner control limit of MDS-RPLR and GMDS-RPLR charts  

outerUCL   Outer control limit of MDS-RPLR and GMDS-RPLR charts 

Sample parameters  

tS  Sample covariance matrix of subgroup t  

ˆ MLE

tΩ   Estimated precision matrix of 
tX  obtained by MLE 

ˆ RPLR

tΩ   Estimated precision matrix of 
tX  based on RPLR method 

Others  

inARL  In-control average run length 
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outARL  Out-of-control average run length 

inSDRL   In-control standard deviation of run length  

outSDRL   Out-of-control standard deviation of run length  

T  Signal point 

 

Table 2. ARL and SDRL comparison of the proposed RPLR charts when 𝒏 = 𝟓 and 𝒑 = 𝟏𝟎 under pattern 1 

Control chart  ,inner outerCL CL  

C
ri

te
ri

o
n
     

0 0.1 0.2 0.3 0.5 0.75 1 

RPLR (4.8104, 4.8104) 
ARL 200.027 71.808 18.923 7.931 3.208 1.776 1.303 

SDRL 198.376 69.230 18.508 7.544 2.698 1.228 0.617 

MDS-RPLR (2.2204, 4.8704) 
ARL 200.134 67.751 14.509 5.515 1.820 1.135 1.017 

SDRL 200.326 68.836 15.338 5.310 1.444 0.445 0.133 

GMDS-

RPLR 

1q   (1.7104, 5.0618) 
ARL 201.012 60.471 11.476 4.365 1.559 1.088 1.006 

SDRL 198.339 60.255 11.687 4.091 1.006 0.333 0.080 

2q   (1.2978,5.1149) 
ARL 199.675 60.001 12.261 4.502 1.534 1.048 1.002 

SDRL 201.477 60.180 12.124 4.216 0.976 0.226 0.045 

 

Table 3. ARL and SDRL comparison of the proposed RPLR charts when 𝒏 = 𝟓 and 𝒑 = 𝟏𝟎 under pattern 2 

Control chart  ,inner outerCL CL  

C
ri

te
ri

o
n
     

0 0.1 0.2 0.3 0.5 0.75 1 

RPLR (4.8104, 4.8104) 
ARL 200.027 151.715 73.459 33.272 10.208 3.970 2.288 

SDRL 198.376 156.935 75.545 33.108 9.670 3.342 1.727 

MDS-RPLR (2.2204, 4.8704) 
ARL 200.134 148.049 65.119 27.582 6.520 2.217 1.236 

SDRL 200.326 150.226 65.455 27.099 6.432 1.851 0.622 

GMDS-

RPLR 

1q   (1.7104, 5.0618) 
ARL 201.012 136.963 58.848 21.571 4.830 1.643 1.092 

SDRL 198.339 131.278 60.384 21.271 4.412 1.164 0.326 

2q   (1.2978,5.1149) 
ARL 199.675 136.848 58.846 22.118 4.874 1.572 1.081 

SDRL 201.477 139.800 58.259 22.068 4.518 1.024 0.298 

 

Table 4. ARL and SDRL comparison of the proposed RPLR charts when 𝒏 = 𝟓 and 𝒑 = 𝟏𝟎 under pattern 3 

Control chart 
 ,inner outerCL CL

 

C
ri

te
ri

o
n
     

0 0.1 0.2 0.3 0.5 0.75 1 
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RPLR (4.8104, 4.8104) 
ARL 200.027 182.462 167.445 134.455 62.598 23.357 9.100 

SDRL 198.376 177.026 167.155 131.036 64.563 22.793 8.649 

MDS-RPLR (2.2204, 4.8704) 
ARL 200.134 181.950 159.491 123.656 52.136 15.580 5.264 

SDRL 200.326 181.314 162.166 122.356 51.736 15.598 5.057 

GMDS

-RPLR 

1q 

 
(1.7104, 5.0618) 

ARL 201.012 181.274 154.187 115.876 47.129 11.468 3.623 

SDRL 198.339 181.095 153.371 114.529 47.311 10.875 3.309 

2q   (1.2978,5.1149) 
ARL 199.675 181.232 155.659 113.928 45.116 11.141 3.319 

SDRL 201.477 181.364 151.671 113.542 44.166 10.836 2.857 

 

Table 5. ARL and SDRL comparison of the proposed RPLR charts when 𝒏 = 𝟓 and 𝒑 = 𝟏𝟎 under pattern 4 

Control chart  ,inner outerCL CL  

C
ri

te
ri

o
n
     

0 0.1 0.2 0.3 0.5 0.75 1 

RPLR (4.8104, 4.8104) 
ARL 200.027 181.337 112.376 61.302 13.481 2.745 1.263 

SDRL 198.377 184.067 111.132 61.022 12.884 2.131 0.563 

MDS-RPLR (2.2204, 4.8704) 
ARL 200.134 170.878 104.994 47.655 6.730 1.166 1.002 

SDRL 200.326 171.379 106.227 46.879 6.334 0.459 0.045 

GMDS-

RPLR 

1q   (1.7104, 5.0618) 
ARL 201.012 168.173 91.858 39.323 4.110 1.063 1.001 

SDRL 198.339 170.265 93.448 39.133 3.655 0.267 0.022 

2q   (1.2978,5.1149) 
ARL 199.675 165.674 92.277 37.167 3.524 1.029 1.000 

SDRL 201.477 162.048 92.169 36.498 3.137 0.182 0.000 

 

Table 6. ARL and SDRL comparison of the proposed RPLR charts when 𝒏 = 𝟓 and 𝒑 = 𝟏𝟎 under pattern 5 

Control chart  ,inner outerCL CL  

C
ri

te
ri

o
n
     

0 0.1 0.2 0.3 0.5 0.75 1 

RPLR (4.8104, 4.8104) 
ARL 200.027 193.084 190.507 172.301 131.018 75.203 33.006 

SDRL 198.377 193.381 190.130 172.226 128.416 74.994 32.834 

MDS-RPLR (2.2204, 4.8704) 
ARL 200.134 192.345 188.357 169.842 121.438 63.164 25.152 

SDRL 200.326 192.436 190.131 171.748 119.312 62.391 25.341 

GMDS-

RPLR 

1q   (1.7104, 5.0618) 
ARL 201.012 190.829 180.497 167.599 111.936 51.955 18.500 

SDRL 198.339 187.431 180.195 168.113 110.581 50.927 17.707 

2q   (1.2978,5.1149) 
ARL 199.675 191.901 187.972 170.854 115.707 53.788 17.964 

SDRL 201.477 197.941 187.502 172.492 112.134 54.745 18.289 
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Table 7. ARL and SDRL comparison of the proposed RPLR charts when 𝒏 = 𝟓 and 𝒑 = 𝟏𝟎 under pattern 6 

Control chart  ,inner outerCL CL  

C
ri

te
ri

o
n
     

0 0.1 0.2 0.3 0.5 0.75 1 

RPLR (4.8104, 4.8104) 
ARL 200.027 161.569 92.949 47.315 16.919 7.912 4.811 

SDRL 198.377 161.036 90.715 45.509 16.599 7.487 4.316 

MDS-RPLR (2.2204, 4.8704) 
ARL 200.134 154.091 82.466 41.355 14.390 5.745 3.096 

SDRL 200.326 154.672 85.301 41.964 13.860 5.645 2.758 

GMDS-

RPLR 

1q   (1.7104, 5.0618) 
ARL 201.012 147.017 74.417 35.981 11.957 4.541 2.779 

SDRL 198.339 147.463 75.013 36.194 11.964 4.332 2.435 

2q   (1.2978,5.1149) 
ARL 199.675 153.617 78.258 37.169 12.530 5.029 2.742 

SDRL 201.477 145.162 81.225 38.053 12.283 4.547 2.324 

 

Table 8. ARL and SDRL comparison of the proposed RPLR charts when 𝒏 = 𝟓 and 𝒑 = 𝟏𝟎 under pattern 7 

Control chart  ,inner outerCL CL  

C
ri

te
ri

o
n
 

    

0 0.1 0.2 0.3 0.5 0.75 1 

RPLR (4.8104, 4.8104) 
ARL 200.027 194.641 186.228 175.723 127.343 80.962 55.976 

SDRL 198.377 194.810 187.822 172.551 124.626 75.271 56.240 

MDS-RPLR (2.2204, 4.8704) 
ARL 200.134 193.429 179.471 162.959 117.257 76.503 47.510 

SDRL 200.326 193.537 175.423 159.834 117.244 75.434 48.285 

GMDS-

RPLR 

1q   (1.7104, 5.0618) 
ARL 201.012 191.395 178.856 158.116 116.272 67.556 40.255 

SDRL 198.339 190.157 177.343 159.826 117.869 69.649 41.625 

2q   (1.2978,5.1149) 
ARL 199.675 195.329 177.741 166.328 118.014 70.161 41.081 

SDRL 201.477 191.979 180.9583 163.042 114.897 71.103 41.720 

 

Table 9. Sensitivity analysis on process dimension under pattern 1 when 𝒓 = 𝟑 

Control chart p   ,inner outerCL CL  

C
ri

te
ri

o
n
   

0.1 0.2 0.3 0.5 0.75 1 

RPLR 

10 (4.8104, 4.8104) 
ARL 71.808 18.923 7.931 3.208 1.776 1.303 

SDRL 69.230 18.508 7.544 2.698 1.228 0.617 

12 (6.1074, 6.1074) 
ARL 62.606 15.064 6.687 2.813 1.688 1.275 

SDRL 62.136 14.415 6.107 2.303 1.058 0.607 

15 (8.3142, 8.3142) 
ARL 53.780 13.424 5.768 2.523 1.555 1.210 

SDRL 53.295 13.231 5.391 1.993 0.908 0.512 
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MDS-RPLR 

10 (2.2204, 4.8704) 
ARL 67.751 14.509 5.515 1.820 1.135 1.017 

SDRL 68.836 15.338 5.310 1.444 0.445 0.133 

12 (2.3104, 6.5315) 
ARL 50.613 9.365 3.469 1.412 1.050 1.005 

SDRL 52.263 9.282 3.102 0.863 0.233 0.071 

15 (2.5387, 9.9142) 
ARL 26.562 4.003 1.893 1.151 1.015 1.001 

SDRL 26.208 3.510 1.365 0.449 0.133 0.023 

GMDS-

RPLR 

1q   

10 (1.7104, 5.0618) 
ARL 60.471 11.476 4.365 1.559 1.088 1.006 

SDRL 60.255 11.687 4.091 1.006 0.333 0.080 

12 (1.8105,7.0535) 
ARL 39.237 6.674 2.582 1.215 1.023 1.001 

SDRL 40.254 6.057 2.183 0.552 0.167 0.032 

15 (2.1397,10.7000) 
ARL 19.551 2.727 1.468 1.065 1.007 1.001 

SDRL 19.009 2.148 0.849 0.254 0.083 0.031 

2q   

10 (1.2978,5.1149) 
ARL 60.001 12.261 4.502 1.534 1.048 1.002 

SDRL 60.180 12.124 4.216 0.976 0.226 0.045 

12 (1.4079,7.2561) 
ARL 36.953 6.320 2.402 1.188 1.023 1.001 

SDRL 35.904 6.089 1.816 0.476 0.156 0.032 

15 (1.7371,11.1836) 
ARL 16.604 2.370 1.428 1.048 1.003 1.000 

SDRL 16.601 1.852 0.795 0.218 0.050 0.000 

 

Table 10. Sensitivity analysis on repetition parameter under pattern 1 when 𝒑 = 𝟏𝟎 

Control chart r   ,inner outerCL CL  

C
ri

te
ri

o
n
   

0.1 0.2 0.3 0.5 0.75 1 

RPLR - (4.8104, 4.8104) 
ARL 71.808 18.923 7.931 3.208 1.776 1.303 

SDRL 69.230 18.508 7.544 2.698 1.228 0.617 

MDS-RPLR 

3 (2.2204, 4.8704) 
ARL 67.751 14.509 5.515 1.820 1.135 1.017 

SDRL 68.836 15.338 5.310 1.444 0.445 0.133 

4 (2.2239, 4.8832) 
ARL 65.510 14.403 5.069 1.725 1.124 1.016 

SDRL 65.862 14.471 4.938 1.312 0.417 0.131 

5 (2.2289, 4.9238) 
ARL 65.067 13.951 5.064 1.711 1.123 1.015 

SDRL 65.029 14.184 4.931 1.228 0.416 0.130 

GMDS-

RPLR 
1q   

3 (1.7104, 5.0618) 
ARL 60.471 11.476 4.365 1.559 1.088 1.006 

SDRL 60.255 11.687 4.091 1.006 0.333 0.080 

4 (1.7139, 5.1266) 
ARL 57.509 11.432 4.088 1.554 1.079 1.009 

SDRL 57.421 11.651 3.884 1.026 0.314 0.107 

5 (1.7189,5.1672) ARL 55.819 11.337 4.015 1.505 1.094 1.008 
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SDRL 56.200 12.133 3.816 1.030 0.352 0.095 

2q   

3 (1.2978,5.1149) 
ARL 60.001 12.261 4.502 1.534 1.048 1.002 

SDRL 60.180 12.124 4.216 0.976 0.226 0.045 

4 (1.3023,5.3500) 
ARL 51.906 9.521 3.406 1.340 1.039 1.003 

SDRL 50.403 9.266 3.012 0.717 0.202 0.055 

5 (1.3075,5.4991) 
ARL 48.449 8.854 3.072 1.349 1.049 1.004 

SDRL 48.659 8.686 2.645 0.722 0.241 0.063 

 


