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Abstract. A graph G is called irregular if the degrees of all its vertices are not the same.
A graph is said to be Stepwise Irregular (SI) if the di�erence between the degrees of any
two adjacent vertices is always 1. This paper deals with 2-Stepwise Irregular (2-SI) graphs
in which the degrees of every pair of adjacent vertices di�er by 2. Here, we discuss some
properties of 2-SI graphs and generalize them for k-SI graphs for which the imbalance of
every edge is k. Besides, we also compute bounds of irregularity for the Albertson index in
any 2-SI graph.
© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

In this paper, all the graphs considered are simple,
undirected and connected. Let a simple graph G(V;E),
with vertex set V (G) and edge set E(G), be a structure
in which some information can be stored by treating
vertices as objects and edges as some relation between
two objects. The number of vertices (i.e., the cardi-
nality of V (G)) is called the order of the graph and is
denoted by jV (G)j. If u and v are two vertices of G,
then we denote uv as an edge with end vertices u and
v. A graph G is said to be bipartite if we can partition
the vertex set V (G) into two sets such that vertices in
one partition are adjacent to those of another partition
and no two vertices in the same partition are adjacent.
A bipartite graph is called a complete bipartite graph
if each vertex of one partition is adjacent to every
vertex of another partition. It is denoted as Km;n,
where m and n are the sizes of the partitions. A tree
is a connected graph without any cycle (see the book
by Bondy and Murty [1]).
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Two vertices u; v 2 V (G) of a graph G are said to
be neighbors of each other if there is an edge between u
and v in G. The degree of any vertex u in graph G is the
number of neighbors of u. It is denoted by d(u) in [1] by
Bondy and Murty. A vertex is said to be a pendant if
its degree is 1. A graph is called regular if every vertex
of the graph possesses the same degree. The graph
in which all the vertices are not of the same degree is
said to be an irregular graph. In order to de�ne the
irregularity and its extent in any graph, much research
work has been done and is still in progress by several
researchers [2{6]. In articles [7{9], the irregularity of
the graph was discussed in more detail. For some basic
properties of Stepwise Transmission Irregular (STI)
graphs, please refer to [10{12] and their references.

Chemical Graph Theory (CGT) is a branch of
mathematical chemistry in which the mathematical
aspects of chemical compounds and their behaviors
are being studied. In CGT, the vertices of the graph
correspond to atoms of some chemical compounds
and edges represent the chemical bonds between the
atoms. Various researchers [13{16] discussed several
chemical applications of graphs and the relation of
graph theory with chemistry. Since irregularity is
very common in molecular graphs, di�erent approaches
have been proposed so far to describe the measure
of irregularity in chemical graphs. The irregularity
index is a numerical value to evaluate the extent of
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irregularity in the whole graph. Several irregularity
and topological indices were investigated for di�er-
ent types of graphs by several researchers [3,17{28].
Albertson [29] proposed an irregularity index of a
graph G as Irr(G) =

P
uv2E(G) jd(u) � d(v)j. This

is the simplest kind of irregularity index. Various
applications of the Albertson index are discussed in
articles [13,29,30].

1.1. One-Stepwise Irregular (1-SI) graph
In [5], Ivan Gutman introduced a new class of graphs in
each of which the di�erence in the degrees of any two
adjacent pairs of vertices was always 1, i.e., jd(u) �
d(v)j = 1 held for every adjacent pair of vertices u and
v in the graph. Gutman de�ned these special kinds
of graphs as Stepwise Irregular (SI) graphs. To be
more speci�c, in this paper, we call this class of graphs
as one-Stepwise Irregular (or one-SI or 1-SI ) graphs,
because, in each of these graphs, the degrees of every
pair of adjacent vertices di�er by 1. Some properties of
SI graphs were investigated by Gutman [5]. Inspired by
the above class of graphs proposed by Gutman [5], we
generalize the idea of �xed degree di�erence for a value
other than 1. As shown in Figure 1(a), the complete
bipartite graph K2;3 is an empirical example of a 1-SI
graph.

1.2. Two-Stepwise Irregular (2-SI) graph and
k-SI graph

We de�ne a Two-Stepwise Irregular (or Two-SI or 2-
SI ) graph in which the condition jd(u) � d(v)j = 2
holds for every pair of adjacent vertices u and v in
the graph. The complete bipartite graph K2;4, shown
in Figure 1(b), is an intuitive and sensible example of
a 2-SI graph. In a similar way, we extend the above
de�nition to de�ne a k-Stepwise Irregular (k-SI) graph
in which the imbalance (that is, the degree di�erence)
of every edge is k.

1.3. Our contribution
In this paper, in Section 2, we �gure out some proper-
ties of this extended class of SI graphs. In Theorems 13

Figure 1. Intuitive or practical examples of (a) a 1-SI
graph and (b) a 2-SI graph.

and 15, we have assigned methods to increase the num-
ber of vertices in a given 2-SI graph to attain another
extended 2-SI graph. The existence of these types of
graphs is illustrated in Theorem 21. Also, we generalize
some of these properties and development ideas for k-
SI graphs in Corollary 5, Corollary 7, Theorem 14, and
Theorem 16. The last section computes the bounds for
the Albertson index for 2-SI graphs.

2. Properties of 2-SI graphs and k-SI graphs

Theorem 1. There does not exist any 2-SI graph with
1, 2, or 3 vertices.

Proof. For the case having only 1 vertex, we have
nothing to prove. For a simple and connected graph
having two vertices, the degrees of both vertices are
the same. Hence, no irregularity is there. Now, for
a graph having 3 vertices, the argument is as follows.
Observe that in any 2-SI graph, the least possible case
of degree di�erence can be 3 � 1 = 2. However, in
any simple graph having three vertices, the maximum
degree of any vertex can be just 2 < 3. Hence, the
proof. �

Theorem 2. In a 2-SI graph, either all the vertices
are of odd degree or all are of even degree.

Proof. Without loss of generality, suppose that if
possible, there exists a 2-SI graph in which at least
one vertex is of odd degree and the rest of the vertices
are of even degree. Since the graph is connected, there
must be at least one odd degree vertex, say u, which
is connected to an even degree vertex, say v, via an
edge e = uv. However, observe that the imbalance of
the edge e = uv is always odd because the di�erence
between an odd number and an even number is always
an odd number. It is a contradiction for the case of
2-SI graphs. Hence, in a 2-SI graph, the degrees of all
the vertices are either even or odd. �

Theorem 3. Any 2-SI graph is always bipartite.

Proof. Consider a 2-SI graph G and let u be one
of its vertices. Observe that the degree of any vertex
adjacent to u should be d(u)� 2. Now, partition the
vertex set V (G) in such a way that the vertex u belongs
to one partition set and vertices (if exists) of degree
d(u) + 2 and d(u)� 2 both belong to another partition
set because vertices of degree d(u) + 2 and d(u) � 2
cannot be adjacent in any 2-SI graph. Since the choice
of the vertex u in G is arbitrary, we can decide the
partition for every vertex in the graph. Hence, any
2-SI graph is always bipartite. �

However, the converse of the above theorem is not
true, that is, every bipartite graph needs not be a 2-
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SI graph. For example, consider a complete bipartite
graph Km;m+1; m > 0 which is 1-SI graph, as shown
by Das and Mishra [31].

Theorem 4. Every complete bipartite graph of the
form Km;m+2; m > 0 is a 2-SI graph.

Proof. Since in Km;m+2, there are m vertices each
of degree m + 2 and m + 2 vertices each of degree m.
There are only two degrees m and m+ 2 in the graph.
Therefore, the vertex of degree m is always adjacent
to a vertex of degree m + 2, and vice versa. Hence,
the imbalance of 2 is maintained. Therefore, the graph
Km;m+2; m > 0 is a 2-SI graph.

Corollary 1. Every complete bipartite graph of the
form Km;m+k; m; k > 0 is a k-SI graph.

Proof. This proof is similar to the above and, hence,
left for the reader to prove. �

Let us see the de�nitions of some basic graph
products which will be useful for the next few theorems.
The Cartesian product of two graphs G and H is a
graph with vertex set V (G) � V (H) along with the
condition that two vertices (g1; h1) 2 V (G) � V (H)
and (g2; h2) 2 V (G)�V (H) are adjacent if g1 = g2 and
h1h2 2 E(H), or g1g2 2 E(G) and h1 = h2. This graph
product is denoted by G�H. See book by Hammack
et al. [32]. Thus, we have:

V (G�H) = f(g; h)jg 2 V (G); h 2 V (H)g;
E(G�H) = f(g1; h1)(g2; h2)jg1 = g2; h1h2 2 E(H);

or g1g2 2 E(G); h1 = h2g:
The Corona product of two graphs G and H,

denoted by G � H, is obtained by taking one copy
of graph G and jV (G)j copy of graph H, and every
vertex of the i-th copy of H is joined with the i-th
vertex of G , where 1� i � jV (G)j. Tavakoli et
al. [33] studied the corona product of graphs under
some graph invariants. The direct product of the graph
G and H is a graph in which V (G) � V (H) forms its
vertex set and two vertices (g1; h1) 2 V (G)�V (H) and
(g2; h2) 2 V (G) � V (H) are adjacent if g1g2 2 E(G)
and h1h2 2 E(H). Thus, we have:

V (G�H) = f(g; h)jg 2 V (G); h 2 V (H)g;
E(G�H) = f(g1; h1)(g2; h2)jg1g2 2 E(G) and

h1h2 2 E(H)g:
Theorem 5. The Cartesian product of two 2-SI graphs
is again a 2-SI graph.

Proof. Let G and H be two 2-SI graphs. We denote
the cartesian product of the graphs G and H by
G�H. We know that the degree of any vertex (a; b)
in the product graph G�H is given by dG�H(a; b) =
dG(a) + dH(b). See more details in [34] by Maheswari
and Maheswari. Of note, in G�H, any two vertices say
(a; b) and (c; d) are adjacent if and only if:

(i) Either a = c, and b and d are adjacent in H,
(ii) Or b = d, and a and c are adjacent in G.

For case (i), since b and d are adjacent in
H, jdH(b) � dH(d)j = 2. Therefore, jdG�H(a; b) �
dG�H(c; d)j = 2. A similar argument holds for case
(ii). Hence, the Cartesian product of two 2-SI graphs
is also a 2-SI graph.

Corollary 2. The Cartesian product of two k-SI
graphs is also a k-SI graph, where k > 0.

Proof. The proof of the corollary is left as an exercise
for the reader.

Remark 1. The Corona product of two 2-SI graphs
needs not be a 2-SI graph. In Corona product of the
graphs G and H, we take the graph G and jV (G)j copy
of graph H, and we join the i-th vertex of graph G to
every vertex of the i-th copy of graph H, where 1� i �
jV (G)j. Let u 2 V (G) be the i-th vertex of the graph G
and v be one of the vertices of the graph H in the i-th
copy. Thus, there must be an edge uv in graph G�H, by
de�nition. Pattabiraman and Kandan [35] stated that
the degree of such vertices u and v in the graph G �H
was given by dG�H(u) = dG(u)+jV (H)j and dG�H(v) =
dH(v) + 1 [35]. Therefore, in the graph G � H, the
imbalance of the edge uv = jdG�H(u)�dG�H(v)j, which
needs not be 2.

Theorem 6. The degree of every vertex in a 2-SI tree
is always odd.

Proof. We know that a tree with at least two vertices
must have at least two pendant vertices. Also, by
Theorem 2, we have the result that if any one vertex in
a 2-SI graph possesses an odd degree, then every other
vertex must also be of an odd degree. Since the tree
has a vertex of degree 1 which is an odd number, every
vertex in the tree is of odd degree. �

Theorem 7. The order of a 2-SI tree is always even.

Proof. The above theorem states that every vertex
in a 2-SI tree is of odd degree. Moreover, we know
that the number of odd degree vertices in any graph
is always even [1]. Hence, the order of a 2-SI tree is
always even.
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Figure 2. 2-SI trees with (a) 4 = 3, (b) 4 = 5, and (c)
4 = 7.

Remark 2. The 2-SI tree with maximal degrees 3,
5, and 7 is shown in Figure 2. The 2-SI trees with
4 = 3; 5, and 7 are of order 4, 16, and 92, respectively,
where 4 denotes the maximal degree of the tree.

A circuit/cycle in graph G is said to be an
Eulerian circuit/cycle if the circuit is simple and
contains every edge of G. An Eulerian graph is a graph
containing an Eulerian cycle. For more details, please
refer to the book [1].

Theorem 8. For m � 0 (mod 2), the graph Km;m+2
is always an Eulerian graph.

Proof. Observe that the graph Km;m+2 has m vertices
each of degree m+ 2 and m+ 2 vertices each of degree
m. If m is even, then the degrees of all the vertices
in both of the partitions are of even degree. We know
that a graph is Eulerian if and only if all the vertices
are of even degree [1]. Hence, when m is even, Km;m+2
is an Eulerian graph. �

Theorem 9. If G0 is a 2-SI graph of order n having
a vertex of degree 1, then we can extend it to have a
graph Gt of order n + 12t, t > 0, which is also a 2-SI
graph.

Proof. Let G0 be any 2-SI graph and u be its vertex
of degree 1. Therefore, its adjacent vertex, say v, in
the graph G0, must be of degree 3. Therefore, after

Figure 3. Original 2-SI graph G0 and its extended 2-SI
graph G1

extension from vertex u, the degree of vertex u should
be 5, such that jd(u) � d(v)j = j5 � 3j = 2. Thus, we
add four vertices adjacent to u. Since the degree of
vertex u in the extended graph G1 is 5, the degree of
the 4 newly added vertices should be 3. Therefore, we
again add two more vertices corresponding to each of
the above 4 newly added vertices, in order to maintain
the imbalance of each edge as 2 in the extended graph.
Thus, a total of 4 + (4�2) = 12 vertices are added and
12 edges are also added. Obviously, this new graph G1
is also 2-SI graph of order n+ 12� 1 = n+ 12.

The above idea of construction is also shown in
Figure 3. In a similar manner, we can again extend the
graph Gi to have the extended 2-SI graph Gi+1; i > 0.

Theorem 10. If G0 be a k-SI graph of order n having
a vertex of degree 1, then we can extend it to have a
graph Gt of order n + 2k(k + 1)t which is also k-SI
graph, where t > 0.

Proof. Let G0 be any k-SI graph and u be its vertex
of degree 1. Thus, its adjacent vertex, in the graph
G0, must be of degree k+ 1. Now, after the extension,
the vertex u should be of degree 2k + 1; therefore, we
add 2k new vertices adjacent to u. Since the degree of
vertex u in the extended graph G1 is 2k+1, the degree
of newly added vertices should be k+ 1. Therefore, we
add k pendant vertices corresponding to each newly
added 2k vertices.

Therefore, a total of 2k + (2k � k) = 2k(k + 1)
vertices are added and 2k(k+1) edges are also added to
build the extended k-SI graph G1. In a similar way, we
can further extend the graph G1 to get the k-SI graphs
Gt of order n+ 2k(k + 1)t where t = 0; 1; 2; 3; : : :. �

Theorem 11. If G0 be a 2-SI graph of order n having
a vertex of degree 2, then we can extend it to have a
graph Gt of order n+ 10t, which is also a 2-SI graph.

Proof. Let G0 be a 2-SI graph of order n having a ver-
tex u of degree 2. Then, by de�nition (of 2-SI graph),
the vertex u has two adjacent vertices of degree 4.
Therefore, the degree of vertex u in the extended graph
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Figure 4. Original graph G0 with vertex u of degree 2
and its extended graph G1.

G1 should be 6 and hence, in order to extend the graph
from vertex u, we must add 4 new vertices adjacent to
u, whose degree is 4. As shown in Figure 4, it is obvious
that 12 new branches must have emerged. We connect
these 12 branches with 6 new vertices each of degree 2
because G1 should be a 2-SI graph.

In this way, we have added a total of 10 new
vertices: 4 vertices of degree 4 and 6 vertices of degree
2. In addition, we have updated the degree of vertex u
from 2 to 6. Please see Figure 4. Hence, the order of
the 2-SI graph G1 is n+ 10.

Likewise, we can extend the graph G1 to construct
the 2-SI graph Gt of order n+10t where t is the number
of extensions.

Theorem 12. If G0 is a k-SI graph of order n having
a vertex of degree 2, then we can extend it to have a
graph Gt of order n + k(k + 3)t, which is also a k-SI
graph.

Proof. Since the proof is similar to Theorem 10 and
Theorem 11, we give the hint for proving this theorem
as follows:

Let u be the vertex such that d(u) = 2 in G0.
Then, the degree of its neighbors should be k + 2. As
done previously, in order to extend the original graph
from the vertex u, d(u) must be 2k+ 2 in the extended
graph G1. Then, we add 2k new vertices, each of degree
k + 2, adjacent to u. In addition, to maintain the k-SI
property of G1, we must add k(k + 1) vertices, each of
degree 2. Therefore, in total, we add 2k + k(k + 1) =
k(k + 3) vertices. Hence, the extended k-SI graph G1
is of order n+ k(k + 3).

In a similar principle, we can have the k-SI graph
Gt of order n + k(k + 3)t, where t is essentially the
number of extensions.

Lemma 1. There always exists a 2-SI graph of order
n, where n is any even integer except 2.

Proof. By Theorem 1, it is clear that there does not

Figure 5. Example of two di�erent 2-SI graphs, each of
order 12.

exist any 2-SI graph of order 2. Moreover, since we
know by Theorem 4, every complete bipartite graph of
the form Km;m+2 is a 2-SI graph.

Also, the order of these types of graphs is m +
(m + 2) = 2(m + 1) which is an even number, where
m = 1; 2; 3; 4; : : : Hence, we have a 2-SI graph of order
4, 6, 8, and 10, . . . .

Remark 3. The uniqueness of even-order 2-SI graphs
is maintained only for orders 4, 6, 8, and 10. From
Figure 5, it is clear that there exist two di�erent 2-SI
graphs of order 12. Note that the �rst one is a complete
bipartite graph K7;5.

Lemma 2. There always exists a simple 2-SI graph of
order n, where n is any odd integer except 1, 3, 5, 7,
and 11.

Proof. 2-SI graphs of orders 9, 13, 15, 17, 21
are shown in Figures 6(a), 6(b), 6(c), 6(d) and 6(e),
respectively.

Now, since there exists a 2-SI graph of order 9
and it also has a vertex of degree 2, by Theorem 11,
we can draw 2-SI graphs of orders 19, 29, 39, 49, and
so on. Also, we have shown a 2-SI graph of order 13 in
Figure 6(b); therefore, there exist 2-SI graphs of orders
23, 33, 43, 53, and so on. Similarly, from the 2-SI
graphs of order 15, 17, and 21, we can construct 2-
SI graphs of order 25, 35, 45, 55, . . . ; 27, 37, 47, 57,
. . . .; and 31, 41, 51, 61,. . . ., respectively. It is justi�ed
that we can have simple 2-SI graphs of every odd order
except 3, 5, 7, and 11.�

Remark 4. Observe that if the graph is not simple,
that is, if the graph has multi edges, then we can have
2-SI graphs of order 5, 7 and 11. Please see Figure 7.
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Figure 6. Example of 2-SI graph of order: (a) 9, (b) 13,
(c) 15, (d) 17, and (e) 21.

Theorem 13. There exist simple 2-SI graphs of every
order except 1, 2, 3, 5, 7, and 11.

Proof. The proof directly follows from Lemmas 1
and 2.�

Theorem 14. For a 2-SI graph, Irr(G) = 2jE(G)j.
Proof. The Albertson Index [29] is de�ned as follows:

Irr(G) =
X

uv2E(G)

jd(u)� d(v)j:

We know that in a 2-SI graph, for every pair of adjacent
vertices u and v, jd(u)�d(v)j = 2 holds. Thus, we have
Irr(G) = 2� jE(G)j.�
Theorem 15. Among the 2-SI graphs of even order,
the graphs of type Km;m+2 are the most irregular.

Proof. It is clear that graphs of the type Km;m+2 are

of even order. Also, we know by Theorem 3 that any
2-SI graphs are always bipartite. Note that, among the
class of bipartite graphs, the complete bipartite graph
has the maximum number of edges. Since Theorem 14
states that the irregularity of a 2-SI graph is twice the
number of edges. Hence, Km;m+2 is the most irregular
among 2-SI graphs of order 2m+ 2. �

3. Computational analysis of irregularity in
2-SI graphs

We know that there is a direct relationship between
the irregularity of a 2-SI graph and its number of edges
(by Theorem 14). Let G1 be a 2-SI graph of order n
and G2 is its extended 2-SI graph of order n0(> n).
Observe that, if G1 has the minimum number of edges,
then the extended graph G2 has the minimum number
of edges among all the 2-SI graphs of order n0. Thus, if
the original graph G1 has minimum irregularity, then
its extended graph G2 has minimum irregularity.

Based on the above observation, we have com-
puted the minimum number of edges possible for
di�erent orders of 2-SI graphs. Please refer to Table 1,
where the possible order of a 2-SI graph is ranging from
4 to 50 and can be extended further. Moreover, this
table gives an idea about the structure of these graphs
in terms of the number of vertices along with their
degrees.

Remark 5. From the computations given in Table 1
and by using Theorem 14, we have inferred the follow-
ing results:

(i) If n � 4(mod 12) i.e., n is a multiple of 4 and
leaves remainder 1 when divided by 3, then Irr(2-
SI) � 2(n� 1);

(ii) If n � 0(mod 12) i.e., n is a multiple of both 3 and
4, then Irr(2-SI) � 2n, except n = 12;

(iii) If n � 8(mod 12) i.e., n is a multiple of 4 and
leaves remainder 2 when divided by 3, then Irr(2-
SI) � 2(n+ 1), except n = 8;

(iv) If n � 0(mod 3) and n 6� 0(mod 12) i.e., n is a
multiple of 3 but not a multiple of 4, then Irr(2-SI)
� 8

3n.

Figure 7. Example of 2-SI multigraph of order (a) 5, (b) 7, and (c) 11.
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Table 1. Table for the structure of 2-SI graphs of di�erent order with the minimum number of edges possible

Order Minimum
of 2-SI number of Irr(G) The structure of the graph
graph edges possible

4 3 6 1 vertex of degree 3 and 3 vertices of degree 1
6 8 16 2 vertices of degree 4 and 4 vertices of degree 2
8 15 30 3 vertices of degree 5 and 5 vertices of degree 3
9 12 24 3 vertices of degree 4 and 6 vertices of degree 2
10 24 48 4 vertices of degree 6 and 6 vertices of degree 4
12 15 30 2 vertices of degree 5, 5 vertices of degree 3 and 5 vertices of degree 1
13 28 56 4 vertices of degree 6, 7 vertices of degree 4 and 2 vertices of degree 2
14 24 48 2 vertices of degree 6, 6 vertices of degree 4 and 6 vertices of degree 2
15 20 40 5 vertices of degree 4 and 10 vertices of degree 2
16 15 30 1 vertex of degree 5, 5 vertices of degree 3 and 10 vertices of degree 1
17 28 56 2 vertices of degree 6, 7 vertices of degree 4 and 8 vertices of degree 2
18 24 48 6 vertices of degree 4 and 12 vertices of degree 2
19 28 56 1 vertex of degree 6, 7 vertices of degree 4 and 11 vertices of degree 2
20 21 42 2 vertices of degree 5, 7 vertices of degree 3 and 11 vertices of degree 1
21 28 56 7 vertices of degree 4 and 14 vertices of degree 2
22 32 64 1 vertex of degree 6, 8 vertices of degree 4 and 13 vertices of degree 2
23 36 72 2 vertices of degree 6, 9 vertices of degree 4 and 12 vertices of degree 2
24 24 48 2 vertices of degree 5, 8 vertices of degree 3 and 14 vertices of degree 1
25 36 72 1 vertex of degree 6, 9 vertices of degree 4 and 15 vertices of degree 2
26 38 76 2 vertices of degree 6, 8 vertices of degree 4 and 16 vertices of degree 2
27 36 72 9 vertices of degree 4 and 18 vertices of degree 2
28 27 54 2 vertices of degree 5, 9 vertices of degree 3 and 17 vertices of degree 1
29 44 88 2 vertices of degree 6, 11 vertices of degree 4 and 16 vertices of degree 2
30 40 80 10 vertices of degree 4 and 20 vertices of degree 2
31 44 88 1 vertex of degree 6, 11 vertices of degree 4 and 19 vertices of degree 2
32 33 66 3 vertices of degree 5, 11 vertices of degree 3 and 18 vertices of degree 1
33 44 88 11 vertices of degree 4 and 22 vertices of degree 2
34 48 96 1 vertex of degree 6, 12 vertices of degree 4 and 21 vertices of degree 2
35 52 104 2 vertices of degree 6, 13 vertices of degree 4 and 20 vertices of degree 2
36 36 72 3 vertices of degree 5, 12 vertices of degree 3 and 21 vertices of degree 1
37 52 104 1 vertex of degree 6, 13 vertices of degree 4 and 23 vertices of degree 2
38 52 104 2 vertices of degree 6, 10 vertices of degree 4 and 26 vertices of degree 2
39 52 104 13 vertices of degree 4 and 26 vertices of degree 2
40 39 78 3 vertices of degree 5, 13 vertices of degree 3 and 24 vertices of degree 1
41 60 120 2 vertices of degree 6, 15 vertices of degree 4 and 24 vertices of degree 2
42 56 112 14 vertices of degree 4 and 28 vertices of degree 2
43 60 120 1 vertex of degree 6, 15 vertices of degree 4 and 27 vertices of degree 2
44 45 90 4 vertices of degree 5, 15 vertices of degree 3 and 25 vertices of degree 1
45 60 120 15 vertices of degree 4 and 30 vertices of degree 2
46 64 128 1 vertex of degree 6, 16 vertices of degree 4 and 29 vertices of degree 2
47 68 136 2 vertices of degree 6, 17 vertices of degree 4 and 28 vertices of degree 2
48 48 96 4 vertices of degree 5, 16 vertices of degree 3 and 28 vertices of degree 1
49 68 136 1 vertex of degree 6, 17 vertices of degree 4 and 31 vertices of degree 2
50 66 132 2 vertices of degree 6, 12 vertices of degree 4 and 36 vertices of degree 2
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4. Conclusion

This study de�ned the concept of a 2-Stepwise Irregular
(2-SI) graph and extended the idea to delimit a k-
SI graph in which the degree di�erence of every edge
is k. Initially, some graph-theoretic properties of the
class of 2-SI graphs were introduced. Then, a number
of methods were proposed to increase the number
of vertices in a given 2-SI graph to obtain another
extended 2-SI graph and the existence of these types of
graphs was illustrated. Moreover, some of these graph-
theoretic attributes and enlargement schemes for k-SI
graphs were generalized. In addition, the bounds for
the Albertson index were computed for 2-SI graphs.
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