
 

1 
 

 
 

   
 

 
 

A method for Sub-optimal control of the delayed 

fractional order linear time varying systems with 

computation reduction approach 

 
Mehdi Yousefi Tabari

 a,*, Zahra Rahmania, Ali Vahidian Kamyad b,  Seyed Jalil Sadati 

Rostamia 
 

a. Department of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran. 

b. Ferdowsi University of Mashhad, Mashhad, Iran. 
 

 

 

Abstract. A method for designing suboptimal control for a class of delayed fractional 

systems is proposed in this paper. Despite theoretical advances in fractional mathematics 

and computational techniques for solving fractional optimal control (FOC) problems, as 

well as a lack of comprehensive analytical methods, numerical methods have been 

developed. For this purpose, in this study, the necessary optimal conditions for the time-

delay fractional optimal control (TDFOC) problem are presented first; Then an 

algorithm for the numerical solution to this problem is suggested. This algorithm is 

based on a fractional derivative approximation and linear interpolation for delayed 

arguments. According to this method, the TDFOC problem is transformed into a system 

of algebraic equations that can be solved numerically. The proposed method's efficiency 

is assessed by solving several numerical examples. 

 

 

 

 

1. Introduction 

The generalization of classical optimal control theory dates back to 1950 with its applications in the aerospace 

industry during the Cold War [1, 2]. The dynamics considered for the system in the case of classical optimal 

control have been in the form of integer order differential equations, whereas research has shown that more 

accurate dynamics of many systems are expressed based on differential equations including fractional derivatives 

[3-7]. Time-delay fractional systems is an important category of systems that control and optimization of them 

have been attracted by most researchers. But, the time delay makes the analysis and control of these systems 

more complex than ever. Therefore, the suggestion of new analytical and numerical methods for finding a 

solution for delay fractional optimal control (DFOC) problem is one of the challenging issues that are under 

study. However, little research has been conducted in this area. The presence of delay in fractional variation 

problems has been discussed in [8-11], but no specific solution method for the obtained equations has been 

presented in these references. Bernstein polynomials (BP) are used as basic functions in [12], to solve the FOC 

problem with constant delays in the system's states. The authors of [13], used BPs to solve the FOC problem with 

constant delay in both control and system state. Furthermore, a linear dynamic system is considered in this paper, 

and the initial state is also a constant function. New operational matrices for the orthogonal polynomial of 

Legendre Shift are proposed in [14], which are used as basic functions to solve the DFOC problem. The DFOC 

problem is transformed into a linear programming (LP) problem in [15], for sub-optimal control of delayed 

fractional-order systems whose dynamics include Riemann-Liouville fractional derivatives (RFDs) using an 

algorithm based on an approximation for fractional derivatives and a discretization approximation for delay and 
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advance terms. In [16], using the Pade approximation to solve the DFOC problem, the problem of delay is 

transformed into a problem without delay. Then the FOC problem is reduced to a nonlinear programming 

problem using the Fractional Derivative functional matrix of the Montes polynomial and the spectral method. 

[17], presents a method for solving DFOC problems based on fractional order Lagrangian polynomials (FLP) and 

a correlation method. The DFOC problems were solved using a combination of the fractional power series 

method and neural networks in [18]. In [19], an efficient direct numerical method for obtaining an approximate 

solution to the DFOC problems is proposed using orthogonal Chelishkov wavelets and operational matrices. 

Based on an embedding process and the use of fractional derivative, [20], proposes a new definition of fractional 

integral and derivative. Because of recent advances, many studies have focused on DFOC problems, numerical 

solutions, and applications. Active damping of flexible structures, generalized viscoelastic models, biomedical 

and bioengineering, optics and image processing are some applications [21-25].  

Given that the field of fractional optimal control research is a new area for systems with time delay and usually 

has complex problems, generally there is no analytical technique to solve them. For this reason, searching strong 

and accurate numerical methods to solve their various types has become an active research field [15, 20]. 

The aim of this paper is to present a method of designing sub-optimal control for a class of delay fractional 

systems whose system dynamics are expressed by Caputo Fractional Derivative (CFD). To that end, this study 

first presents the necessary optimal conditions for the time-DFOC problem, followed by a new technique for 

numerically solving this problem. This algorithm is based on a fractional derivative approximation and linear 

interpolation for delayed terms. According to this method, the TDFOC problems are transformed into a system of 

algebraic equations that can be solved numerically using this method. The proposed method's efficiency is 

assessed by solving several numerical examples. 

So the innovation of this article is due to:  

 Proposing an approximation for Caputo Fractional Derivative (CFD). 

 Linear interpolation is proposed to discretize delay terms in delay systems. 

 Using Grünwald–Letnikov approximation (GLA) for fractional derivatives. 

 The research problem is converted into a linear programming (LP) problem. 

 The method enjoys less complexity, computational load, and processing time. 

The following sections of this paper are organized as follows. Part two explains the problem's definition. Section 

three explains the proposed method. Section 4 shows the simulation results and comparison results. Section 5 

contains the conclusions. 

 

2.  Definitions and Statement of the Problem 

2.1 Definitions 

In this section, common definitions are given for fractional derivatives: 

 Suppose    : ,p z a b   is a time-dependent function, 0   is a fractional derivative order, and   1n   . 

 So, RFD and CFD are defined as [3-5]:  
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Assume that 0 1   and 0 1   are the generalizations of binomial coefficients, which means: 
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𝛽 can be any integer or real, then left and right Grünwald–Letnikov fractional derivatives (GLFDs) to-be defined as 

follows: 

The left GLFD 
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The right GLFD 
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Also, if 𝛽 is an integer, it can be written 
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The following relationships are also useful relationships between Riemann–Liouville and Caputo derivatives 

[26]: 
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2.2 Statement of the Problem 

The performance index (PI) or dynamics of the system, or both, contained at least one fractional derivative as 

well as the time delay in a DFOC problem. The goal of this paper is to solve the delay fractional optimal control 

problem in order to obtain optimal control for systems whose dynamics include fractional derivatives of Caputo 

as well as the state variable with constant time delay, which is defined as (12) and (13). The goal of the delay 

optimal control problem is to find the optimal control 𝑢∗(𝓏) for a delay fractional dynamic system so that the 

following PI is minimized. 
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In this case, the system dynamics and initial state are considered as follows: 



 

4 
 

 z (13) 

Where 
np  and mu  are the state and control vectors, respectively. n nQ   and m mR   positive semi-

definite and positive matrices, The parameter  
0

C
z zD p z  shows the left CFD of  p z ,  a z and  c z are 

continuous matrices with the appropriate dimensions, 0   denotes delay which is supposed constant, and 𝑏 is 

constant matrix, and  z  is the specified initial state function. In addition, it isassumed to be 0 1  . 

 

 

3. The Proposed Method 

3.1 Formulation of the DFOC PROBLEM  

This research is done in two main parts. The first section describes how to obtain the Euler-Lagrange equations in 

systems with delay fractional dynamics to establish the necessary optimality conditions. The necessary optimality 

conditions for a boundary value problem, including the delay arguments, are obtained in this section by 

introducing the Lagrangian multiplier  z  and using variational methods. Then the optimal control law  *u z  is 

computed by solving this boundary value problem and using equation (23). Assume that the initial state 𝛾(𝓏) and 

initial time 𝓏0 are definite to demonstrate the necessary optimality conditions. If we define Hamilton's function 

ℋ as follows: 
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Then the following equations are necessary conditions which must be established in the whole-time range 

[𝓏0, 𝓏𝑓], [15]:  
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The equations above represent the Euler-Lagrange equations for DFOC problems. These equations take into 

account both the right and left fractional derivatives. Furthermore, these equations have both time delay and 

advance, making solving them difficult and complex. The following equations can also be obtained by 

minimizing the cost function (12), [15]: 
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Based on (21) to (19) which are substituted into (13), the following equations are achieved: 
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and    1 TV z bR z b  . Therefore, the state and co-state variables  p z  and  z  are considered by the boundary 

value problem. Then, using equation (20), the optimal control law  *u z  becomes as follows [15]:  
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As it turns out, (22) is a boundary value problem with delay and advance terms. This problem is not 

insurmountable, but it is extremely difficult to solve. To address this issue, a novel numerical method for 

determining the state and co-state variables will be developed in the next part. 

 

3.2. Discretization and Approximation 

In the second part of this research, in order to find a solution for the resulting equations numerically, the whole 

time domain 0 ,   fz z    is separated into N equal sub-domains first, each scale of which is represented by 1/ N  

and the time at node j is jz j . The nodes are labelled 0, 1, ..., N. The GLA for the RFDs is as follows [27] and 

[5]: 

0

0

1
  .  ,            1     

i

z z i i jj

j

D p p i to N 


 



   (24) 

1
  .  ,      0    1 

f

N

z i jj iz

j i

D i to N 


  



    (25) 
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From equations (10), (11), (24) and (25), the GLA for Caputo fractional derivatives can be obtained, which is a 

new method for approximating CFDs in solving DFOC problems. 
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By using the GLA and equations (26) and (27), equation (22) is rewritten for numerical solution: 
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Moreover, linear interpolation [28] is applied to approximate delay terms. The linear function T between two 

points   ,a af  and   ,b f b , for the function f in the domain  ,a b  is as follows: 
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In equation (28), the purpose is to do linear interpolation for the function 𝑝(𝓏𝑖 − 𝜂) and  iz   in the range
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    , and R  and q Z  for delay arguments, the interpolation function is as follows:  
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To solve equations (28) numerically and convert them to linear equations, equations (30) and (31) can be used to 

approximate the delay and advance terms with linear interpolation:  
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Now, by replacing (34) and (35) in (28), the linear form of system for solving with i equation is obtained.  
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(36) 

The proposed method converts the DFOC problem (28) into a linear system of algebraic equation (36), with 



 

7 
 

linear interpolation approximation for the delay arguments, which can be easily solved. 

 

3.3. Proposed Method Algorithm 

Block diagram of the proposed algorithm has been revealed in Figure 1. 

Therefore, the special highlight of the proposed algorithm can be considered as follows: 

 The system's dynamics are based on the CFD. The delay is in the state variable. 

 Using the indirect method of the Pontryagin principle in solving the optimal control problem. 

 Using linear interpolation and GLA for delay arguments and CFDs. 

 Converting the DFOC problem into a LP problem. 

 Capability of solving DFOC problems, with non-integer delay. 

 Efficiency, simplicity and less processing time than other methods. 

4. Numerical Results 

The effectiveness and validity of the proposed method are investigated in this section using numerical examples. 

For the examples presented, the numerical results obtained by the proposed algorithm are compared to similar 

existing results in the literature. 

Example 1. The following DFOC problem is as follows: 

    
0

2 21
min ,

2

fz

z
J p z u z dz   (37) 

 

 

 

subject to 

     

 
0

1 , 0,2 ,

1,                                      1,0 .

C
z zD p z p z u z z

p z z






     

   

 (38) 

  0a z  , 1b  ,  1,   1c z   , 1,Q R   are considered in example 1. So, the optimality conditions provide in 

(28) are converted as follows: 

     

       

 

 

0

2

1 ,    0,2 ,

1 , 0,2 ,

1,                                             1,0 .

2 0.  

C
z

C
z

D p z p z z z

D z p z g z z z

p z z







 











     

     

  





 (39) 

Using the equations in section 3.2, we first discretize the problem, then, then, to numerically solve (39) and 

convert them to linear equations, use (30) and (31), we approximate the delay and advance terms with linear 

interpolation:  

 

1
1 2

1 1

1

1 1
          , 

1 q

i q i q

q q q q

q i

z z z z
m m

z z z z

z z z



 



   
 

 

  

 (40) 

 

1
3 4

1 1

1

1 1
          , 

1 q

i q i q

q q q q

q i

z z z z
m m

z z z z

z z z



 



   
 

 

  

 (41) 
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     1 1 2

1

1    , 

1

i q q

q i q

p z m p z m p z

z z z





  

  
 (42) 

 

     3 1 4

1

1    ,

1

i q q

q i q

z m z m z

z z z

  



  

  
 (43) 

From equations (42), (43) and (39), the linear form is obtained for solving arguments including (39), using 

equation (36) with i equation. 

   

   
0 1 1 2

3 1 4

     ,      1   

     .     0    1
f

C
z z i i q i q i

C
z i i i q i qz

D p m c p z m c p z i to N

D p m g z m g z i to N







  





    



    


 (44) 

The proposed scheme in Section 3 is used to approximate solving the DFOC problem (39), for various values of ' 

𝛽’. Table 1 compares the PI value results of the proposed algorithm to those reported in other references for 𝛽 = 

1. Based on the results in Table 1, it is clear that the GLA method produces results that are in good agreement 

with the true solution given by [29], [30], [15] and [19]. Furthermore, it is clear that the values reported in [12] 

and [14] are less than those obtained in the other references; however, those values do not agree with the true 

value stated by [29]. For non-integer values of ' 𝛽’, the method proposed to solve this problem is used. Figures 2 

and 3 show the control and state functions for various values of ℓ and ‘𝛽’. As ℓ decreases, these figures confirm 

the convergence of the state and control variables. The graphs and responses get closer to the integer-order 

solutions as the fractional derivative of ‘𝛽’ approaches one. The results in Table 2 show that the numerical results 

have good convergence as the number of interpolation intervals increases, and the accuracy increases as the time 

step size ℓ is decreased. Furthermore, Table 2 lists the elapsed CPU time (in seconds) and the PI values J for 

various values of 𝛽. The results demonstrated that the LP method, when combined with the GLA and linear 

interpolation, is simple to implement and efficient in terms of computational effort reduction. 

Remark 1. Example 1 is solved by using the methods presented in the following papers. [29], employed 𝑌𝑁 

subspaces made up of functions that are piecewise constant on the delay interval [-h,0]. This is the well-known 

averaging approximation scheme. The authors of [30] used Walsh functions to solve the DFOC problem. The 

authors of [12], used the BPs to solve the FOC problem with constant delays in both control and state in system. 

New operational matrices for the orthogonal polynomial of Legendre Shift that are used as the basic functions to 

solve the DFOC problem are proposed in [14]. In [15], the Euler-Lagrange equations are investigated and 

explained for systems with delay fractional dynamics to establish the necessary optimality conditions for systems 

with RFDs in their dynamics. The DFOC problem was then converted into an LP problem using an algorithm 

based on a fractional derivative approximation and a delay term discretization approximation. In [19], using 

orthogonal Chelishkov wavelets and operational matrices, an effective numerical method is proposed to solve 

DFOCs approximately. [31], introduces discrete Chebyshev polynomials and thoroughly investigates their 

properties. Then a comparison has been made between the required CPU time and accuracy of the discrete and 

continuous Chebyshev polynomials methods. In [32] make use of these discrete orthonormal polynomials and 

their operational matrix, an efficient direct numerical method is proposed to approximate the solution of the 

TDFOC problem

 

Example 2. Let the DFOC problem is as follows: 

    
0

2 21
min ,

2

fz

z
J p z u z dz   (45) 

subject to 

       

 
0

1 , 0,2 ,

1,                                                    1,0 .

C
z zD p z zp z p z u z z

p z z






      

   

 (46) 

  , 1a z z b  , 1  ,   1c z  , 1Q R   are considered in example 1. So, the optimality conditions provide in 

(28) are converted as follows: 
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       

         

 

 

0

2

1 , 0,2 ,

1 , 0,2 ,

1,                                                      1,0 .

2 0.  

C
z

C
z

D p z zp z p z z z

D z p z z z g z z z

p z z







  











      

      

  







 (47) 

Using the equations in section 3.2, we first discretize the problem, then, then, to numerically solve (47) and 

convert them to linear equations, use (30) and (31), we approximate the delay and advance terms with linear 

interpolation: 

 

1
1 2

1 1

1

1 1
          , 

1 q

i q i q

q q q q

q i

z z z z
m m

z z z z

z z z



 



   
 

 

  

 (48) 

1
3 4

1 1

1

1 1
          , 

1 q

i q i q

q q q q

q i

z z z z
m m

z z z z

z z z



 



   
 

 

  

 (49) 

     1 1 2

1

1    , 

1

i q q

q i q

p z m p z m p z

z z z





  

  
 (50) 

     3 1 4

1

1    ,

1

i q q

q i q

z m z m z

z z z

  



  

  
 (51) 

By inserting equations (50), (51) and (47), the linear form is obtained to solve the system equation (47) using (36) 

with i equation, which can be easily solved. 

   

   
0 1 1 2

3 1 4

     ,      1   

     .     0    1
f

C
z z i i i i q i q i

C
z i i i i i q i qz

D p z p m c p z m c p z i to N

D p z m g z m g z i to N







   





     



     


 (52) 

The proposed described scheme that is presented in the section 3 is used to solve DFOC problem, (52), 

approximately for different amount of ‘𝛽’. For 𝛽 = 1, Table 3 compares the PI value results of the proposed 

algorithm to those of other algorithms in other references. According to Table 3, there is good agreement between 

the obtained results and those reported in [33], [34], and [19]. Furthermore, it is clear that the values reported in 

[35] and [36], are not good in compare with the other results. 

The method suggested to solve this problem is employed for non-integer values of ‘𝛽’. To investigate the 

convergence issue of the suggested algorithm, the obtained optimal values of PI with various ℓ and 𝛽 are 

presented in Table 4. In addition, in Figures 4 and 5, the state and control functions for various values of ℓ and 

‘𝛽’ are illustrated. The results indicate that the LP method combined with the GLA and linear interpolation is 

efficient, accurate, and simple. As the fractional derivative of ‘𝛽’ approaches 1, the graphs and responses get 

closer to the integer-order solutions. The results displayed in Table 5 reveal that the numerical results have a 

good convergence when the number of interpolation intervals rises. Moreover, in Table 4, the elapsed CPU time 

and the PI values for different values of 𝛽 are listed. It is observed that for the time step size 0.004 , the value 

of the cost functional is obtained PI within 0.069477 s of CPU time while in [35] is achieved within 62 s of CPU 

time and the value of PI for the [33] with step size 0.004  is obtained within 0.354545 s of CPU time (Table 

5). Therefore, the proposed algorithm is efficient, straightforward and reduces the computational labor, 

effectively; and less processing time than other methods. 

Remark 2: [36] solves an example using the Walsh functions presented in [30]. [35], investigates the optimal 

control of time-delay systems using iterative dynamic programming with systematic region contraction and 

accessible grid points. [19], proposes an efficient direct numerical method to solve the problem using orthogonal 

Chebyshev wavelets and operational matrices. [33], uses a second-order finite variation formula and a Hermite 

interpolation polynomial to modify DFOC problems with first order derivatives and a delay system in the form of 

a linear LP. For the proposed algorithm in [34], a hybrid of block-pulse functions and orthonormal Taylor 

polynomials is used. The proposed hybrid functions show convergence. The Laplace transform technique is used 

to build a hybrid function associated with a fractional integration operational matrix. [31], introduces discrete 
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Chebyshev polynomials and thoroughly investigates their properties. Then a comparison has been made between 

the required CPU time and accuracy of the discrete and continuous Chebyshev polynomials methods. In [32] 

make use of these discrete orthonormal polynomials and their operational matrix, an efficient direct numerical 

method is proposed to approximate the solution of the TDFOC problem. In [23] the method based on a hybrid of 

block-pulse and fractional-order Legendre functions is presented. 

 

 

 

5. Conclusion 

In this paper, a novel method for solving the DFOC problem using approximation and discretization is proposed. 

First, the necessary optimality conditions for the DFOC problem are introduced, and then a novel algorithm for 

numerical solution to this problem is proposed. This algorithm is based on the GLA for fractional derivatives and 

linear interpolation for delay arguments.  

The DFOC problem is transformed into a system of algebraic equations using this method. The research problem 

is converted into a LP problem, which is much easier to solve than the original problem, using this method. The 

results show that the LP method is efficient, effective, accurate, and simple because it is based on the GLA and 

linear interpolation discretization. It has less complexity and computational load than other methods, so it 

requires less time to process. The more fractional derivative of ‘𝛽’ approaches one, the closer graphs and 

responses get to an integer-order problem. Another key feature of this method is that it can solve the DFOC 

problem with a non-integer delay, which is impossible in a few methods. Finally, two examples demonstrate the 

efficiency and effectiveness of the proposed method. 

In future work, we will attempt to solve applied problems using the new method presented in this paper. Also, we 

intend to extend this method for solving DFOC problems with delay in control, multi-delay, and, nonlinear 

systems. 
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Figure 1. Block diagram of the proposed method. 
Table 1. The estimated value of PI for with 1   in compare with the other references (Example 1). 

Table 2. Simulation results of PI and CPU time given by the proposed algorithm for various values of 𝛽, N and 

ℓ (Example 1). 

Figure 2. Simulation curves of  p z  and  u z  done by the proposed algorithm for ℓ=0.001 and various amount 

of 𝛽 (Example 1). 

Figure 3. Simulation curves of  p z  and  u z  done by the proposed algorithm for ℓ=0.1 and various amount of 

𝛽 (Example 1). 

Table 3. The estimated value of PI for with 1   in compare with the other references (Example 2). 

Table 4. Simulation results of PI and CPU time given by the proposed algorithm for various values of 𝛽, N and 

ℓ (Example 2). 

Figure 4. Simulation curves of  p z  and  u z done by the proposed algorithm for ℓ=0.001 and various amount 

of 𝛽 (Example 2). 

Table 5. Comparison of the estimated value of CPU time with the other methods for ℓ=0.004 and 𝛽=1 in 

Example 2. 

Figure 5. Simulation curves of  p z  and  u z done by the proposed algorithm for ℓ=0.1 and various amount of 

𝛽 (Example 2) 
 

 

 

Figure 1. Block diagram of the proposed 

method 

 

DFOC problem becomes a system of algebraic 

equation, and it is solved numerically. 

Obtaining the Euler-Lagrange equations in 

systems with delay fractional dynamics to 

demonstrate the necessary optimality conditions 

Using variational methods, a boundary value 
problem including the delay arguments is solved, the 

necessary optimality conditions are obtained. 

Converting Hamiltonian necessary optimality 

conditions to a boundary value problem, including the 
delay terms  

To find a solution for the resulting equations 

numerically, the whole time domain [𝓏0, 𝓏𝑓]  is divided 

into N equal sub-domains 

Using GLA for Caputo 

fractional derivatives 

 

Using linear interpolation 
approximation for delay terms 
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Table 1. The estimated value of PI for with 1   in compare with the 

other references (Example 1) 

Method PI value J 

[12] 0.6381 

[14] 0.4727464 

[29] 1.6419 

[30] 1.6497 

[15] 1.6488 

[32] 1.6473 

[19] 1.6478 

[31] 1.6448 

Present method 1.6497 

 

 
Table 2. Simulation results of PI and CPU time given by the proposed 

algorithm for various values of 𝛽, N and ℓ (Example 1) 

𝛽 N ℓ J Cpu time 

0.7 

20 0.1 2.00184 0.001264 

40 0.05 1.85569 0.001716 

200 0.01 1.73703 0.011111 

400 0.005 1.71900 0.048459 

2000 0.001 1.69903 2.308480 

2500 0.0008 1.69744 3.409173 

0.8 

20 0.1 1.96718 0.001831 

40 0.05 1.82710 0.003027 

200 0.01 1.71817 0.010413 

400 0.005 1.70300 0.049863 

2000 0.001 1.68739 2.355534 

2500 0.0008 1.68620 3.418871 

0.9 

20 0.1 1.93109 0.002626 

40 0.05 1.79488 0.022449 

200 0.01 1.69297 0.008884 

400 0.005 1.68026 0.050579 

2000 0.001 1.66924 2.095672 

2500 0.0008 1.66858 3.498754 

1.0 

20 0.1 1.90721 0.031153 

40 0.05 1.77198 0.035863 

200 0.01 1.67185 0.057104 

400 0.005 1.65981 0.105847 

2000 0.001 1.65025 2.311920 

2500 0.0008 1.64977 3.450183 
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Figure 2. Simulation curves of  p z  and  u z  done by the proposed algorithm for ℓ=0.001 

and various amount of 𝛽 (Example 1) 

 

 

  

Figure 3. Simulation curves of  p z  and  u z  done by the proposed algorithm for ℓ=0.1 and 

various amount of 𝛽 (Example 1) 

 

Table 3. The estimated value of PI for with 1   in compare with the 

other references (Example 2) 

Method PI value J 

[35] 6.2677 

[36] 6.0079 

[33] 4.7967 

[34] 4.7985 

[32] 4:7921 

[19] 4.7967 

[31] 4.7832 

[23] 4.7967 

Present method (ℓ = 0.0002) 4.7978 

 

 

Table 4. Simulation results of PI and CPU time given by the proposed 

algorithm for various values of 𝛽, N and ℓ (Example 2) 

𝛽 N ℓ J Cpu time 

0.7 

20 0.1 5.96514 0.001310 

40 0.05 5.42788 0.001707 

200 0.01 5.00867 0.033933 

400 0.005 4.94809 0.052347 
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2000 0.001 4.88428 2.267731 

2500 0.0008 4.87943 3.660245 

0.8 

20 0.1 5.92840 0.001206 

40 0.05 5.39150 0.002673 

200 0.01 4.98512 0.017695 

400 0.005 4.93063 0.048707 

2000 0.001 4.87734 2.205480 

2500 0.0008 4.87353 3.694311 

0.9 

20 0.1 5.88059 0.001017 

40 0.05 5.33676 0.005412 

200 0.01 4.93665 0.012265 

400 0.005 4.88748 0.212383 

2000 0.001 4.84585 2.386488 

2500 0.0008 4.84344 3.389471 

1.0 

20 0.1 5.86231 0.010807 

40 0.05 5.30239 0.043361 

200 0.01 4.89390 0.058210 

400 0.005 4.84511 0.070769 

2000 0.001 4.80642 2.619932 

2500 0.0008 4.80449 3.329568 

 
Table 5. Comparison of the estimated value of CPU time with the other methods 

for ℓ=0.004 and 𝛽=1 in Example 2. 

Methods [35] [33] Present method 

Cpu time (s) 62 0.354545 0.069477 

 

  

Figure 4. Simulation curves of  p z  and  u z done by the proposed algorithm for ℓ=0.001 and 

various amount of 𝛽 (Example 2) 
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Figure 5. Simulation curves of  p z  and  u z done by the proposed algorithm for ℓ=0.1 and 

various amount of 𝛽 (Example 2) 

 


