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Abstract. Image Quality Assessment (IQA) refers to quantitative evaluation of the
human's perception of a distorted image quality. Blind IQA (BIQA) is a type of IQA that
does not include any reference or information about the distortion. Since the human brain
has no information about the distortion type, BIQA is more reliable and compatible with
the real world. Traditional methods in this realm used an expert opinion, such as Natural
Scene Statistics (NSS), to measure the distance of a distorted image from the distribution
of pristine samples. In recent years, many deep learning-based IQA methods have been
proposed to use the ability of deep models in automatic feature extraction. However,
the main challenge of these models is the need for many annotated training samples.
In this paper, through the inspiration of Human Visual System (HVS), a Generative
Adversarial Network (GAN)-based approach was proposed to address this problem. To this
end, multiple images were sampled from a submanifold of the pristine data manifold by
conditioning the network on the corresponding distorted image. In addition, NSS features
were employed to improve the network training and conduct the training process on the
right track. The testing results of the proposed method on three datasets con�rmed its
superiority over other the state-of-the-art methods.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, the explosive growth of social networks
has led to the production of a massive number of
images. It should be noted that digital images are
at the risk of distortion at any stage of their life
cycle. For example, during photography, variations
in focal length and camera angle can distort the
real image. In addition, there is high possibility of
compression, storage, transmission, and loss of received
visual information. To obtain high-quality images, it is
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necessary that a reliable quality assessment metric be
established. Evaluation of the image quality by experts
can be reliable and accurate; yet, it is practically quite
costly and time-consuming. Image Quality Assessment
(IQA), as part of the quality of experience measures
[1], is the automatic process of determining the level of
accuracy and perceptual quality of an image. IQA is an
applicable alternative to imitating the IQA by humans
that have found extensive applications in several �elds
such as image retrieval [2] and restoration [3].

Depending on the amount of reference informa-
tion required during quality evaluation, IQA methods
are divided into three problem statements:

� Full-Reference IQA (FR-IQA) [4]: Here, the perfect
quality reference image is fully available to predict
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the quality score. Then, the distorted image can be
compared with an undistorted version or the original
image;

� Reduced-Reference IQA (RR-IQA) [5]: It aims to
measure quality with part of the reference data
accurately. A challenge faced during quality mea-
surement is to deal with the e�ective representation
of the visual content of images with limited data;

� No-Reference IQA (NR-IQA) [6]: It is de�ned as
the quality measurement of distorted images with
no reference to the original images.

Given that FR-IQA and RR-IQA use reference
images for comparison in the quality prediction process,
they are less challenging. Of note, despite reaching
noticeable improvement in designing a metric for IQA,
they are not practically applicable given their need for
non-distorted reference images. In contrast, there is
no need for non-distorted reference images in NR-IQA
and for this reason, it has received signi�cant attention
in real-world applications. As NR-IQA takes distorted
images to be assessed as input without any additional
information, we face an ill-posed problem [7].

Some early NR-IQA approaches were concen-
trated on speci�c distortion types, e.g., blocking arti-
facts [8], blur, and ringing e�ects [9,10]. However, these
methods can only deal with the problems containing
one known type of distortion in the images. In
contrast, in real-world applications, distortion types
are unknown [6,11{14] that leads to the performance
bottleneck for such problems.

In the absence of distorted form and its corre-
sponding non-distorted reference image, the ill-posed
nature of the underdetermined NR-IQA is highlighted.
Designing powerful feature representation models can
be a remedy to alleviate this dilemma. To tackle
the real-world problems, general-purpose NR-IQA ap-
proaches attempt to characterize the general rules
of image distortions to establish an image quality
prediction model based on hand-crafted [11] or learned
features [6].

In the last decade, Convolutional Neural Net-
works (CNNs) [15] have expanded to many �elds of
computer vision [16,17]. To learn the complex rela-
tionship between the image data and human perceived
quality, CNNs need many trainable parameters to be
e�ective. In addition, NR-IQA approaches based on
CNNs [7,18,19] have achieved better performance than
the traditional hand-crafted feature-based NR-IQA
methods [12,13,20]. The main challenge is that training
CNN-based IQA models requires a massive number
of labeled samples. As annotating image quality by
humans is extremely expensive and time-consuming,
the lack of such public datasets signi�cantly a�ects
these methods.

Given that the scale of the existing annotated

IQA databases [21,22] is usually limited, training deep
IQA models using only these databases will lead to
over�tting. Use of data augmentation strategies can be
a solution to this issue. Another solution is using trans-
fer learning and general image feature representations
from a pre-trained model to quality prediction [23].
Existing works usually rely on the pre-trained network
models in which an extensive training dataset is avail-
able, e.g., using ImageNet in image classi�cation tasks
[24,25]. The issue that leads to a reduction in the ef-
fectiveness of transfer learning is the di�erent nature of
NR-IQA and image classi�cation tasks. These models
cannot quickly adapt to new distortions, and the gen-
eralization performance is unsatisfactory in such cases.

Hallucinated-IQA model [7] is a deep network
comprising a Quality network that works as a regres-
sion model. In this network, a score can be assigned
to each input distorted image. To approximate the
quality function of deep networks, a su�cient number
of annotated samples are required. In the absence
of such annotated instances, searching the hypothesis
space does not support enough information. Since
the �nal function contains high variance in the data
sample, this is not robust. In case of no su�cient
examples, Human Visual System (HVS) considers per-
ceptual information between the distorted image and
imagined undistorted image to have a more precise
prediction. This undistorted image in the HVS can be
named the hallucinated reference. To address the lack
of data to train a deep model, it is common to simulate
the behavior of HVS with a hallucinated model. To this
end, this network tries to take a sample from solution
space and make a hallucinated image [7].

In the hallucinated-IQA model [7], multiple ob-
jective functions are used to e�ciently handle di�erent
aspects of the problem. These objective functions
should be combined with hyperparameters involving a
trade-o�. Therefore, �nding the optimized values of
these hyper-parameters is a complex procedure. To
avoid this complexity, the application of an objective
function based on perceptual features was proposed.
The hallucinated model uses a reinforced structure
to overcome the complexity of the hyper-parameter
optimization [7]. However, this may cause di�culty
to the algorithm convergence. As the co-training of
quality and hallucinated model (reinforced structure)
can make it hard to train, using a unique objective
function only based on perceptual features was rec-
ommended. Furthermore, using a uni�ed objective
function makes it feasible to separate the training
procedure of the quality and hallucinated model. To
address the problem of insu�cient annotated examples,
another suggestion is to reduce the model capacity. To
this end, the hypothesis space was divided by sampling
from a submanifold of data instead of the whole data
manifold [26].
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Previous methods aiming to divide the data mani-
fold only use mean statistics such as Mean Square Error
(MSE) to minimize the reconstruction di�erence [27].
To obtain better features, utilization of an inference
network was suggested to align the generated percep-
tual features. The inference network can bring back
data from the perceptual space to the image ambient
space. The small reconstruction di�erence between the
perceptual features and original distribution witnesses
the quality of the proposed network.

In the literature, such as the proposed methods by
Lin and Wang [7] and Gu et al. [28], only one sample
was generated for each distorted image that cannot
bring about a signi�cant level of estimation. To address
this problem, we generate multiple hallucinated images
conditioned on each distorted image. On the contrary,
multiple hallucinated images reect di�erent aspects
of the original image. Finally, the Quality network
can use the best parts of images to reach a reliable
score. Further in this study, use of Natural Scene
Statistics (NSS) compiled by an expert was proposed
as a prior to restrict the hypothesis space. In the initial
training steps, this prior knowledge can guide the steps
of the algorithm in the right region of the hypothesis
space.

To recap the presented model, a deep Quality
network was developed that received a distorted image
and returned its score. The score reects the similarity
of the distorted image to its corresponding pristine
image. The main contribution of this paper is its
conversion of a problem that has been always solved
in a multi-objective manner into a single objective
by learning perceptual features through distribution
alignment. To this end, instead of using a sample
in each training iteration, using multiple examples to
reach a better estimation was suggested.

The rest of this paper is organized as follows:
Section 2 reviews the related works. Section 3, �rstly,
examines some required research backgrounds and
then, elaborates on the proposed algorithm in detail.
Section 4 mentions the datasets and compares the
experimental results with those from the rival methods.
Finally, Section 5 concludes the study with a summary
of the proposed work and discussions.

2. Related work

NR-IQA can be classi�ed into distortion-speci�c [8,10]
and blind methods [6,13,14,20]. While in the for-
mer, the image quality is evaluated by extracting the
features of a determined distortion, no distortion is
assumed in the latter during the training of the Quality
network. To address this problem, some feature-based
models have been developed. These features can be
based on the experts' experience if available; otherwise,
they should be learned. To this end, blind NR-IQA

methods can be divided into the NSS- [12,29] and
learning-based approaches [6,30,31].

The NSS-based methods assume that natural
images have certain statistical characteristics, which
will be changed under di�erent distortions. Moorthy
and Bouik [32] proposed to extract the NSS features
from Discrete Wavelet Transform (DWT) domain for
blind IQA. Saad et al. [29] leveraged the statistical
features of Discrete Cosine Transform (DCT) to esti-
mate the image quality. Mittal et al. [12] proposed a
general-purpose NR-IQA metric by extracting the NSS
features in the spatial domain and achieved promising
performance. In addition to the NSS-based approaches,
learning-based approaches have also been developed.
For example, the codebook representation approaches
[6,30] were proposed to predict subjective image quality
scores by Support Machine Regression (SVR) model.
Zhang et al. [31] combined the semantic-level features
a�ecting the HVS with local features for image quality
estimation.

In recent years, the deep learning-based general-
purpose NR-IQA methods have exhibited supe-
rior prediction performance over traditional methods
[7,19,24,33]. One key issue in deep learning is that
it requires abundant labeled data, while IQA is a
typical small sample problem. Bianco et al. trained
a deep model on a large-scale database for image
classi�cation task and then, �ne-tuned it for NR-
IQA task [24]. Talebi and Milanfar [25] used a
model based on Deep Convolutional Neural Network
(DCNN). They proposed their model by predicting the
perceptual distribution of subjective quality opinion
scores. The model parameters were also initialized by
pre-training on ImageNet database [25]. Lin and Wang
suggested the application of a Generative Adversarial
Network (GAN) to generate some hallucinated images
to overcome the problem of annotated data availability
[7]. However, the GAN-based IQA approaches are
subject to some shortcomings. The most dominant
challenge is to use several loss functions; consequently,
many hyperparameters should be trained. Each loss
function needs a hyper-parameter that is a part of
the perception-distortion trade-o�. Given that the pa-
rameters should be estimated through cross-validation,
�nding an equilibrium point in these trade-o�s can be
quite challenging [27]. As another problem, in the
GAN-based Blind IQA (BIQA) systems, despite the
Generator, the Discriminator is not conditioned on
the distorted images. Then, instead of concentrating
on a speci�c distortion, the Generator must estimate
the whole pristine manifold. Intrinsically, GAN has
instability issues, i.e., mode collapse and lack of equi-
librium and convergence. Using reinforced structure in
the GAN-based IQA approaches [7,28] can make them
more susceptible to divergence from the stable path.

Table 1 presents the speci�cations of the selected
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Table 1. Summary of the major state-of-the-art in IQA and their speci�cations.

Model Features Quality estimation Time complexity

BRISQUE
Mean Subtracted

Contrast Normalized
(MSCN) coe�cient statistics

SVR O(d2N)
d: Window size

BLIINDS-II Features based on
DCT coe�cient

MVG O((N/d2)log(N/d2))
d: Window size

ILNIQE

DCT coe�cient pooling
Normalized luminance

MSCN products
Gradient statistics

Log Gabor �lter responses
Color statistics

Pooling + MVG O(d2N)
d: Window size

Hallucinated IQA Deep features NN |

state-of-the-art methods. Since these are base methods
while other new models are somehow the improved
versions of them, most of the �ndings in the �eld of
IQA have been compared in the followings.

3. Proposed method

Using reinforced structure in Hallucination-based pa-
pers [7] does not comply with the NR-IQA de�nition.
During the learning process, Hallucinated Generator
in [7] and its Quality network can reinforce each other.
Thus, this may lead to much more instability in GAN-
based models. To resolve this issue, the hallucinated
and quality models were separated. The contributions
of the proposed methods are as follows: (1) using
multiple samples around a submanifold of pristine
images conditioned on the distorted image; (2) using
the NSS feature as a prior to weighted hypothesis
space; and (3) instead of using multiple loss functions,
using a perceptual space as a unique space which rep-
resents the required information to generate multiple
samples. Learning in this space needs alignment and
accordingly, an inference network is used to learn these
features, which can be considered a divide-and-conquer
approach. To elaborate our contributions, the Quality
and Hallucinated models will be explained in detail in
the following subsections:

3.1. Quality model
The ultimate goal of the BIQA method is to reach a
regression model which receives a distorted image and
returns a score proportional to its quality. To this end,
a deep structure was employed. Given that preparation
of a multitude of labeled samples is quite costly, con-
sideration of the prior knowledge is suggested instead

to train the quality model. Accordingly, a hallucinated
section is used for sampling around pristine manifold
to help the regression model. This regression model
is called the Quality network. Figure 1 shows the
schematic view of the proposed solution.

The Quality network (Q) takes a distorted image
and its perceptual representation as a prior in the
middle of the network. Perceptual representation is
generated based on the distorted images and reects
the information of its corresponding pristine image.
To �nd the perceptual representations, a GAN-based
structure was employed, to be discussed in the next
section. We aim to �nd the perceptual representation
of some examples of the estimated pristine manifold.
Using these examples, we can inject the prior infor-
mation to lead the search algorithm in the parametric
space. The �rst part of the Quality network (Q1)
extracts a feature representation for a score prediction
while the perceptual part (P ) contains the information
due to the manifold structure. The integration of
features from the �rst part of the Quality network and
perceptual part can feed the second part of the Quality
network (Q2):

Q = Q2(P (Id; G(Id))
 (Q1(Id)); (1)

where Id is the distorted image, and Q the overall
quality. The generator and perceptual parts can be
separately trained through a Hallucinated network to
boost the Quality network.

The Quality network consists of some convolution
and ReLU layers alongside the downsampling module.
Downsampling in this network was constructed based
on a pooling mechanism. Further, skip connection or
residual network was used to automatically adjust the
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Figure 1. The Quality network (the bottom network) receives the distorted image as an input and returns the score in its
output. Also, the extracted features from the perceptual network can be considered as a prior to support training phase
with less samples.

deepness of this network regarding the nature of data.
Finally, the linear regression loss function is used after
fully connecting layers to train this network.

3.2. Hallucinated model
The proposed Hallucinated model consists of four net-
works: Generator, Perceptual, Judge, and Alignment.
Our Hallucinated model was inspired by the main idea
behind the GAN's Generative network to generate sam-
ples from the desired submanifold of pristine images. In
the basic GAN, Generator, and Discriminator contest
with each other in a zero-sum game, and the gain of the
Generator would be the loss of the Discriminator, and
vice versa. The Generator learns to map from a latent
space to a data distribution of interest and generates
candidates that will be evaluated by Discriminator.
Given a training set, the Generator learns to generate
new samples with the same statistics as the training
set. Conditional GAN is a variation of the basic GAN,
which divides data manifold based on a variable and
considers a GAN for each part. Indeed, each part of the
data manifold is considered conditioning on a discrete
random variable. Thus, conditional GAN estimates
each part separately instead of estimating the whole
distribution of the data manifold.

As we face a continuous space of samples in
images, continuous conditional GAN [27] is the best
match for our proposal. Despite the discrete condi-
tional GAN where the input was a discrete random
variable, the continuous conditional GAN had an input
that was a continuous random variable. Therefore, it
can fragment the data manifold continuously using a
GAN for each part. Sampling from the whole pristine
manifold is a crucial task. Since the structure of this
manifold is unknown and complicated, �nding a map
between the Euclidean space and whole manifold needs
a high-capacity hypothesis space, huge amount of data,

and suitable priors. Moreover, a high-dimensional
manifold of pristine images for each distorted image
is required, which makes the problem highly ill-posed
and undetermined. A distorted image has the po-
tential to be related to several pristine images. In
this regard, these variations can be shown by several
parameters, implying that the whole pristine manifold
is characterized by a complicated structure that is hard
to learn. To overcome this dilemma, the authors in
this study suggested dividing the whole manifold into
corresponding submanifolds and sample from each of
them by a GAN �tted on the related submanifold.

To represent such a model, we employed a deep
network as a Generator. The input of this network is a
distorted image, and the output (hallucinated image) is
supposed to be a sample from the pristine manifold cor-
responding to the available distorted input image. The
Generator receives a distorted image as the input and
produces a sample from a submanifold that emerges
from pristine manifold conditioning on the distorted
images. To create more than one image, we can add a
noise vector besides the distorted image. Consequently,
the network can produce several hallucinated images
due to a distorted image. The schematic architecture
of the Generator network is shown in Figure 2.

The Generator function takes a pair of distorted
image and noise, (Id; z) and predicts a hallucinated
image, Ih:

G(Id; z; �) : Rda � Rdz ! Rda ; (2)

where da and dz are the dimensions of the ambient
space and noise, respectively, and � is the Genera-
tor network parameter. This network contains some
Convolutional and ReLU layers that facilitate proper
feature extraction. Inspired by the study of Berthelot
et al. [27], we succeeded in achieving better results
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Figure 2. Generator network receives a noise besides the distorted image, generates a hallucinated image using some
layers and blocks, and passes it to the perceptual network.

in this network using the Wasserstein GAN (WGAN)
objective function.

The convolutional approach is based on the lo-
cality concept which reduces the complexity of the
problem. The locality is used as a transformed function
from the local area of the nonlinear structure. Learn-
ing a more complicated function on the whole data
structure can be replaced by learning a function on the
local part of that structure to solve a problem. This
simpli�cation may neglect some features of the complex
problems. A review of the super-resolution literature
revealed that using only local layers for the Generator
network proved to be insu�cient [35]. As a result,
based on the traditional feature map concept, non-local
transformations were introduced. Non-locality di�ers
from the holistic approaches that can be considered
the locality in another space, i.e., feature space. The
non-local neural network was proposed in [35] to reveal
the non-local dependence through the entire image.
However, non-local operations at the global level were
limited for reasons: First, when we face a large feature
size, it imposes a high computational burden on the
global-level non-local operations. Second, for low-level
tasks, it is better to use non-local operations at a proper
neighborhood size [36]. Thus, it is natural to perform
Region-Level Non-Local (RL-NL) operations for fea-
tures with higher spatial resolution or degradation.

Since some perceptual and traditional features
were used in the quality network, employing RL-NL
features without access to the reference model might
lead to di�culty in learning. According to Dai et
al. [37], the larger number of distorted images than
that of the benign ones at the training phase of the
quality network might cause the model to be biased
and hence, the non-locality is found while training. To
address this issue, in the proposed quality network, we
trained an RL-NL layer in the generator network in the
�rst part, which could indirectly bring its advantages to
the quality network. In addition, we proposed dividing
the feature map into a grid of regions. The k�k box of
RL-NL indicates that the input feature is �rst divided

into a grid of k blocks with the same size and then,
each one is processed by the subsequent layers. The
RL-NL reveals the forgotten structure of the distorted
image features and self-similarities in pristine images.

After non-local operations, the feature repre-
sentation is non-locally enhanced and fed into the
subsequent layers by exploiting the spatial correlations
of the features. Moreover, the Generator contains
some simpli�ed residual blocks with local-source skip
connection, followed by an hourglass stack network to
exploit feature inter-dependencies. It was veri�ed that
stacking residual blocks would be helpful to form a deep
CNN [35,38]. To this end, a stacked hourglass [39] was
adopted in the proposed generative network.

The ultimate goal is to use the perceptual in-
terpretation of this submanifold to feed the quality
network as a prior. For this reason, our adversarial
game was developed in the perceptual space condi-
tioned on a distorted image rather than in the ambient
space of the image. To this end, a neural network
architecture was used for perceptual mapping from
the ambient to perceptual space. In addition, both
referenced and hallucinated images were transformed
by perceptual network conditioned on the distorted
image. Finally, the Judge network decides whether
its perceptual input features corresponding to the real
or hallucinated image. The perceptual features can
be informative whether or not the distribution of the
pristine images is reconstructable with a low error rate.
Further, an alignment network was employed to align
the reconstructed distribution with the distribution
of the generated images. Figure 3 shows the overall
structure of such a network.

To generate more reliable hallucinated images
from a human's perspective, we need to generate some
perceptual features based on the distribution of the
reconstructed images. To this end, the Perceptual
network receives a hallucinated/pristine image con-
ditioned on a distorted image and maps the image
submanifold to the corresponding perceptual features.
The perceptual network P , parameterized by �, can be
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Figure 3. The perceptual network receives hallucinated images conditioned on a distorted image and then, maps the
image submanifold to the corresponding perceptual features. The Alignment network will reconstruct the distribution of
the mentioned submanifold to align it with the original distribution. Also, The Judge network can discriminate between
hallucinated and real images conditioned on the distorted image.

described as:

P (I; Id;�) : Rda � Rda !P; (3)

where da is the dimension of the ambient space, �
the perceptual network parameter, and P the per-
ceptual space. To train the perceptual network, it is
required that Alignment and Judge networks be used.
Some distributional alignments are required to generate
meaningful perceptual features that represent the dis-
tribution of images as much as possible. The Alignment
network brings back the generated perceptual features
to the ambient space, aiming to generate the same
distribution as the input images. Incorporation of this
constraint helps the Judge and Generator networks
generate more meaningful hallucinated images. The
Alignment network will reconstruct the distribution of
the mentioned submanifold to align it with the original
distribution. Although there are two samples from the
original and reconstructed distributions (two-sample
problem), KL-divergence is used to assess the distance
of distributions between the mentioned samples. This
function can be expressed as:

A(PI ; ) : P ! Rda ; (4)

where A stands for the Alignment network, PI repre-
sents the perceptual feature of speci�c image I, and  
contains the Alignment network's parameters. In this
study, the KL-divergence minimization between two
distributions of the original and reconstructed images
was taken into consideration. This KL-divergence
constraint can be considered a regularization R of the

Generator, Perceptual, and Alignment networks in the
objective function. Put I 0 = A(PI) and consider
f(:) as the corresponding probability density for a
random variable related to (:) variable. Here, E(:)
is the expectation of a random variable that can be
interpreted in the same way:

DKL(fI jjfI0) = EI [ln fI � ln fI0 ]: (5)

The objective here is to �nd a descriptive perceptual
feature set that collects the most relevant information.
Then, DKL should be minimized related to these
perceptual features:

DKL(fI jjfI0) = EI [ln fI � ln
X
PI

fI0jPIfPI ]: (6)

In order to add this constraint to our GAN-based
objective function, it should be approximated through
Monte Carlo simulation. To this end, it should be
reformulated using Jensen's inequality:

DKL(fI jjfI0) � EI [ln fI � EPI [ln fI0jPI ]]: (7)

It is enough to minimize the cross-entropy in the upper
bound based on PI . Therefore, the regularization term
denoted by R(G;P;A) can be formulated as:

R(G;P;A) = �EP (G(Id;z))

[EG(Id;z)[ln fA(P (G(Id;z)))jP (G(Id;z))]]; (8)

where G denotes the Generator network. We can
minimize it by considering alignment and perceptual
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networks. Of note, Judge network J can discriminate
between the hallucinated and real images conditioned
on the distorted images. The Judge network is similar
to the Discriminator of GANs; however, in this case,
the perceptual space instead of the ambient space was
used.

Non-convergence is an inherent problem with
GAN models, especially when addressing a high-
dimensional problem. In addition, in the problem at
hand, estimation of the parameters is highly related to
each other. In the traditional problems, Expectation-
Maximization (EM) algorithm was used to address this
dilemma. GAN leverages the adversarial approach to
solve the problem of the related parameters. Since
Bayesian EM utilizes the prior knowledge to overcome
the instability problem of the EM algorithm, the NSS
features were used in the proposed method as the prior
for conveying the search steps.

In order to obtain su�cient knowledge to �nd
a satisfactory transformation, the NSS features were
introduced to the Judge network as a prior. One
of the contributions of this paper was its application
of the Judge network to the Cartesian product of
the perceptual and NSS space instead of the ambient
space. Use of the NSS features as a prior for the
hallucinated model leads to its enhanced performance
due to small available data. As presented in several
sources [40,41], the NSS features created based on the
experts' experiences can be very e�ective in the IQA
tasks. The parameters are randomly initialized to
prevent the divergence of learning at the beginning of
the training phase. Therefore, NSS features can be
considered as the initial knowledge that con�ne the
search space. The Judge Network is parameterized
by  :

J(p;NSS; ) : Rdp � RdNSS ! R; (9)

where dp and dNSS are the dimensions of the per-
ceptual and NSS spaces, respectively. The Perceptual
network P projects an image to a latent space P,
and J maps the Cartesian product of this latent space
and NSS space to R. P is referred to as the latent
perceptual space.

The four networks under study, i.e., G, P , A,
and J , are linked together via a game-based objective

function. The perceptual representation of a high-
resolution image I is P (I) that must be aligned with
each submanifold. The constructed hallucinated image
is compared to the original one by KL-divergence
to ensure equality for the two samples generated in
each direction. If the samples follow a Gaussian
distribution, minimization of the KL-divergence can be
the same as the use of the mean di�erence to extract
the informative features. Since the data distribution
of the submanifold of pristine images is far from the
Gaussian distribution, the mean di�erence cannot yield
a desirable result; therefore, it is required that the KL-
divergence minimization be substitutes. In this case,
there are not enough annotated samples to train the
model and the mean is not an e�ective parameter.

For the corresponding input image Id, the prob-
ability distribution is P (G(Id; z)). To learn this part
of the network, the following objective function can be
used:

V (G;P;A; J) = EfId [EI�fI [ln J(P (I; Id); NSS(I))]

+ Ez�fZ [ln(1� J(P (G(Id; z); Id);

NSS(G(Id; z)))]]: (10)

The overall objective function is:

min
G;P;A

max
J

V (G;P;A; J) + �R(G;P;A); (11)

where � is the only regularization control parameter
that can be estimated by cross-validation. The results
of the mentioned structure will be investigated in the
next section.

4. Experimental results

In this section, three state-of-the-art datasets used to
train and evaluate the proposed model are �rst intro-
duced. Then, the experimental settings are explained,
and the evaluation metrics are introduced. Finally,
the results of the proposed method are compared with
those of some state-of-the-art methods in this realm.

4.1. Datasets
Table 2 introduces three benchmark datasets that
have been widely used in the IQA �eld. To apply

Table 2. The speci�cations of used dataset for our evaluation and comparison.

Databases #Ref. images #Dist. images #Dist. type Score range

TID2013 [42] 25 3000 24 [0,9]

TID2008 [43] 25 1700 17 [0,9]

LIVE [44] 29 779 5 [1,100]



500 Z. Javidian et al./Scientia Iranica, Transactions D: Computer Science & ... 30 (2023) 492{505

the rating results, TID2013 and TID2008 use Mean
Opinion Scores (MOS). Instead of directly applying
rating results, LIVE uses di�erences in quality between
images as Di�erence Mean Opinion Scores (DMOS).

4.2. Evaluation metrics
Like the other research studies in this �eld, this study
also employed Pearson Linear Correlation Coe�cient
(PLCC) and Spearman Rank Order Correlation Co-
e�cient (SROCC) to evaluate the performance of the
proposed method. While PLCC measures the linear
correlation between the predicted score and ground-
truth, SROCC considers the monotonic relationship
between the predicted score and ground-truth [19,45].
PLCC can be calculated through:

PLCC =
PN
i=1(si � �si)(ŝi � �ŝi)qPN

i=1(si � �si)2
PN
i=1(ŝi � �ŝi)2

; (12)

where N is the number of test samples, si and ŝi are
the scores of ground truth and predicted quality of the
ith image, and �si and �ŝi are their average values,
respectively. SROCC can be calculated through:

SROCC = 1� 6
PN
i=1 d

2
i

N(N2 � 1)
; (13)

where di is the di�erence between the ranks of the
ith test image in predicted quality scores and ground
truth. Both PLCC and SROCC vary from �1 to 1, and
the higher the absolute value, the better the prediction
performance.

4.3. Experimental settings
The input shape for the proposed network is 256�256.
Therefore, image patches in this size should be sampled
from the original images in each dataset. Then, a
data augmentation with the ip and random rotation
of (�20) degrees was used to collect more input samples
to train the model. The reason for choosing these
augmentation techniques is that they do not change
the quality of images and can be considered part of
each image. Finally, the model is trained from scratch
with a mini-batch size of 32.

In order to train the Quality model, Stochastic
Gradient Descent (SGD) optimization function was
utilized. It was trained with an initial learning rate of
�1 = 10�2 and a drop of 0.1 for every 10000 iterations.
A weight decay of 0.0005 and a momentum of 0.9 were
considered in the training procedure.

The Hallucinated model is trained using Adam
optimization procedure. The corresponding parame-
ters were � = 10�4, �1 = 0, and �2 = 0:9. Despite
using a batch-normalization, a weight decay of � =
10�3 was applied. The mentioned parameters were
suggested to optimize the WGAN network [46]. The
overlapped image patches at a �xed stride from each

image were extracted to train and test the model. The
average of all predicted scores was used to calculate
the image quality score due to each image. The code
was implemented in the PyTorch environment and run
by an NVIDIA GTX 1080 Ti GPU and 128 GB of
RAM.

4.4. Results
The results obtained from the proposed model on the
mentioned datasets were compared with those from
four state-of-the-art general-purpose NR-IQA meth-
ods, i.e., BLIINDS-II [47], BRISQUE [48], ILNIQE
[41], and Hallucinated IQA [7].

In order to train TID2013 [42] and TID2008
[43], Leave-One Distortion-Out cross-validation was
performed. To implement this method, the samples
with 23 types of distortions from TID2013 [42] were
used for training, and the samples were left to test the
model due to the remaining distortion. For TID2008
[43], the samples were considered as training due to
16 distortions, and the rest of them were performed
in testing. In the proposed approach, �rst, the MOS
scores of the images should be normalized. To ensure
a fair comparison, the results of the rival methods
released by original authors were brought in the tables
under the same subsampling strategy. Tables 3 and
4 exhibit the performance evaluation of the proposed
method, compared with the aforementioned state of the
art due to TID2013 [42] and TID2008 [43], respectively.
In addition, SROCC was used for evaluation.

As observed in Table 3, on average, the proposed
method for TID2013 outperforms the state-of-the-art
methods. The achieved improvement in the average
is 0.031 compared to the rival method, i.e., halluci-
nated IQA. In 13 out of 24 distortions available in
the TID2013, the proposed method obtained better
SROCC than others. While the Hallucinated model,
ILNIQE, and BlindsII were the best in two cases,
Brisque was the best in �ve items. The best result in
each row is given in bold. In each case, the samples
due to the mentioned distortion were set aside for
testing, while all the other samples were used for model
training.

As shown in Table 4, the average result of the
proposed method for TID2008 is 0.098 more than
that of the best rival method, i.e., hallucinated IQA.
Further, in 10 distortions out of 17 in this dataset,
the proposed method performs the best SROCC score,
which is indicated in bold. The related samples were
set aside for testing for each distortion, while all the
other samples were used for model training.

To evaluate the methods on the LIVE dataset,
all images, regardless of their distortion type, were
randomly divided into 80% and 20% due to training
and testing samples, respectively. To avoid the bias
of randomness, experiments were repeated 10 times.
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Table 3. SROCC in the TID2013 database. Comparison of the results of the proposed method with the rival methods in
this realm.

Dist. type BLIINDS-II [47] BRISQUE [48] ILNIQE [41] Hallucinated IQA [7] Our method

AGN 0.765 0.932 0.856 0.923 0.912

ANC 0.832 0.806 0.811 0.880 0.892

SCN 0.639 0.538 0.889 0.945 0.948

MN 0.203 0.573 0.509 0.673 0.705

HFN 0.710 0.888 0.812 0.955 0.942

IN 0.503 0.642 0.743 0.810 0.827

QN 0.291 0.645 0.869 0.855 0.859

GB 0.899 0.850 0.776 0.832 0.842

DEN 0.741 0.609 0.744 0.957 0.960

JPEG 0.751 0.493 0.834 0.914 0.919

JP2K 0.821 0.759 0.857 0.624 0.824

JGTE 0.409 0.558 0.282 0.460 0.515

J2TE 0.721 0.712 0.521 0.782 0.803

NEPN 0.116 0.307 {0.093 0.664 0.669

Block 0.270 0.224 {0.131 0.122 0.247

MS 0.093 0.191 0.184 0.182 0.186

CTC 0.311 0.015 0.014 0.376 0.398

CCS 0.039 0.208 {0.160 0.156 0.224

MGN 0.719 0.865 0.651 0.850 0.857

CN 0.078 0.466 0.331 0.614 0.522

LCNI 0.416 0.818 0.828 0.852 0.870

CQD 0.736 0.476 0.748 0.911 0.916

CHA 0.532 0.747 0.672 0.381 0.449

SSR 0.737 0.772 0.862 0.616 0.869

Average 0.521 0.597 0.551 0.683 0.714

Finally, the average results of considering SROCC and
PLCC are presented in Tables 5 and 6, respectively.

In Table 5, in three distortions out of �ve avail-
able ones in the LIVE dataset, our proposed method
performs the best SROCC score, which is shown bold.
In addition, our average SROCC was more satisfactory
than all others. After the proposed method, in the case
of the two items hallucinated, IQA obtained the best
result.

Table 6, similar to Table 5, shows the evaluation
of methods in the LIVE dataset and PLCC is used for
this evaluation. Our proposed method outperforms all
others in 3 out of 5 available distortions in the LIVE
dataset. The hallucinated IQA was the best in one item
while the two mentioned methods were commonly the
best in one distortion. However, the average of PLCC
for our method was better than all while being very
close to that of the hallucinated IQA.

5. Conclusion and future work

In this paper, a deep-based method was proposed to
assign a score to a distorted image to solve the NR-IQA
problem. This score showed the distance of a distorted
image from the corresponding pristine image without
reference distortion. In this study, the simulation
of the ability of the human visual system was taken
into account to overcome the problem due to the
insu�ciency of the available samples. For this reason,
the pristine data manifold was divided into some
submanifolds corresponding to each distorted image.
Then, multiple hallucinated images were sampled from
each submanifold and transformed into a perceptual
space through distributional alignment. Finally, the
model was examined in three benchmark datasets,
which yielded signi�cant results, compared to the rival
methods in this realm.
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Table 4. SROCC in the TID2008 database. Comparison of the results of the proposed method with the rival methods in
this realm.

Dist. type BLIINDS-II BRISQUE Hallucinated IQA Our method

AGN 0.567 0.660 0.927 0.916

ANC 0.488 0.317 0.898 0.903

SCN 0.823 0.799 0.940 0.922

MN 0.344 0.220 0.747 0.774

HFN 0.803 0.841 0.967 0.823

IN 0.760 0.830 0.940 0.952

QN 0.673 0.690 0.714 0.720

GB 0.544 0.810 0.618 0.623

DEN 0.599 0.445 0.917 0.928

JPEG 0.808 0.821 0.937 0.891

JP2K 0.772 0.745 0.610 0.622

JGTE 0.321 0.279 0.628 0.643

J2TE 0.597 0.740 0.381 0.466

NEPN 0.388 0.130 0.733 0.740

Block 0.302 0.316 0.331 0.367

MS 0.265 0.305 0.275 0.267

CTC 0.272 0.091 0.357 0.391

Average 0.564 0.521 0.742 0.840

Table 5. Comparing the results of the proposed method considering SROCC with the rival methods in this realm using
LIVE database.

Dist. type BLIINDS-II BRISQUE ILNIQE Hallucinated IQA Our method

JP2K 0.928 0.914 0.893 0.983 0.942

JPEG 0.942 0.965 0.941 0.961 0.973

WN 0.969 0.979 0.980 0.984 0.987

BLUR 0.923 0.951 0.915 0.983 0.986

FF 0.889 0.877 0.832 0.989 0.923

Average 0.930 0.937 0.912 0.980 0.984

Table 6. Comparing the results of the proposed method considering PLCC with the rival methods in this realm using
LIVE database.

Dist. type BLIINDS-II BRISQUE Hallucinated IQA Our method

JP2K 0.935 0.923 0.977 0.978

JPEG 0.968 0.973 0.984 0.986

WN 0.981 0.985 0.993 0.988

BLUR 0.939 0.951 0.990 0.990

FF 0.895 0.903 0.960 0.966

All 0.943 0.942 0.982 0.984
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To regularize the model, especially at the begin-
ning of the training phase, the Natural Scene Statistics
(NSS) features were used as prior knowledge to initiate
the learning process in the proposed model that helped
overcome the problem of divergence and drive the
learning process on the right track. For the future
studies, we recommend developing a pre-trained model
instead of using NSS features to conduct the learning
process in the right track.
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