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Abstract. This article presents a review of the recent applications of Arti�cial Neural
Networks (ANN) for civil infrastructure including structural system identi�cation, struc-
tural health monitoring, structural vibration control, structural design and optimization,
prediction applications, construction engineering, and geotechnical engineering. The most
common ANN used in structural engineering is the backpropagation neural network
followed by recurrent neural networks and radial basis function neural networks. In
recent years, a number of researchers have used newer hybrid techniques in structural
engineering such as the neuro-fuzzy inference system, time-delayed neuro-fuzzy inference
system, and wavelet neural networks. Deep machine learning techniques are among the
newest techniques to �nd applications in civil infrastructure systems.

© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Arti�cial Neural Networks (ANNs) are powerful math-
ematical models inspired by interconnected neurolog-
ical structure of the human brain to learn and solve
problems through pattern recognition [1-3]. They have
been used to solve complicated pattern recognition and
classi�cation problems in numerous applications such
as image and object recognition [4], �ngerprint anal-
ysis [5], video analysis [6], power quality analysis [7],
computer vision [8], biomedical and medical applica-
tions [9], neuroscience [10,11], control engineering [12],
computer security [13], GPS data analysis [14], air
tra�c control [15], and �nancial application [16].

Adeli and Yeh [17] introduced the �rst applica-
tion of ANNs in civil engineering published in any
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journal. Since then, many techniques and method-
ologies based on ANNs have been employed in the
civil engineering discipline for optimization, control,
identi�cation, and prediction problems, among others.
Adeli [18] presented a review of applications of ANNs
in civil engineering published in the period 1989 to
2001. This article presents a review of the recent
applications of ANNs for civil infrastructure including
structural system identi�cation, structural health mon-
itoring, structural vibration control, structural design
and optimization, prediction applications, construction
engineering, and geotechnical engineering.

2. Structural system identi�cation

Structural System Identi�cation (SSI) is an important
topic in modern structural engineering [19,20]. The
aim of SSI is to develop a mathematical model for
a structural system based on a set of inputs and
corresponding output measurements [21,22].
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ANNs can be used to estimate a learning model
based on a set of input-output measurements in order
to identify a structural system. Huang et al. [23]
employed a back-propagation neural network for mod-
eling and identifying the dynamic characteristics of a
building during strong earthquakes. They used a �ve-
story frame subjected to di�erent strengths of the Kobe
earthquake to validate the feasibility and reliability of
the method for estimating the changes in structural
response under di�erent levels of earthquakes. Hung et
al. [24] noted that the implementation of ANNs in SSI
su�ers from the lack of an e�cient constructive method
for approximating nonlinear systems as found in large-
structures, as well as the problems of local minima and
convergence e�ciency.

Zhang and Benveniste [25] proposed the combi-
nation of wavelet transform [26-27] and neural net-
works, called Wavelet Neural Network (WNN), as a
method to approximate arbitrary nonlinear functions.
WNN has been used and adapted by a number of
researchers for SSI of civil infrastructure in the past
two decades. Hung et al. [24] used the WNN for
nonparametric identi�cation of a �ve-story test frame
subjected to simulated seismic loadings on a shake
table and reported a maximum error of 28% with
reduced training e�orts for the WNN compared with
the standard ANN.

Adeli and Jiang [28] observed that the WNN
method for SSI also su�ers from: 1) lack of an e�cient
constructive model; 2) the need for calibration of its
parameters by trial and error; 3) the dependency of the
results on noise contained in the signal; and 4) poor
identi�cation accuracy when measured data include
imprecision, which is often the case. To overcome
these limitations, Adeli and Jiang [28] presented a novel
multi-paradigm dynamic time-delay fuzzy WNN model
for nonparametric identi�cation of civil structures us-
ing the nonlinear autoregressive moving average with
exogenous input model through adroit integration
of wavelets, chaos theory, and two computational
intelligence techniques, neural networks, and fuzzy
logic. Further, they presented an adaptive Levenberg-
Marquardt-least squares algorithm with a backtracking
inexact linear search scheme for training the model.
The proposed model was validated using two high-rise
building structures: a twelve-story and a twenty-story
steel frames. The results showed that the proposed
approach is e�cient for modeling large-scale structures
with nonlinear and noise-contaminated measurements
of structural response under extreme loadings. In all
cases, they reported a maximum error of less than
about 3%, and concluded that this approach can help
structural engineers design more e�ective earthquake-
resistant structures [29].

In their seminal book, Adeli and Hung [30]
demonstrated adroit integration of the three compu-

tational intelligence computing paradigms: neural net-
works, fuzzy logic, and evolutionary computing; they
can solve complicated pattern recognition problems
more e�ectively than either one of them individually.
Since then, a large number of articles have been
published on hybridization of these methods such as
neuro-fuzzy algorithms [31]. Wang and Shi [32] used an
Adaptive Neuro-Fuzzy Inference System (ANFIS) for
identi�cation of Magneto-Rheological (MR) dampers.
It is capable of approximating nonlinear systems, but
is computationally intensive requiring signi�cant com-
putational resources. To overcome this shortcoming,
Mitchell et al. [33] integrated the wavelet transform
with ANFIS to create WANFIS to approximate the
nonlinear behavior of a three-story building equipped
with an MR uid damper subjected to four di�erent
earthquakes: El-Centro earthquake, Kobe earthquake,
Hachinohe earthquake, and Northridge earthquake.
They reported the results with a maximum error
of 23%. In recent years, MR dampers have been
advocated as an e�ective tool for semi-active control
of structures.

Arsava et al. [34] presented a Time-delayed Adap-
tive Neuro-Fuzzy Inference System (TANFIS) for ap-
proximating the behavior of a cantilever aluminum
plate beam equipped with nonlinear MR dampers
and subjected to impact loads. Zhou et al. [35]
presented a response surface method based on Ra-
dial Basis Functions (RBF) for model-updating of
cable-stayed bridges. Khalid et al. [36] presented a
dynamic Recurrent Neural Network (RNN) [37] for
nonlinear hysteretic identi�cation of a small-scale MR
damper.

Sun et al. [38] presented a statistical Bayesian
inference-based regularization method for identi�cation
of structural parameters and external loadings using
state space models. They applied the model to a 6-
DOF shear type building and a 15-bar truss bridge.
Recently, Perez-Ramirez et al. [39] presented a novel
methodology for modal parameters identi�cation of
civil structures using Random Decrement Technique
(RDT), Synchrosqueezed Wavelet Transform (SWT),
the Hilbert Transform (HT), and the Kalman Filter
(KF). The e�ectiveness of the proposed approach was
�rst validated using numerical and experimental data
of a benchmark 4-story steel frame subjected to ambi-
ent vibrations. The methodology was then employed to
determine the natural frequencies and damping ratios
of a real-life bridge. Their results showed accurate
identi�cation of the natural frequencies and damping
ratios even when the signal is embedded in high-level
noise. Perez-Ramirez et al. [40] presented a state-
of-the-art review of the time-frequency techniques for
modal parameters identi�cation of civil structures from
acquired dynamic signals and the factors a�ecting their
estimation accuracy.
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3. Structural health monitoring

Civil infrastructure is susceptible to damage and dete-
rioration during its service life. SHM is an emerging
technology that can be utilized for early damage detec-
tion and reliability assessment of the structure and to
take remedial measures to improve public safety.

In the last two decades, ANNs have been used as
an important tool for SHM of civil structures with the
feedforward architecture, which is the most commonly
used [41]. Hung and Kao [42] showed that the optimal
weights of the approximating arti�cial neural networks
can be used to detect structural damage. They trained
two ANNs: one to determine undamaged and damaged
states and the other to locate the damage. Sun and
Chang [43] decomposed the energies of signals using
wavelet packet transform [44] and used them as inputs
into an ANN for damage assessment. They noted that
the energies are sensitive to structural damage, and
therefore can be used to identify damage occurrence,
location, and severity. Lee et al. [45] presented an
ANN method for damage detection in bridges where
the modal properties are used as discriminant features.

Fang et al. [46] proposed the use of Frequency
Response Functions (FRFs) as input data to train a
backpropagation neural network to detect and locate
damage in a cantilevered beam subjected to harmonic
excitations applied at the tip of the beam. Lam et
al. [47] used measured Ritz vectors and a multilayer
perceptron ANN to detect, locate, and quantify the
severity of damage in a 2D truss structure subjected
to forced excitations. Ni et al. [48] presented seismic
damage identi�cation using a combination of Principal
Component Analysis (PCA), FRF, and a multilayer
perceptron ANN and the test results on the scaled
model of a 38-story RC structure. Xu and Humar [49]
used a feedforward ANN to detect, locate, and quantify
damage severity in the Crowchild Bridge located at
northwest Calgary, Alberta. Energy was used as inputs
to train the neural network for damage detection.
Mehrjoo et al. [50] used a multilayer perceptron ANN
to detect, locate, and quantify damage severity in
the joints of two truss bridge structures subjected
to dynamic excitations. The natural frequencies and
mode shapes of structures were used as inputs to train
the ANN for damage detection.

Similar to the work proposed by Ni et al. [48], Li
et al. [51] employed the FRF-PCA-ANN approach for
monitoring the health condition of a beam subjected
to forced excitations. The authors observed that
results are susceptible to noise, producing errors in the
quanti�cation of the damage severity, and location of
the damage in the beam. Similar methodologies were
proposed by Samali et al. [52] for damage detection
in a two-story frame structure subjected to forced
excitations. Other applications of multilayer percep-

Figure 1. Architecture of a probabilistic neural network.

tron ANN tested under noisy signal were presented by
Garcia-Perez et al. [53] and Shu et al. [54] for monitor-
ing the health condition of a 3D truss-type structure
subjected to forced excitations and a railway bridge
model subjected to dynamic excitations produced by a
train.

Probabilistic Neural Network (PNN), another
feedforward architecture based on the probabilistic
Bayesian criteria has gained attention in SHM in
recent years. It presents a relatively quick training
speed, good network fault tolerance, and strong pat-
tern classi�cation ability compared with the multilayer
perceptron [55]. Figure 1 shows a typical architecture
of PNN. It consists of an input layer, a pattern layer,
a summation layer, and the output layer. Jiang et
al. [56] used PNN to detect and locate single- and multi-
damage patterns in a 2D 7-storey steel frame. Damage
scenarios were simulated by reduction of the sti�ness
in each story unit. Zhou et al. [57] discussed damage
localization of Tsing Ma cable-supported bridge using
modal frequency data and PNN with an accuracy of
85%. Butcher et al. [58] discussed defect detection in
reinforced concrete using random neural architectures.

Story and Fry [59] used a competitive array of
neural networks to detect damage in a 100-year old
railroad drawbridge. Farrokh et al. [60] modeled the
hysteretic behavior with and without degradation in
frames using a generalized Prandtl neural network.
Dai et al. [61] used a multiwavelet neural network-
based method to detect damage in a 2D truss structure
subjected to dynamic excitations.

The great majority of the published SHM papers
deal with small or academic exercises as noted in the
previous paragraphs. Transferring the SHM technology
from academic examples to large real-life structures
represents a number of challenges such as the rather
large number of sensors needed and inordinate amount
of data collected. The problem is akin to �nding a nee-
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dle in a haystack. An approach for SHM of large civil
structures was proposed by Jiang and Adeli [62]. They
presented a damage detection methodology through
integration of the wavelet transform, ANN, fuzzy
logic, and the multiple signal classi�cation (MUSIC)
method and veri�ed the matter by applying it to
damage identi�cation of the scaled model of a 38-story
reinforced concrete structure subjected to synthetic
seismic excitations. Fuzzy logic was used to model
the imprecision in the model. The results showed that
the proposed approach is e�ective for distinguishing
a healthy structure from a damaged structure and
quantifying the damage severity broadly such as minor,
moderate, or severe. Therefore, it can be used as a
powerful tool for real-time health monitoring and non-
destructive damage evaluation of large civil structures.
Inspired by the work of Jiang and Adeli [62], Osornio-
Rios et al. [63] used the MUSIC-ANN analysis to locate
structural damage in a truss-type structure subjected
to vibrations.

4. Structural control

In the last two decades, a signi�cant amount of research
has been published on semi-active and active vibration
control of civil structures [64]. Brown and Yang [65]
used an ANN for multi-objective active vibration con-
trol of a simple lumped-mass beam model. Jha and
He [66] employed a multilayer-perceptron ANN to con-
trol vibrations of a cantilever beam subjected to forced
excitations. Madan [67] used a counter-propagation
neural network for active earthquake-induced vibration
control of eight-story building structures. Similar
research was reported by Kim and Lee [68], Wang
and Liao [69], and Xu and Guo [70] on the use of
ANN for active vibration control of structures. The
aforementioned works are concerned about ANN-based
control of mostly small structural systems.

In recent years, research articles have been pub-
lished on development of new hybrid approaches for
active and semi-active vibration control of large struc-
tures. Jiang and Adeli [71] proposed a nonlinear control
model for active vibration control of large multi-story
structures through integration of two soft computing
techniques, ANN and fuzzy logic, and wavelets. They
created a dynamic fuzzy wavelet neuroemulator and
applied it to a twelve-story building structure with
vertical setbacks and an eight-story building structure
with plan irregularity.

Recently, other works have been published on
active vibration control of large structures using WNN.
Figure 2 shows a typical architecture of WNN. It is
similar to the feedforward ANN architecture; however,
in the hidden layers, a wavelet is used as activation
function. Laamme et al. [72] implemented a WNN-
based control algorithm for vibration control of a 39-

story o�ce tower located in Boston subjected to wind
loading. The structure was equipped with MR uid
dampers on every other story from the 5th oor to
the 34th oor. The Mexican hat wavelet was used in
the neurocontroller. The authors reported a signi�cant
acceleration reduction compared with a traditional
feedforward ANN.

Wang and Adeli [73] presented an adaptive con-
trol algorithm for nonlinear vibration control of large
structures subjected to dynamic loading. It is was
on integration of a self-constructing WNN developed
speci�cally for functional approximation of the non-
linear behavior of large structures with an adaptive
fuzzy sliding mode control approach. A fuzzy com-
pensation controller was used to reduce the chattering
phenomenon encountered in the sliding mode con-
trol. They tested the algorithm on a seismically ex-
cited continuous cast-in-place prestressed concrete box-
girder highway bridge benchmark problem provided in
Agrawal et al. [74].

Hashemi et al. [75] proposed a WNN algorithm for
semi-active control of a nine-story building structure
equipped with MR dampers. In order to enhance the
building performance by minimizing its response, the
parameters of WNN were optimized using a Genetic
Algorithm (GA) [76]. The e�ciency of the proposed
method was compared with a feedforward ANN, a
linear quadratic Gaussian controller, a clipped optimal
controller, and a GA and fuzzy inference-based con-
troller.

5. Design and optimization

The Load Factor Design (LFD)-based rating of steel
bridges requires a detailed description of the steel

Figure 2. Architecture of a wavelet neural network.
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girder's geometric properties that may not be available
for bridges rated on the older Working Stress Design
(WSD). Sirca and Adeli [77] presented a counter-
propagation ANN for estimating the section properties
of steel bridge girders. The result of this research is
used in an intelligent decision support system to help
bridge engineers convert a WSD-based bridge rating to
the LFD-based rating.

Design optimization by its very nature is iterative;
in structural design optimization, it usually means a
structural analysis in every iteration. A large number
of structural analyses can make optimization of large
structures computationally expensive and impracti-
cal on standard workstations. As such, researchers
have proposed schemes for approximate reanalysis.
Jenkins [78] proposed structural reanalysis using a
neural network-based iterative method. Garz�on-Roca
et al. [79] used an ANN to estimate the axial behavior
of brick masonry walls in the design or assessment of
brick masonry walls as a function of four parameters:
load eccentricity, slenderness ratio, sti�ness, and tensile
strength.

One of the �rst applications of ANN in optimiza-
tion of civil structures was presented by Adeli and
Park [80] who developed a neural dynamic model for
optimization of large civil structures through adroit
integration of Lyapunov stability theorem, a penalty
function method, Kuhn-Tucker conditions, and neural
dynamic concepts. The Lyapunov function is used to
guarantee that the solution for the dynamic system
maintains the equilibrium point without increasing the
objective function value. The model was subsequently
patented and applied to high-rise and super high-rise
building structures including a 144-story super high-
rise building structure [81]. Employing the neural
dynamics model of Adeli and Park [80], Tashakori
and Adeli [82] presented a method for optimization of
space structures made of cold-formed steel. This is
a complicated nonlinear optimization problem because
an e�ective reduced area needs to be calculated for
each member in compression as a function of the com-
pressive stress and its width-to-thickness ratio to take
into account the nonuniform distribution of stresses
in thin cold-formed shapes due to torsional/exural
buckling. The resulting constraints are implicit, non-
smooth, and discontinuous functions of design vari-
ables. They presented several examples of minimum
weight design of space truss roof structures used in
commercial buildings and canopies including one with
432 nodes and 1548 members. Amini and Tavassoli [83]
trained an ANN for optimization of control force and
the number and location of controllers in a vibration
control system.

Some authors presented research on hybridization
of ANN with other computational intelligence tech-
niques such as GA and fuzzy logic with the goal of

improving the accuracy, e�ciency, or stability of the
algorithm. Salajegheh and Gholizadeh [84] combined
GA with ANN for �nding the optimal weight of a
25-bar 3D space tower and a 1300-bar grid space
dome. The authors reported that the use of ANN
improves the convergence speed of the GA for large
structures. Gholizadeh et al. [85] combined GA with a
wavelet radial basis function neural network for weight
minimization of a 10-bar aluminum truss and a 200-bar
steel double layer grid. Salajegheh and Heidari [86]
presented the use of WNN and �lter banks for opti-
mum design of structures under earthquake excitations.
Lagaros et al. [87] utilized an evolutionary algorithm
to tackle seismic reliability-based size and topology
optimization of a seven-story steel frame using a back-
propagation ANN. Salajegheh et al. [88] discussed
optimal design of a 120-bar geometrically nonlinear
space truss using an Adaptive Neuro-Fuzzy Inference
System (ANFIS). Dai and Wang [89] presented an
adaptive wavelet frame neural network method for e�-
cient reliability analysis. Similar works were presented
by Lee and Shin [90] and de Santana Gomes and
Beck [91].

Gholizadeh and Mohammadi [92] combined par-
ticle swarm optimization [93-95], bat algorithm,
and wavelet backpropagation neural networks for
reliability-based seismic optimization of steel moment-
resisting frames. They applied the model to a three-
story steel frame.

6. Prediction applications

The goal of a prediction task is to learn about the
features or conditions about the future behavior of a
dynamic system where ANN has been shown to be
a useful tool. In general, application of prediction
algorithms and methodologies in civil engineering has
focused on two main topics. The �rst one is related
to the prediction of certain features of a project such
as cost, strength, safety, functionality, accuracy, or
durability, among others. The other is the prediction of
damage or deterioration conditions of an infrastructure
during its service life in order to avoid or minimize the
negative consequences.

ANN has been proposed for prediction of com-
pressive and shear strength of reinforced concrete.
Lee [96] used a modular neural network for predicting
the concrete strength. Kim et al. [97] used the
probabilistic neural networks for prediction of con-
crete strength based on mix proportions. Gupta et
al. [98] presented a neural-expert system for prediction
of concrete strength based on concrete mix design,
size and shape of specimen, curing technique and
period, among others. Pham and Hadi [99] predicted
stress and strain in Fiber Reinforced Polymer (FRP)-
con�ned square and rectangular columns using ANN.
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They reported an estimation error of less than 5%.
Recently, Ra�ei et al. [100] presented a comprehen-
sive review of neural network, machine learning, and
evolutionary approaches for concrete material charac-
terization.

Panakkat and Adeli [101] presented a review of re-
search on earthquake prediction including applications
of neural networks. Panakkat and Adeli [102] presented
neural network models for earthquake magnitude pre-
diction using multiple seismicity indicators. They [103]
also presented an RNN for approximate earthquake
time and location prediction. Adeli and Panakka [104]
presented a probabilistic neural network for earth-
quake magnitude prediction. Alavi and Gandomi [105]
combined ANN with Simulated Annealing (SA) to
predict the peak time-domain characteristics of strong
ground motions such as peak ground acceleration,
peak ground velocity, and peak ground displacement
based on earthquake magnitude, earthquake source to
site distance, average shear-wave velocity, and faulting
mechanisms.

Performance, loading capacity, and costs are
among important considerations in civil engineering
projects. Brown et al. [106] used the Levenberg-
Marquardt backpropagation neural network for struc-
tural response prediction and control. Fall et al. [107]
used ANN for prediction of stability and performance of
an active aluminum panel structure under uncertainty
conditions. Dahou et al. [108] used a multi-layer
perceptron to model steel-concrete bond and predicted
the ultimate pull-out load. Petroutsatou et al. [109]
used a multilayer feed-forward neural network and
a general regression neural network to predict the
construction costs of a road tunnel. They reported the
latter yields better results in most cases.

de Lautour and Omenzetter [110] used ANN
to predict seismic-induced structural damage in 2D
reinforced concrete frames based on the variation of
structural properties such as sti�ness, strength, and
damping. Zhang et al. [111] used ANN and cellular
automata for predicting the cracking pattern of ma-
sonry walls. Al-Rahmani et al. [112] used ANN to
predict the most probable cracking pattern in bridge
girders. Elshafey et al. [113] estimated the crack
width in thick concrete elements using RBF neural
network.

Other schemes of neural networks have been also
presented for prediction tasks. Zhang and Zhang [114]
used an RBF neural network for the prediction of
interference e�ects in buildings caused by other ad-
jacent buildings under wind loading. Lee et al. [115]
presented a methodology for prediction of long-term
deterioration in bridge elements using a recurrent
neural network. Freitag et al. [116] also used an RNN
and fuzzy logic for predicting uncertain time-dependent
structural responses.

7. Construction engineering

Patel and Jha [117] used a feedforward backpropaga-
tion ANN to predict safety climate in a construction
project. Ten basic requirements of safety climate
in construction projects are used as inputs, and the
safety climate measure of the project is the output.
Training data is based on analysis of more than 250
questionnaires surveyed across the country. Sensitiv-
ity analysis revealed that management commitment,
supervisory environment, appraisal of physical work
environment, work hazard, and providing training and
skill development to workers have signi�cant roles
on safety climate. They also found that employees'
involvement and competence have less inuence on
safety climate.

Heravi and Eslamdoost [118] also used a feedfor-
ward backpropagation ANN for measuring and pre-
dicting labor productivity in construction projects in
developing countries. Labor productivity is studied
in the concrete work of gas, steam, and combined
cycle power plant construction projects in Iran. The
model found that labor competence, poor decision
making, motivation of labor, suitable site layout, and
proper planning are the most inuential factors in labor
productivity. They noted that their work is only a start
to better and more in-depth studies for predicting labor
productivity.

Deep machine learning techniques [119] are among
the newest techniques to �nd applications in civil
engineering. Predicting the price of housing is of
paramount importance for near-term economic fore-
casting of any nation. Recently, Ra�ei and Adeli [120]
presented a novel model for predicting the price of
new housing in any given city at the design phase or
beginning of the construction through integration of a
deep belief restricted Boltzmann machine and a unique
non-mating genetic algorithm. The model can be used
by construction companies to calculate the sale market
before they start a new construction.

8. Geotechnical engineering

Tarawneh [121] presented a backpropagation ANN
model to predict pipe pile setup using 104 data points
to train the model. The author reported that the model
can predict the settlement of piles with 96% accuracy
outperforming the empirical formulas commonly used.
Sensitivity analysis indicated that the inputs with the
most signi�cant e�ect on the pipe pile setup are pile
diameter, pile length, soil type, the average e�ective
stress at tip, and time.

Araei [122] proposed a backpropagation multi-
layer perceptron neural network to model the mechan-
ical behavior of angular and rounded rock�ll materials
including deviator stress, axial strain, and volumetric
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strain. Data from 82 drained triaxial tests were used
to train the model. Their results indicated that the
trained ANNs are capable of accurately simulating
and generalizing the complex mechanical behavior of
rock�ll materials and can be used to simulate arti�cial
triaxial tests under similar conditions without the
need for complicated and time-consuming laboratory
experiments.

Shahin [123] presented an RNN for prediction
of the full load-settlement response of drilled shafts
(bored piles) subjected to axial loading. The model
was trained using existing pile load-settlement tests
and Cone Penetration Test (CPT) data. It works well
interpolating data, but when data outside the training
range are presented, prediction accuracy decreases.
This can be improved by updating the model using new
training examples of wider ranges as new data become
available.

9. Conclusions

During the last two decades, ANNs have played an
important role in structural engineering research. This
paper presented an overview of recent applications of
ANNs in structural system identi�cation, structural
health monitoring, structural vibration control, design
and optimization and, prediction applications, con-
struction engineering, and geotechnical engineering in
recent years. The most common ANN used in struc-
tural engineering is backpropagation neural network
followed by RNN and RBF neural networks. In recent
years, newer hybrid techniques have been used in struc-
tural engineering by a number of researchers such as
the neuro-fuzzy inference system, time-delayed neuro-
fuzzy inference system, and wavelet neural networks.
A recent application of deep neural network learning
model in construction has been presented in this paper.
In addition, Cha et al. [124] presented deep learning-
based crack damage detection using convolutional neu-
ral network. Other applications of deep neural network
learning model should follow.
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