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Abstract. Heterogeneous data models and resource constraints are the challenging issues
of anomaly detection in Internet of Things (IoT). Due to these issues and the complexity of
conventional anomaly detection methods, it is necessary to design an anomaly detection ap-
proach with IoT-speci�c concerns. This paper presents a framework for anomaly detection
specially designed for IoT called Anomaly Detection Fog (ADF). ADF uses network slicing
to present a federation of heterogeneous fog clusters. Federated fog clusters collaborate
with each other via anomaly directives (heterogeneous context abstracts) for context-aware
and application-independent anomaly detection. Evaluations show that ADF enjoys higher
detection accuracy by detecting 95% of false alarms in comparison to conventional anomaly
detection methods. ADF reduces energy consumption by 40%. Moreover, it reduces
communication overhead and detection latency by preventing cloud o�oading.
© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Despite using cryptographic and authentication mech-
anisms, Internet of Things (IoT) is still vulnerable
to malicious attacks due to weak security mecha-
nisms in constraint things [1]. The signi�cant security
vulnerability of IoT is the physical intrusion in the
network [2{4]. It is done by node capturing to disrupt
perception procedures and to modify measured values.
The intruder captures encryption and authentication
keys to follow the security protocols and makes itself
a legitimate node. The main target of intruders is to
breach data integrity by manipulation of the network
data or injection of malicious data to make a deviation
in the aggregated data. To detect such data attacks, it
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is necessary to detect anomalies in the aggregated data
of the network.

Conventional anomaly detection solutions are not
applicable to IoT due to their resource consumption or
computational complexity [5,6]. The inherent features
of IoT including resources constraint as well as hetero-
geneity of things and contexts are the major challenges
in detecting data anomalies in IoT [7{10].

The research on anomaly detection in IoT can be
investigated from two viewpoints [11]. From the �rst
point of view, the anomaly detection approaches are
classi�ed based on the targeted attack network layer.
They are divided into two groups. The �rst group
detects attacks in the transport or network layer (for
example, routing attacks). These works are out of this
article's scope. The second group detects anomalies in
the application layer. They have two issues. Most of
them are developed for detecting anomalies in a par-
ticular application. They cannot be used in a network
consisting of heterogeneous contexts and applications.
Another issue is the complexity, communication, and
computation overhead of them.
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From another point of view, an anomaly detection
solution in IoT can be done in the front end things or
in the cloud. Anomaly detection in front-end things
is not suitable due to resource constraints in terms of
computation and energy. Using the cloud computing
approach is more common in IoT, but it has challenges
that can be mentioned as follows. Acquisition of the
limited bandwidth of IoT communication channels,
processing delays, and security challenges are some
of the challenges of this approach [12,13]. The issues
are more challenging in large-scale geographically dis-
tributed networks with low latency requirements [14].
This is due to the cloud o�oading delay.

Fog computing was introduced to meet the chal-
lenges in latency-sensitive applications and large-scale
distributed networks [15{17]. Fog computing provides
more power resources, stable network communications,
and computing resources to data processing proce-
dures. Fog computing reduces energy consumption
by reducing the use of communication links [18]. Fog
uses smart routers and gateways for data processing
near the edge of the local network. In this method,
constraint things gather data from the environment,
do pre-processing, and send it to fog for advanced
processes (fog o�oading) [13,19,20].

The advantages of fog computing over cloud com-
puting encourage the use of fog computing to provide
quick analytics and precise IoT anomaly detection. Fog
computing can provide context-aware data anomaly
detection with minimal latency and communication
overhead locally and in a context-aware manner.

Anomaly Detection Fog (ADF) is a fog-based
framework for anomaly detection in IoT. ADF slices the
network into clusters by the context and application.
Each cluster detects data anomalies contextually based
on fog computing. ADF architecture is based on edge
layer, local fog layer, and core fog layer. The edge layer
uses fog o�oading to notify local fog for anomaly alerts.
The local fog layer provides context-free anomaly
directives (introduced by ADF) based on anomalies
abstraction and metadata. Anomaly directives are sent
to the core fog layer to assist other clusters for better
anomaly detection. Finally, anomaly detection in the
destination cluster is performed based on the received
directives. ADF proposed heterogeneous clusters fed-
eration based on anomaly directives for data anomaly
detection. The proposed framework deals with data
anomaly detection in a heterogeneous and resource-
constrained IoT. It presents a framework for context-
aware and application-independent data anomaly de-
tection in IoT. The main contributions of ADF are:

- Providing a lightweight framework for detecting
data anomalies in a heterogeneous and resource-
constrained IoT;

- Reduction of false alarms and increase of accuracy in

detecting data anomalies in IoT;
- Providing a cooperative approach to anomaly detec-

tion using fog federation;
- Introduction of anomaly directives in order to de-

tect anomalies in the heterogeneous data that are
application-independent and context-aware.

This paper is organized as follows. The Section 2
reviews the literature on anomaly detection in IoT.
The Section 3 presents the ADF. Section 4 presents
the evaluation done by real data anomaly detection,
and Section 5 gives the conclusion.

2. Related work

The literature on anomaly detection in IoT has mainly
been conducted in two categories [11]. The works of
the �rst category focus on anomaly detection against
transport layer related attacks including routing at-
tacks [21{27]. Examples of routing attacks are sinkhole,
wormhole, and selective forwarding attacks. These
works investigate RPL-based attacks in 6LoWPAN-
based networks and attacks in transport and network
layers. They generally investigate the neighbor node's
connections, communications, routing tables and net-
work behaviour in the lower layers.

The works of the second category focus on
anomaly detection against application layer related
attacks. This category is divided into two classes:
service disruption anomaly detection and data integrity
attacks anomaly detection.

Service disruption attacks target the availability
and functionality of services. Denial of Service (DoS)
and Distributed DoS (DDoS) are the most well-known
examples of these attacks in IoT. The literature in this
scope monitors parameters of network services tra�c
ow. If any of the feature values are changed, the
deviation from normal behavior is detected.

Data integrity attacks prompt the application
layer to destruct, forge, modify, or deviate the ap-
plication data interactions such as aggregation data.
Intruder nodes can breach physical security and weak
cryptographic security mechanisms in things to com-
promise a node and register the adversary node as a
legitimate node. Performing insider attacks by node
capturing is one of the topmost security issues of IoT.
In this case, insider intruders can target data integrity
without taking cryptography into account (due to
authentication and encryption keys acquisition). Man
in the Middle attacks, replay attacks, and injection
attacks are some of examples that target perception
layer raw data by injecting misinformation to deviate
the objective function of the application. According to
this, it is very di�cult to detect malicious data hidden
in the perception layer raw data carried by a legitimate
node. The scope of ADF (dash boxes in Figure 1) is
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Figure 1. Anomaly detection in IoT.

to present a framework for raw data anomaly detection
speci�cally for heterogeneous constraint IoT.

In the scope of application layer data anomaly
detection, some of the researches detect anomalies
in industrial data [28{30] and Industrial IoT [31].
In this class, a real application of IoT like smart
homes [32,33], or an application of an IoT healthcare
system [34] is considered. These works proposed
a special-purpose solution for each context and
application according to the applied data. ADF
presents a context-free approach to data anomaly
detection in a heterogeneous IoT.

The proposed approaches in the literature used
di�erent algorithms for detecting abnormal or outlier
data from a series of perception layer raw data sets [11].
Statistical methods are the most common approaches
to detecting the normal behavior of data at the applica-
tion layer [24,35{45]. In these approaches, a statistical
model of the network behavior from the dataow of
the network interactions is comprised implicitly or
explicitly as a reference pro�le [46]. In order to detect
anomalies, the obtained data from network behavior
is compared with the reference pro�le and a degree
of anomaly or a label is assigned to it according to
the amount of deviation. Presenting an anomaly label
is done through comparison with a threshold where
determining a threshold according to conditions is
challenging. Some other studies use arti�cial immune

system [47{49], Support Vector Machine (SVM) clas-
si�ers [50,51], neural network [52{54], and PCA-based
approaches [55{57] for network data anomaly detec-
tion. ADF presents a framework and its architecture
for data anomaly detection in IoT. It is independent of
the exact algorithm that su�ers abnormal computation
for raw data.

These works generally do not take into account
the heterogeneity and resource constraint features of
IoT nodes. Some of them provide a general model
without a robust practical evaluation in the context of
IoT networks. Some of them provide a special-purpose
solution for a special application. ADF is proposed to
meet the above-mentioned issues in the de�ned scope.

3. Anomaly Detection Fog (ADF)

ADF proposed network slicing into homogeneous clus-
ters of things due to the multi-context feature of IoT.
Network slicing is mainly business-driven and addresses
the contextual requirements of services. ADF proposes
a hierarchical fog-based anomaly detection approach
(Figure 2(a)). Based on this architecture, di�erent
fog nodes collaborate to jointly support the anomaly
detection framework. ADF presents this approach due
to the similarity in anomalies and due to contexts cross
e�ects.

In ADF, the fog layer acts as a proxy for the
resource-constrained edge-layer devices for anomaly
detection. The edge layer performs the initial processes
for anomaly detection and delivers the anomaly meta
information to the local fog layer for further anomaly
analysis (Figure 2(b)). Due to the processing power,
communication capabilities, and energy resources, the
fog layer analyzes the behavior of nearby device
by using local and contextual information to detect
anomalies on time. We describe ADF in detail below.

Figure 2. (a) Anomaly detection in IoT and (b) ADF dataow.
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3.1. ADF architecture
By presenting federation of network clusters via
anomaly directives, ADF shares the cluster's local
anomalies in metadata with other clusters. In the
presented architecture, the fog layer is responsible for
sharing anomaly directives among clusters. If a fog
layer detects an anomaly in the local edge device data
(Type A), an alert including an anomaly detection
directive is sent to the dispatcher fog. Dispatcher
fog sends the anomaly directive e�ectively to another
type (Type B) of fog layer. The purpose of anomaly
directive dispatching is to facilitate anomaly detection
in the destination cluster. The Type-B fog layer
integrates the received anomaly directives and the
local anomaly information of clustered things. Finally,
according to the gathered information, it takes the
�nal decision on the state of data anomalies. We
illustrate the operational procedure of ADF using the
sequence diagram in Figure 3 and Figure 2(a). Figure 4
shows the class diagram of ADF to better illustrate the
technical aspect of ADF. It consists of 3 main classes
that that are equivalent to the layers of the architecture
described below.

Things/edge layer consists of front-end edge
things that are responsible for lightweight deep packet

inspection, raw data aggregation, and data prepara-
tion for anomaly detection. Also, simple thresholds
are applied to the data to detect outliers and send
suspicious anomaly alerts to the upper layer. If any
of the edge nodes detects abnormal data, it initiates a
process for investigating the suspected data by raising
an anomaly alert (1-a#1:n). Con�guration of simple
outlier detection parameters is done by the fog layer
based on federated anomaly directives (1-b). Due
to the communication and energy e�ciency, the edge
layer merely sends raw data on demand or in case
of suspicious events to the fog layer. Therefore, the
preparation of the requested fog raw (1-c-1) data is the
responsibility of the edge layer. The forwarded packet
contains the suspected event properties, anomaly prop-
erties, and the raw data (1-c-2).

The local fog layer consists of sink and gateway
nodes of each cluster. It monitors the behavior of
things and performs data analysis according to the
cluster's context and its data model. This layer is
responsible for the local cluster anomaly alerts ag-
gregation (1-a#1:n) and detection. Time series data
anomaly detection (2) is done in this layer by the fog
nodes. The selection of an algorithm for the time series
anomaly detection method is out of ADF scope and any

Figure 3. ADF sequence diagram.

Figure 4. ADF class diagram.
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desired algorithms can be used with ADF. For example,
stochastic outlier detection algorithms can be used.
The fog layer aggregates the diagnostic data related
to abnormal alerts from the edge layer (1-c-1). After
that, the required analysis is performed to con�rm edge
layer anomaly alerts. Moreover, this layer is responsible
for producing context-free anomaly metadata called
anomaly directives. Anomaly metadata is extracted
from selected alerts and anomaly directives generated
by the fog layer (2-a). Anomaly directives are sent
to the upper fog layer for fusion with other clusters'
anomaly directives. Applying federated anomaly di-
rectives received from the top layer (2-b) and adjusting
anomaly detection parameters (1-b) are other tasks of
this layer for dynamic anomaly detection.

Layer 3 is the IoT network core fog and the
root of the IoT clusters. This layer that we named
anomaly dispatcher fog is responsible for managing
the cross-cluster federation (3-b). In this layer, the
central fog aggregates anomaly directives from the
clusters (2-a). This layer determines how anomaly
directives are exchanged between clusters based on
cross e�ects of multi-context clusters (3-a). After
that, federated anomaly directives are sent to clusters
in order to con�gure anomaly detection parameters
contextually (2-b). Also, dispatcher fog determines the
e�ectiveness degree of anomaly directive in each cluster
with respect to other clusters.

3.2. ADF dataow
The dataow of ADF is shown in Figure 2(b). In the
dataow, environmental raw data are collected from
resource-constrained edge devices with a lightweight
process. Locally processed data are sent to more power-
ful fog nodes for further processing. The features to be
investigated in ADF are categorized into two categories
of data and information features, as described below.

At level 1 of the dataow, data features are
obtained by raw data deep packet inspection to de-
tect malicious and misinformation data hidden in the
interaction tra�c ow. Intra-cluster communication
between things and all inbound and outbound network

ows are gathered. The aggregation of the environ-
mental perception data is done by the edge layer with
timestamps, suitable for time series analysis.

At level 2 of the dataow, information features
are derived from context-aware anomaly detection from
raw data analysis. The results of the analysis of point,
cumulative, and contextual data anomalies are shared
at the edge layer. This information is reported in the
form of an anomaly degree alert in the local cluster
of things to improve contextual detection. The local
data anomaly analysis is considered as a computational
feature to direct the detection and enhance its accuracy
in the rest of the network. The set of data items in an
anomaly alert is presented in Table 1. Expected devia-
tion represents the permitted interval of the measured
value. The alert degree represents the percentage of
anomaly certainty.

At level 3 of the dataow, following the fusion
of the heterogeneous anomaly alerts information, meta
alerts (which we call anomaly directives) are gen-
erated. At this level, the abstraction and general-
ization of anomaly alerts are performed. Anomaly
directives are the output of this process consisting
of context-free and application-independent anomalies
metadata for federated collaboration among clusters.
An anomaly directive packet contains data items to
present metadata of anomalous events (Table 2). The
sensitivity represents the percentage of the strictness
of anomaly detection procedures. Standard Deviation
(SD) [58] and Coe�cient of Variation (CV) [59] are
two statistical dispersion measurement methods. The
working status is about the execution mode of anomaly
detection in the cluster. The values of this item can be
normal, strict, and permissive.

At level 4 of the dataow, federated anomaly
directives are created (Table 3). They are based
on the aggregation and fusion of anomaly directives
received from heterogeneous clusters. This packet
is presented for anomaly detection con�guration in
clusters. Sensitivity con�gures the level of strictness
of anomaly detection in the destination cluster. Time
delay indicates the desired time to apply the con�gura-

Table 1. Anomaly alert.

Sensor ID Raw value Mean value Expected/permissible deviation Alert degree

Table 2. Anomaly directive.

Sensor ID Sink ID Deviation Sensitivity Anomaly's
event timePermissible standard deviation Coe�cient of variation Anomaly degree Working status

Table 3. Federated anomaly directive.

Source cluster Sensitivity con�guration Time delay Permissible coe�cient of variation Working mode
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tion in the cluster anomaly detection. Working mode
indicates the execution mode of anomaly detection in
the cluster, as described in Subsection 3.3.

3.3. ADF working modes
ADF works in two modes: strict and permissive modes.
We will study smart IoT in cities with di�erent weather
and tra�c sensors as an example to explain ADF
working modes. When weather conditions suddenly
become abnormal, ADF provides a weather anomaly
directive. A sudden change to the weather condition
parameters has a direct impact on the tra�c situation
of streets. In the strict mode, ADF dynamically
reduces the sensitivity of the tra�c data anomaly
detection algorithm to prevent false-positive errors.
Depending on the application, anomaly detection di-
rectives can be useful in the permissive mode. In
the permissive mode, the anomaly detection algorithm
runs with a lenient con�guration. In this mode, ADF
uses anomaly directives to dynamically increase the
detection sensitivity for increasing the detection rate
and reducing the false-negative error.

4. Implementation and evaluation

For ADF evaluation, a heterogeneous IoT network
must be selected. For this purpose, two case studies
have been selected as a network of heterogeneous nodes
with di�erent contexts: smart city and smart o�ce.
In the case studies, di�erent environment features are
measured and aggregated. Based on the aggregated
data, decisions are made for various services. There-
fore, data integrity plays a vital role in services and
applications. As explained in the third section, data
attacks target data integrity by modi�cation of the
perception layer data. The purpose of ADF is to
detect data anomalies in order to prevent deviations
in aggregated values.

We evaluate our approach against di�erent types
of data integrity attacks of di�erent severity. In order
to attack data integrity, an intruder may capture the
victim node and introduce itself as a legitimate node
or it may tamper environmental sensing for wrong
measurement. Also, it may sni� or spoof data in the
middle of the communication channel. In all attack
scenarios, the adversary manipulates data and injects
false data into the network. The injection can be as
either a single or cumulative point. In the evaluation,
the following types of data integrity attacks have been
considered:

1. Blind attack: The adversary injects random false
data into the network to prevent data aggregation
convergence;

2. Constant data attack: The adversary node provides
�xed values by forging a message and replaying it;

3. Contextual attack: The adversary node injects a
legal value in the acceptable range, but it is wrong
according to the context.

As demonstrated by the evaluation, the application of
ADF to the data anomaly detection algorithm achieves
higher detection accuracy and lower false error than
the use of the algorithm alone. In terms of overhead,
ADF reduces energy consumption, communication
overhead, and detection latency by preventing cloud
o�oading. The reduction in energy consumption is
about 40% based on the analysis performed by Misra
and Sarkar [18].

In the implementation, Modi�ed Stochastic Ap-
proximation (MSA) algorithm with a combination of
sliding window [36] was used for time series anomaly
detection. This approach allows estimating integral
properties of the stochastic process of the perception
raw data (by a sliding window) and tracing the vari-
ant dynamics of its stochastic behavior (by MSA).
This algorithm is independent of the data distribution
model and is appropriate for application-independent
anomaly detection. These algorithms are suitable for
the point, cumulative, contextual analyses [60] and
di�erent types of time series data anomalies. Another
reason behind the selection of this algorithm is the low
execution overhead for constrained edge devices. ADF
is independent of the exact algorithm used to detect
data anomalies; hence, it is possible to replace the
abovementioned method with other methods. MSA
is used as an example for evaluation to prove the
e�ciency of ADF. The implemented algorithm has the
following steps:

0. Input stochastic process parameters (�; �; CV )
� = Mean (x)
SD or � =

p
�2 =

p
V ar (x)

CV = �=�
1. De�ne � and s (0 � � � 1)

� = Mean Change Ratio
s = Permissible Deviation Threshold

2. Fill sliding window with values, x = [vi:vi+n]
3. Shift the sliding window, xi = xi+1

4. Update MSA procedure. �i = �i�1 + � � (xi�
�i�1); �i = �x = Sample mean (x)

5. Compute the deviation value, s = jxi � �ij
6. Assess the outlier alert degree
7. If i < N , then i = i + 1 and go to step 2; else,

end.

4.1. Smart city evaluation
To evaluate the result of applying ADF, we used
datasets from CityPulse project [61]. This project
contains the measurement of various features of Aarhus
city, Denmark. CityPulse datasets contain tra�c
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situations and weather conditions in the city. A large
volume of data is obtained from sensors embedded
in various urban locations, among which a location
was randomly selected and the data collected dur-
ing a month with a one-hour sampling interval was
extracted. Measured data features of the weather
condition are wind speed, air temperature, humidity,
and dew point. The measured data of tra�c sit-
uation contain the count of passing cars and their
average speed. In the performed evaluation process,
the mentioned IoT is sliced into several clusters with
homogenous things that contain di�erent types of
weather and tra�c sensors.

The evaluation process was done through the
federation of urban heterogeneous IoT clusters. Fed-
eration was based on anomaly directives derived from
weather data to facilitate tra�c data anomaly detec-
tion. The evaluations are done for two parameters
of the car's speed and count of cars in the tra�c.
The applied method is to dynamically change the
parameters of the tra�c anomaly detection algorithm
when a weather data anomaly alert is generated.

We have run MSA algorithm with strict and
permissive con�gurations. In the permissive mode,
the detection rate was reduced while the false-negative
rate increased. In the strict mode, the false-positive
rate increased. Thus, implementation of each MSA
con�guration mode is subject to shortcomings and
de�ciencies. ADF anomaly detection with the same
algorithm con�guration demonstrated that some of the
detected anomalies in MSA included false errors. In
ADF, through context-aware anomaly directives, we
can detect false-positive and false-negative rates to
reduce false error while increasing the true detection
rate.

After using MSA for anomaly detection, ADF is
applied for comparing detection accuracy. The results
are presented in Tables 4 and 5. For this purpose,

Table 4. Results of applying the proposed approach for
detecting anomalies of the tra�c speed data.

Anomaly
detection
method

Anomaly
counts

without ADF

Anomaly
counts

with ADF
Strict 71 49

Permissive 15 23

Table 5. Results of applying the proposed approach for
detecting anomalies of the tra�c speed data.

Anomaly
detection
method

Anomaly
counts

without ADF

Anomaly
counts

with ADF
Strict 76 69

Permissive 16 20

two scenarios were implemented and evaluated. First,
we set the parameters of anomaly detection strictly.
In this regard, the weight of the MSA algorithm for
the mean change ratio was � = 0:1. The permissible
deviation threshold(s) was considered low (di�erent
context varied) (Table 6-Strict Mode). With these
con�gurations, the count of detected anomalies was
quite high, such that some might turn out false positive.
Following the application of ADF, with an anomaly
detected in the weather condition, an anomaly directive
was produced and sent to the upper layers to be
dispatched to tra�c clusters. When tra�c clusters
receive the permissive anomaly directive, the values
of � and permissible deviation threshold are doubled
temporarily. In this scenario, by federated use of
heterogeneous anomaly directives, the detected false
anomalies are removed and, in turn, detection accuracy
increases.

In the second scenario, through the adjustment of
anomaly detection parameters with greater values for
(� = 0:15) and admissible variation threshold (di�erent
contexts) (Table 6, Permissive Mode), major anomalies
are detected and false-negative error increases. Fol-
lowing the application of ADF, when an anomaly is
detected in the weather condition, an anomaly directive
is produced and sent to upper layers for dispatching
to tra�c clusters. When tra�c clusters receive strict
anomaly directives, the values of � and permissible
deviation threshold(s) are set to half temporarily to
detect anomalies more accurately in the anomalous
timestamp. In this scenario, by federated use of
heterogeneous anomaly directives, detection accuracy
is enhanced.

The results obtained from the application of ADF
demonstrate that the fusion of weather anomalies with
tra�c data has a more signi�cant e�ect on the accuracy
of detecting car-speed data anomalies. Moreover, as
predicted, the accuracy of the detection was increased
and false-positive errors were reduced in the strict
mode. In the permissive mode, the detection accuracy
was increased; in turn, false negative errors were
reduced and the true positive rate increased.

Validation of the results was performed by com-
paring the results with the Azure Anomaly Detection
Service [62]. We have run azure anomaly detection
on the same data with strict mode and, therefore,
with permissive con�guration to detect anomalies. In
the case of tra�c speed, our approach states that 22
data points of 71 anomalous points are false-positive
errors. Azure experiments con�rm the false-positive
error for 21 out of the 22 data points. Accordingly,
we have achieved 95% accuracy in detecting false-
positive errors. ADF managed to reduce the false errors
in comparison to the simple conventional anomaly
detection approach (Table 7).
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Table 6. Time series anomaly detection algorithm con�guration.

Working mode � s

Strict mode Strict 0.1 D
ADF permissive directive 2 � 0:1 2 �D

Permissive mode Permissive 0.15 D
ADF strict directive 0:5 � 0:15 0:5 �D

Table 7. Improvement of ADF versus conventional anomaly detection.

Tra�c speed Tra�c count

Strict mode (false positive error) 31% 9.2%

Permissive mode (false negative error) 34.8% 20%

4.2. Smart o�ce
We evaluate ADF with another dataset from Intel
Berkeley research lab [63]. This dataset contains
environmental data collected from 54 sensors deployed
at the lab. Measured data contains humidity, temper-
ature, light, and voltage values measured once every
31 seconds for 40 days. This dataset includes about
2.3 million measurements collected from the sensors.
For evaluation, multiple sensors were selected and the
collected data at an approximate rate of 3 samples per
hour was extracted.

The gathered data were evaluated in the presence
of the above-mentioned anomalies and attacks (Blind,
Constant, and Contextual). Anomalous data were in-
jected into point and cumulative forms or manipulated
with the sensory data.

ADF sliced the network into clusters by the sensed
feature into voltage of the sensor and reported temper-
ature values by the sensor. According to [63], there is
a correlation between sensor voltage and temperature
variations. Therefore, ADF proposes the federation of
temperature cluster and voltage cluster for anomaly

detection using anomaly directives in the voltage clus-
ter to direct temperature cluster anomaly detection.
In other words, if there is an anomaly in the sensor
voltage, the temperature reported by it is not reliable.
Therefore, a proportional abnormal value is predicted
in the reported temperature. Therefore, ADF detects
false alarms and improves the true detection rate.

The details of the anomaly detection and the eval-
uation method are similar to the procedures performed
for the previous dataset. In this regard, �rst, anomalies
in voltage values are detected. Anomaly directives
are extracted from them. Based on the federated
anomaly directives, anomaly detection is performed
on the temperature values. Moreover, in order to
evaluate the accuracy of ADF, anomaly detection for
temperature values was performed using a conventional
simple anomaly detection algorithm (MSA).

To compare the detected anomalies with and
without ADF, the data anomalies of two sensors are
shown in di�erent parts of Figures 5 and 6. As shown
in Figures 5 and 6, ADF removed false alarms and
improved detection accuracy using federated anomaly

Figure 5. Sensor#1 anomaly detection.
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Figure 6. Sensor#2 anomaly detection.

directives. As shown in Figure 5, at the end of the tem-
perature measurement interval, the reported values are
subject to constant anomalies detected by ADF. The
other sensor data shown in Figure 6 include constant
and blind anomalies that have been detected by ADF.

To evaluate smart o�ce data anomaly detection,
ADF with the strict mode was used. In this mode,
temperature values were strictly evaluated to detect
anomalies. It also simultaneously incorporated fed-
erated anomaly directives from the voltage cluster to
prevent false-positive alerts in the anomaly detection
process. Anomaly detection results for di�erent data
samples are presented in Table 8. Improvement of ADF
versus conventional anomaly detection is presented in
Table 9. In the case of Sensor#1 with data anomaly
detection, ADF recognized all anomaly alerts as false-
positive except for the last interval of temperature
data (Figure 5). In the Sensor#2 with data anomaly
detection, despite spikes (sudden changes) in voltage
values and generation of anomaly directives in the
voltage cluster, some temperature values are considered
as contextual anomalies. Also, at the early intervals

Table 8. Anomaly detection results.

Dataset
Anomaly

counts
without ADF

Anomaly
counts

with ADF
Sensor#1 152 102
Sensor#2 141 18

Table 9. Improvement of ADF versus conventional
anomaly detection.

Sensor#1 Sensor#2
ADF strict mode

(False positive error)
32.9% 87.2%

of the data, the sensor voltage experiences spikes
with random values resulting from the correspond-
ing changes in the temperature cluster. However,
some temperature values experience unexpected sud-
den changes, considered as an anomaly. As can be
seen from Figure 6 and Table 8, ADF recognized most
anomaly alerts as false positives based on the extracted
information from contextual data (federated anomaly
directives).

5. Conclusions

This paper presented an approach for an e�cient
federated fog-assisted anomaly detection framework
for Internet of Things (IoT). Anomaly Detection
Fog (ADF) detected heterogeneous data anomalies in
a context-aware and application-independent manner
across a multi-context IoT. This was done through the
collaboration of clusters in the form of a heterogeneous
fog layer federation by sharing anomaly directives.
Using the fog layer processing power, ADF responded
to the constraint property of edge devices by the
fog layer processing power. ADF presented fog layer
federation via anomaly directives to prevent cloud
o�oading and reduce the communication overhead,
energy consumption, and detection latency.

ADF evaluation proved that its application to
a data anomaly detection algorithm would increase
the true detection rate and decrease the false error
rate in comparison to the use of the algorithm alone.
Therefore, it is suitable to be applied to a network of
resource-constrained things to achieve heterogeneous
anomaly detection in a multi-context IoT.

We are developing the proposed framework fur-
ther for future work. Our focus is on the anomaly
dispatcher fog for better fog layer management in the
clusters.
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