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Worst-Case Analysis of Cash Inventory in Single Machine Scheduling 

 

Abstract  

This paper studies the inventory of cash as a renewable resource in single machine scheduling 

problem. The status of cash is incorporated in to the objective function. Average and minimum 

available cash and maximum and average cash deficiency are contemplated subject to a worst-case 

scenario that for each job the cost [price] is paid [received] entirely at the start [end] of processing the 

job. For each objective, either proof of NP-hardness or optimal scheduling rule are provided. Some 

scenario-based numerical experiments are also carried out which reveal and emphasize the effect of 

financial assumptions of this research in single machine scheduling. 

 

Keywords: single machine scheduling; worst-case cash management; renewable resource; cash 

deficiency; complexity analysis; 

1. Introduction and literature review 

Single machine scheduling problem is of paramount importance in practice and theory. Due 

to that, single machine models have been thoroughly analyzed under all kinds of conditions and with 

many different objective functions. Pinedo and Blazewicz et al. have provided a complete review of 

these models [1,2]. The result is a collection of easily applicable priority dispatching rules that often 

lead to optimal. Earliest Due Date (EDD) first [3] and Shortest Processing Time (SPT) first [4] are 

examples of these rules amongst others. 

However, the issue that has rarely been addressed in the literature of scheduling, including 

single machine, is the availability of money (i.e. liquidity). Naturally, processing a job on a machine 
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involves paying the cost and receiving the price. The conventional rules of single machine scheduling 

do not try to manage the inflow and outflow of cash. Consequently, they do not guarantee the 

availability of cash throughout scheduling. 

In financial engineering, the concept of matching payments and incomes through time is 

categorized under wider topics such as asset-liability managements or cash management. Assets are 

cash incomes and liabilities are cash outgoes. The same terminology is adapted in this paper. In the 

literature, there exist some rather distinct lines of research pertinent to the topic of this paper. 

Scheduling in the presence of renewable and non-renewable resources, financial constraints and jobs 

with deteriorating values are somehow relevant to this paper. 

In this research, money or cash is a renewable resource. However, some authors have studied 

non-renewable resources in scheduling [5–12]. Examples of a non-renewable resource include raw 

materials, energy, or even money. This line of research has been getting an increasing attention in 

recent years. Nonetheless, and to the best of our knowledge, the issue of resource management has 

rarely been addressed in the objective function and most authors have focused on classic time-based 

objectives. The only exception is Yedidsion et al. in which a bi-criteria single machine scheduling 

problem with controllable resource-dependent processing times was considered [12]. One of the 

objectives was from the traditional class but the other was the total resource consumption. 

Some authors have explicitly considered renewable resource management in scheduling. 

Briskorn et al. studied the complexity of a single machine scheduling where, jobs either add an 

amount to the inventory of a resource or remove an amount from that inventory [13]. The authors 

assumed that the aforementioned inventory could not be negative. Hence, if the needed amount of 

resource is not present, the job may not be processed. The authors, however, did not incorporate the 

resource inventory in the objective function and went on to use the traditional time-based objectives. 

Kellerer et al. presented the stock size problem which is basically the scheduling of jobs (trucks) on a 

single machine (the stock) so that the jobs are processed within a fixed period of time [14]. Each truck 

can deliver to [take from] the stock a quantity of a good, hence forming the inflow [outflow] of the 

good. Unlike Briskorn et al. and similar to this paper, the authors involved the resource inventory into 
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the objective function. The objective was to minimize the maximum required stock size. Figielska 

considered a preemptive two-stage flow shop scheduling to minimize the makespan in the presence of 

a renewable resource that could be shared between stages [15]. Singh and Ernst addressed a 

scheduling problem in which a renewable resource i.e. electricity must be shared among some mines 

[16]. The problem was modelled as a number of separate single machine scheduling problems. The 

authors developed a heuristic based on Lagrangian relaxation to minimize the total weighted 

tardiness. 

Explicit financial considerations have also been applied to single machine scheduling. As 

opposed to our pessimistic and worst-case scenario of cash receiving and incurring, Morady Gohareh 

et al. considered more general patterns for the flow of money and presented the complexity analysis 

[17,18]. Xie developed polynomial algorithms for single machine scheduling problem with multiple 

financial constraints [6]. Some authors have also considered jobs with deteriorating values over time 

(see for example [19–26]). The objective function in these problems is mostly about total job values. 

Doe to its practical value, resource-constrained project scheduling in renewable and non-renewable 

form has also spawned a vast body of literatures [27,28]. Artigues et al. carried out a rather thorough 

review of the models, algorithms, extensions and applications of this type scheduling [29,30]. 

As the above literature review reveals, the issue of resource management is rarely introduced 

in the objective function of scheduling problems. In this paper, a single machine scheduling is 

considered in which processing a job involves paying the cost and receiving the price. The somehow 

worst-case scenario is assumed in which the cost should be paid before the processing starts and the 

price cannot be collected until the processing is finished. This research extends the current literature 

by introducing the aformentioned worst-case scenario in to the objective function of single machine 

scheduling. In Section 2 notations and assumptions are put forward. Sections 3 to 7 introduce the new 

financial single machine models. Four objective functions are defined in these models; (i) minimizing 

the maximum cash deficiency which reflects the amount of external financing required to accomplish 

the schedule; (ii) maximizing the minimum available cash which is an index of the level of resistance 

in financially instable environments; (iii) maximizing the average available cash which is an index of 



5 

 

the productivity of the scheduling system, and (iiii) minimizing the average cash deficiency. For each 

model, either an optimal rule is developed and/or complexity analysis is presented. Section 8 

concludes the paper by carrying out a numerical experiment to compare scheduling rules of this 

research with SPT. 

2. Notations and assumptions  

Consider a single machine scheduling problem with n jobs. The following notations are used in this 

paper ( nj ,...,2,1 ): 

 pj : processing time of job j, 

 rj : release date of job j, 

 dj : due date of job j, 

 wj : weight or importance factor of job j, 

 Cj : completion time of job j, 

 Lj : lateness of job j i.e. L j = C j - d j, 

 Ej : earliness of job j i.e.  0,max jj LE  , 

 ctj: cost of processing job j paid at the beginning of its processing, 

 prj: price of job j received upon finishing its processing (prj > ctj), 

 tj: the time that processing job j starts, 

  tal : net value of available cash at time t, 

 jal : net value of available cash during processing job j, 

 jy  : amount of debt (i.e. liability) incurred while processing job j, 

 jaL : net value of available cash at the end of processing job j (i.e. just before processing the 

immediate succeeding job starts), 

 jA : set of jobs that precede job j in the schedule, 
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 0al : initial net value of available cash before any processing starts. 

 tal  is called the asset-liability function. This function can be positive or negative at each 

time.  tal  only changes at discrete time horizons i.e. when the processing of a job is finished and the 

price is collected or when the processing of a job starts and the cost is paid. Hence, during processing 

a job  tal  does not change. Therefore, although time is assumed to be continuous, the system is 

discrete-event in nature. A suitable method for analyzing and describing  tal  is to depict available 

cash versus time. The result may be called the cash-time diagram. 

Considering the above notations, the following expressions can be stated for any schedule. It 

is assumed that job i is immediately followed by job j and 
1j is the first job in the schedule: 

jiij ctpralal  . (1) 

jij ctaLal  . (2) 

i i ial aL pr  . (3) 

11 0 jj ctalal  .  (4) 

  i

Ao

ooi ctctpralal
i

 


0
.  (5) 

jjij ctpraLaL  . (6) 

111 0 jjj ctpralaL  .  (7) 

   ,     ,i i jal al t t t t  . (8) 

 max 0,i iy al  . (9) 

The concept of the above notations and expressions is demonstrated in Figure 1. The figure 

depicts the cash-time diagram for a single machine scheduling with three jobs, namely j1, j2 and j3 and 

the sequence j1-j2-j3.  
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Figure 1: Cash-time diagram for a three-job single machine scheduling problem and the sequence j1-j2-j3. 

 

 

The financial objectives considered in this research are described below: 

 Minimizing the maximum liability ( maxy ): maximum liability is defined as: 

  nyyyy ,...,,max 21max  . (10)  

It measures the maximum amount of financing (i.e. borrowing) required for a schedule to be 

accomplishable. According to Figure 2, a 200 loan is required.  

 Minimizing the average liability ( y ): average liability is defined as: 










n

j

j

n

j

jj

p

yp

y

1

1
. (11)  

It is the average amount of borrowing required to accomplish a schedule. For the schedule 

depicted in Figure 2, y  = 77.2 (the area under the cash-time curve divided by 125). In many 

real-world situations, such as when the liability is financed via an interest-bearing loan, it may 

be more appropriate to minimize the average liability rather than its maximum value. 

 Maximizing the average asset-liability ( al ): average asset-liability is defined as: 

 1

10

1 1

n

j
j

n

p
j j

j

n n

j j

j j

p al
al t dt

al

p p






 

 



 
. (12)  

It measures the average amount of cash available throughout the scheduling period and could 

be interpreted as an index of financial productivity. Low values of al  means that more cash 

is engaged in the processing, which will cause more opportunity cost in turn. For the schedule 

of Figure 2, al  = 49.2. Since 
1

n

j

j

p


  is constant, 
1

n

j j

j

p al


 can be used instead of al . 
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 Maximizing the minimum asset-liability ( minal ): minimum asset-liability is defined as: 

 nalalalal ,...,,min 21min  .  (13) 

minal  can be seen as a cash safety stock for confronting instability in financial parameters. 

High value of minal  provides a tool for handling unanticipated situations such as changes in 

costs or prices.  

 

Figure 2: A typical cash-time diagram. 

 

3. Maximizing average asset-liability  

According to the classic display framework of scheduling, 1|| al  is the single machine scheduling 

problem with the objective of maximizing al .1|| al  gives rise to a very straightforward rule to find 

the optimal schedule, namely the most profit ratio first (MPRF). According to this rule, jobs are 

arranged in decreasing order of 
j

jj

p

ctpr 
. 

jj ctpr   is the profit margin of job j. Hence, 
j

jj

p

ctpr 
 

could be interpreted as its profit ratio (i.e. the profit gained from devoting one unit of time of machine 

to process job j). 

Theorem 1. MPRF rule is optimal for 1|| al . 

Proof. The assertion can be proved by contradiction. Suppose a schedule Sc, that is not 

MPRF, is optimal and  tal  is its asset-liability function. In this schedule, there must be at least two 

adjacent jobs, say job j followed by k, such that 
k

kk

j

jj

p

ctpr

p

ctpr 



. Assume job j starts its 

processing at t0. Perform a so-called Adjacent Pairwise Interchange on jobs j and k. Call the new 

schedule cS  and denote it parameters by the sign “    ”. Since Sc is optimal, alal 


 which yields 
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



n

i

ji

n

i

ji alplap
11

 (Equation 12). For  













 



n

i

ikj pppttt
1

00 ,,0  the function  tal  is not 

affected by the interchange (equations 5 and 8). Hence,  

kkjjkkjj palpalplapla  .   (14) 

Using Equation 5, one can conclude  

   
kkjjjjkkjj pctprctBpctBpalpal   (15) 

and 

   
jjkkkkkkjj pctprctBpctBplapla   (16) 

Where  0

j

i i

i A

B al pr ct


   . Substituting equations 15, 16 in equation 14 yields

j

jj

k

kk

p

ctpr

p

ctpr 



. This contradicts the initial assumption that 

k

kk

j

jj

p

ctpr

p

ctpr 



 and 

completes the proof. 

The objective of 1|| al  is to keep the average available cash of the system as high as 

possible. At any time instance, some of the assets of system are engaged in processing the incumbent 

job and the rest of the assets are available. Hence, it can be stated that maximizing al  focuses on 

releasing the cash engaged in inventory (i.e. work in process or WIP) as much as possible. In the 

realm of classic scheduling, the objective  jjCw also focuses on minimizing the inventory cost. 

The weight wj of job j may be regarded as an importance factor. For 1|| j jw C Weighted Shortest 

Processing Time (WSPT) first rule yields the optimal schedule. According to WSPT, jobs are 

arranged in decreasing order of 
j

j

p

w
[4]. However, if one considers wj to be jj ctpr   WSPT and 

MPRF yield the same schedule. This approach provides a concrete method to decide on the values of 

wj’s. 



10 

 

The computation time required to arrange the jobs according to WSPT is the time required to 

sort the jobs according to the ratio of two parameters (wj and pj). A simple sort can be done in O(n log 

(n)) [1]. The same argument is true about MPRF. 

4. Minimizing maximum liability 

As mentioned before, the objective ymax is important in practice since it involves the minimization of 

the value that should be borrowed in order to accomplish the schedule. A generalization of this 

objective is -almin, the maximization of minimum available cash. Here, we first devote our attention to 

min1|| al  and then apply the results on
max1|| y . 

Problem 
min1|| al  can be solved in polynomial time. To do this, a combination of two simple 

rules is used; least cost first (LCF) and most price first (MPF). According to LCF, jobs are sequenced 

in increasing order of ctj. MPF demands jobs to be arranged in decreasing order of prj. As expressed 

in Theorem 2, LCF/ MPF yields the optimal solution for 
min1|| al . According to this rule, jobs are 

scheduled under LCF and ties are broken under MPF. However, let us first express the rationale that 

leads to the optimal solution. 

Lemma 1. At least one of the optimal solutions of 
min1|| al  satisfies the LCF rule. 

Proof. Consider an optimal schedule Sc for 
min1|| al . If Sc is LCF, the proof is complete. If 

not, there must be at least two adjacent jobs, say job j followed by job k, such that
j kct ct . Perform 

the Adjacent Pairwise Interchange on jobs j and k and call the new schedule cS  and denote its 

parameters by the symbol “    ”. It can be stated that 

      kjii alalkjialalal ,min,,|minminminmin    (17) 

and 

      kjii lalakjilalala  ,min,,|minminminmin
. (18) 

Values of ali’s are not affected by the interchange, where i = 1,2,…,n and ,i j k . Applying 

j kct ct  in Equation 5 yields    min , min ,j k j kal al al al   . Consequently, equations 17 and 18 
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yield min minal al  . Finally, since almin is optimal (i.e. the maximum value), minal  must also be 

optimal. 

If there are no jobs with identical costs, only one LCF schedule exists which must be optimal 

according to Lemma 1. Otherwise, it would be intuitively easy to see that any LCF/MPF schedule is 

at least as good as any LCF schedule when considering maximizing minal . Hence, Theorem 2 is stated 

without proof. 

Theorem 2. LCF/MPF rule is optimal for 
min1|| al . 

 If LCF/MPF yields a positive value for minal , then the optimal value of maxy in 
max1|| y  is 

zero. Otherwise, the optimal value of maxy  and minal  are the same. Hence, the following corollary 

can be written: 

Corollary 1. LCF/MPF rule is optimal for 
max1|| y . 

5. Minimizing average liability 

Equation 11 means that 



n

j

j

n

j

jj pyyp
11

. Since 


n

j

jp
1

 is constant, minimizing 


n

j

jj yp
1

 and y  

are equivalent and 1|| j jp y is the same as 1|| y . In the following lemma, it is demonstrated that 

1|| j jp y is equivalent to 1| |j j jr r w E  . In Theorem 4, the NP-hardness of the latter is 

proved. 

Lemma 2. 1|| j jp y  is equivalent to 1| |j j jr r w E  . 

Let us call 1|| j jp y as Problem 1. Moreover, Let us define 1| |j j jr r w E  as Problem 

2 with the following parameters (denoted with asterisks): 

  jj pw *
, 

 jj prd *
, 
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 jjj ctprp *
, 

 0

** alrrj  . 

Notice that both problems have the same sets of jobs but with different parameters. Hence, 

the set of feasible solutions for both problems is the same. Moreover, for any given solution, Equation 

6 yields jj aLC *
 which means jjjj praLdC  **

. Therefore, jj alL *
 which yields

   0,max0,max *

jj alL  . Thus, jj yE *
 and consequently 




n

j

jj

n

j

jj ypEw
11

*
. In short, 

problems 1 and 2 have identical feasible solutions and objective functions. This shows that problems 

1 and 2 are the equivalent. 

Theorem 4. 1|| y  is strongly NP-hard. 

Proof. Lemma 2 expresses 1||  ~ 1| |j j j j jp y r r w E   where the sign "~" shows the 

equivalency. Hence, 

1||  ~ 1||  ~ 1| |j j j j jy p y r r w E  .  (19) 

One can see that 1| |j j jr r w E   is the general form of 1|| j jw E and solving 

1| |j j jr r w E   is at least as hard as 1|| j jw E . Hence,  

1||   1| |j j j j jw E r r w E   . (20) 

According to Valente, 1|| j jw E  in non-delay scheduling can be transformed into the 

equivalent weighted tardiness problem, which is a well-known strongly NP-hard problem [31]. 

Consequently, Equation 20 yields that 1| |j j jr r w E   is strongly NP-hard which yields the strong 

NP-hardness of 1|| y  according to Equation 19. 
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6. Maximizing average asset-liability subject to a maximum value for liability 

A situations that might be the goal of every industrial manager, is maximizing al  while the 

liability is not allowed to be more than a pre-defined value, say 0y . The problem can be displayed as 

01| |jy y al  . As proved in Section 3, the MPRF rule is optimal for 1|| al and maximizes al . 

However, it does not guarantee that no cash shortage happens. LCF/ MPF delivers a no-cash-shortage 

schedule but compromises al . It might seem that a combination of the two rules may be helpful for 

1| 0 |jy al  . However 01| |jy y al   in general is proved to be NP-hard via conversion to a 

classic scheduling problem, namely1| |j j jr w C . 

Lemma 3. 01| |j j jy y p al   is equivalent to 01| |j j jE y w L  . 

Proof. Let’s define a transformed problem via asterisked parameters so that 
*

j jw p  ,

jj prd *
, jjj ctprp *

 and 0

** alrrj  . For any given solution, Equation 6 yields jj aLC *
 

which means jjjj praLdC  **
. Therefore, jj alL *

 and 
**

j j jj
w L p al   . jj alL *

 also 

means that    0,max0,max *

jj alL   which yields jj yE *
. Hence, 0jy y is equivalent to 

*

0jE y  and the proof is complete. 

Lemma 4. 01| |j j jE y w L   is strongly NP-hard. 

Proof. 0jE y  means that job j should not start it processing sooner than 0j jd p y   

which in turn could be interpreted as 0j j jr d p y    in non-delay scheduling. Moreover, 

 j j j j j j j j jw L w C d w C w d       . As j jw d  is constant, minimizing j jw L  is 

equivalent to minimizing j jw C . Consequently 

01| |  ~ 1| |j j j j j jE y w L r w C   .  (21) 
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As 1/ /j j jr w C  is known to be strongly NP-hard [32], 01| |j j jE y w L   is also strongly 

NP-hard according to Equation 21 and the proof is complete. 

Now, Theorem 5 can be stated regarding the complexity of 01| |jy y al  . 

Theorem 5. 01| |jy y al   is strongly NP-hard. 

Proof. 01| |jy y al   is equivalent to 01| |j j jy y p al   and the rest is 

straightforward according to lemmas 3 and 4. 

7. Numerical experiments for revealing the effect of financial assumptions 

SPT is arguably the most well-known rule of scheduling which is focused on minimizing the 

inventory costs and number of jobs in the workshop. In spite of these economic or financial 

implications, SPT does not consider the flow of cash introduced in this research. Since due dates are 

not a part of SPT and the models of this research as well, numerical comparison between SPT, MRPF 

and LCF/MPF will reveal to some extent the significance and importance of the assumption regarding 

the flow of cash. 

For the aforementioned numerical study, some scenarios regarding three important scheduling 

characteristics have been considered here: size of scheduling system, financial power or solvency of 

scheduling system, and profitability of the line of work. These scenarios are described in Table 1. The 

combination of the scenarios results in 36 test problems. 

For each test problem, 150 random instances were generated. Processing times, costs and 

prices were respectively chosen from U[5, 20], U[10, 50], and U[1.01× cj, 
max

jpm ] where U[a, b] 

stands for uniform distribution between a and b and
max

jpm  is defined as the maximum possible value 

for profit margin of job j. Each random instance was solved by MPRF, LCF/MPF and SPT. The rules 

were embedded in a simulation framework and coded in Microsoft Visual Basic. Experiments were 

implemented on a computer with Intel Core i5-6500 CPU that works at 3.20GHz with four gigabytes 

of RAM. The whole simulation framework ended under 20 minutes. Average result regarding 150 
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instances of each test problem can be found in the appendix (Table A.1). However, Figure 3 is 

extracted from the results. 

Table 1: Detail of scenarios considered for generating test problems 

 

Consider respectively the three objective functions al , 
minal  and jC . In Figure 3 ΔZij 

is a compromise measure which shows the percent of deviation from optimality that is introduced in 

objective i as a result of optimizing objective j. Comparison of panels a and b with panels c and d 

clearly states that applying SPT completely disrupts al , 
minal  whereas applying MRPF and 

LCF/MPF has a mild effect on jC . Panel a suggests that if SPT is applied, scenarios regarding the 

financial power of the system and the profitability of the work has a mixed effect on the deviation of 

al  from optimality. Nonetheless, this deviation is under 40%. Moreover, the effect of applying SPT 

on al  seems to be negligible for a financially powerful and solvent system (forth scenario for al0).  

 

Figure 3: Scenarios of deviation from optimality for jC , al  and 
minal  

 

According to panel b, the magnitude of the deviation from optimality for 
minal  is much 

more if SPT is applied. It even reaches about 1200% under some scenarios. Nonetheless, three 

observations are apparent in panel b. Firstly, 
minal  is very adversely sensitive to SPT for a line of 

work that is profitable (scenario 2 and 3 for max
jpm ). Secondly, for the extreme scenarios where the 

scheduling system is very insolvent or very solvent (scenarios 1 and 4 for al0), minal  is not sensitive 

to SPT. Thirdly, scenario 3 al0 for seems to maximize the sensitivity of 
minal  to SPT. According to 

panel c scenarios of al0 do not seem to affect jC  when MRPF is used. The effect of profitability of 

the line of work is also minor and limited to 15%. Finally, panel d suggests that if LCF/MPF is used, 

on average jC  deviated 23% from optimality regardless of scenarios of al0 and max
j

pm . 
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8. Conclusions 

This paper discussed cash management in single machine scheduling. The worst-case 

scenario was assumed for the flow of cash caused by the processing of jobs. It was assumed that the 

price [cost] of each job is entirely received [paid] upon the end [start] of its processing. Altogether, 

five different single machine models were defined and analyzed. The goal was either to develop 

optimal scheduling rules in order to generally create a balance between payments and revenues over 

time or to analyze the complexity of the problems. The summary of results is as follows: 

 If jobs are scheduled according to decreasing order of profit ratio, the average liquidity 

(available cash) is maximized, the inventory cost is minimized and the productivity of the 

system is maximized as well. Moreover, this rule deviates jC  from optimality by 15% at 

most (based on the test problems considered here). 

 If jobs are scheduled according to increasing order of cost and ties are broken according to 

decreasing order of price, the total amount of borrowing needed to accomplish the schedule is 

minimized and a deviation no more that 23% from optimality is created for jC  (based on 

the test problems considered here). 

 The above rule also maximizes the minimum available cash, which is a measure of protection 

against financial instability. 

 The problem of minimizing the average value of liabilities (cash deficiency) is strongly 

NP-hard.  

 If maximum cash deficiency is restricted to a predefined value, the problem of maximizing 

the average liquidity is strongly NP-hard.  

 Based on the test problems considered here, if SPT is used to schedule jobs, average available 

cash deviates up to 40% from optimality and minimum available cash deviates drastically 

from optimality (up to 1200%). 
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Future studies for single machine scheduling could be focused on objective functions that 

involve due dates. Asset-liability management of more complex scheduling problems, such as job 

shops and flow shops, is of great practical value. Involving time value of money and loans with 

interest cost are also characteristics of many real world production environments. 
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Figure 4: Cash-time diagram for a three-job single machine scheduling problem and the sequence j1-j2-j3. 
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Figure 5: A typical cash-time diagram. 
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Topic of 

scenario 

Scenario control 

parameter 

Scenario 

number 
control parameter value Description 

size of 

scheduling 
system 

number of jobs 

(n) 

1 n = 20 a small scheduling system 

2 n = 50 a medium scheduling system 

3 n = 100 a large scheduling system 

financial 
power of 

scheduling 

system 
 

Initial available 

cash 

(al0) 

1 0

1

-

n

j j

j

al pr c



 
  
  
 

  
a scheduling system that will be in debt throughout the entire 

scheduling horizon 

2 al0 = 0 
a scheduling system that struggles with asset-liability issues from 

the start of scheduling but has a positive balance at the end 

3 al0 = 14 
a scheduling system with 10% chance to have the ability to start 

scheduling with a positive asset-liability balance* 

4 0

1

n

j

j

al c



  
a scheduling system that has no asset-liability problems and can 

even afford to pay all the costs at the start of scheduling 

profitability 

of the line of 
work 

 

maximum possible 

profit margin for 

each job 

( max
jpm ) 

1 max 1.05j jpm c  
processing a typical job is this environment generates at most a 

5% profit 

2 max 1.5j jpm c  
processing a typical job is this environment generates at most a 

50% profit (a rather profitable line of work) 

3 max 3j jpm c  
processing a typical job is this environment generates up to 200% 

of profit (a very profitable line of work) 
*
Since the costs are chosen from U[10, 50], the probability of the cost of a typical job to be less than 14 is 10%. 

Table 1: Detail of scenarios considered for generating test problems 
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Figure 6: Scenarios of deviation from optimality for jC , al  and 
minal  
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Appendix 

 Rounded average value of objective functions* 
                    Problems 

                         (rule) 

Scenarios 

1/ / - al  
(MPRF) 

min1/ / - al  
(LCF/MPF) 

1/ / jC  

(SPT) 

n al0 prj - cj -al  -almin jC  -al  -almin jC  -al  -almin jC  

1 

1 

1 

36 71 2392 41 55 2614 38 69 2151 

2 45 100 14371 58 75 15826 49 101 12832 

3 59 150 56524 86 116 62776 67 149 50496 

1 

2 

18 50 2392 23 37 2614 20 49 2151 

2 0 50 14371 13 22 15826 4 49 12832 

3 -31 50 56524 -5 14 62776 -24 49 50496 

1 

3 

4 36 2392 9 23 2614 6 35 2151 

2 -14 36 14371 -1 8 15826 -10 35 12832 

3 -45 36 56524 -19 0 62776 -38 35 50496 

1 

4 

-72 -16 2392 -67 -26 2614 -71 -16 2151 

2 -226 -138 14371 -213 -166 15826 -222 -141 12832 

3 -485 -359 56524 -458 -391 62776 -477 -363 50496 

1 

1 

2 

79 259 2443 127 228 2614 96 250 2151 

2 145 533 14718 267 500 15826 190 534 12832 

3 252 975 57880 505 939 62776 342 969 50496 

1 

2 

-75 50 2443 -28 19 2614 -58 49 2151 

2 -240 50 14718 -118 14 15826 -195 49 12832 

3 -520 50 57880 -268 12 62776 -430 48 50496 

1 

3 

-89 36 2443 -42 5 2614 -72 35 2151 

2 -254 36 14718 -132 0 15826 -209 35 12832 

3 -534 36 57880 -282 -2 62776 -444 34 50496 

1 

4 

-848 -450 2443 -800 -486 2614 -831 -453 2151 

2 -2166 -1439 14718 -2044 -1463 15826 -2121 -1439 12832 

3 -4384 -3267 57880 -4131 -3296 62776 -4294 -3274 50496 

1 

1 

3 

221 890 2448 412 859 2614 292 877 2151 

2 476 1979 14750 964 1947 15826 660 1980 12832 

3 894 3724 58012 1903 3687 62776 1261 3717 50496 

1 

2 

-388 50 2448 -198 17 2614 -317 49 2151 

2 -1042 50 14750 -555 14 15826 -859 49 12832 

3 -2152 50 58012 -1143 11 62776 -1785 48 50496 

1 

3 

-402 36 2448 -212 3 2614 -331 35 2151 

2 -1056 36 14750 -569 0 15826 -873 35 12832 

3 -2166 36 58012 -1157 -3 62776 -1799 34 50496 

1 

4 

-3433 -1892 2448 -3243 -1928 2614 -3363 -1909 2151 

2 -8634 -5740 14750 -8147 -5762 15826 -8451 -5737 12832 

3 -17382 -12944 58012 -16373 -12972 62776 -17015 -12962 50496 

*150 random instances were averaged 

Table A.1: Details of test problem results 


