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Abstract. The current study investigates a two-phase turbulent nanouid ow inside
a heat exchanger tube equipped with a novel type of conical turbulators having two
parallel rows of holes for the �rst time. The e�ects of the number of the conical insert
turbulators, number of the holes and volume fraction of the nanoparticles on ow �eld,
average Nusselt number, friction factor, and performance evaluation criterion have been
numerically investigated. The results show that the proposed turbulators create vortices
and recirculating currents that have signi�cant e�ect on heat transfer. As the number of
the turbulators increases, Nusselt number increases obviously. However, the presence of
holes reduces the friction factor and pressure drop that is related to lower resistance in
the ow path. In general, the use of perforated conical turbulators improves Performance
Evaluation Criterion (PEC) by creating controlled turbulent ows. On the other hand, the
use of added nanoparticles also enhances heat transfer. The presented turbulators increase
PEC by 43% compared to the smooth tube, if the parameters are determined properly.
The maximum PEC of 1.43 is obtained at M = 8, N = 4, and Re = 4100, showing good
performance compared to other types of turbulators.
© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Due to the increasing energy supply costs, e�cient use
and prevention of energy waste by replacing old sys-
tems with newer technologies, eliminating equipment
defects, increasing equipment e�ciency by making
structural changes [1], or using new technologies [2]
have become extremely important [3]. For this purpose,
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several methods such as nanoparticles [4], cavity [5],
porous medium [6], and spherical particles [7] have
been proposed to enhance heat transfer. Among
these, passive methods have favorable position among
techniques of thermal performance enhancement due to
the simplicity of implementation and no need for ad-
vanced control equipment [8,9]. The use of equipment
such as turbulators [10], perforated tube inserts [11],
and nanouids [12] that enhance heat transfer while
maintaining performance can reduce the size of heat
exchangers [13]. Decreasing equipment size is necessary
to minimize costs and safety concerns related to the
total uid volume of the system [14].

Nanouid is formed by suspending nanoparticles
in a pure liquid [15]. Since nanoparticles are ex-
tremely �ne and have a large speci�c surface area
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[16{22], they have unique properties such as high
thermal conductivity when dispersed in liquids. Such
uids are very di�erent from conventional solid-liquid
suspensions in both preparation and properties. By
adding a small number of nanoparticles such as copper
[23], gold [24], copper oxide, alumina, graphene oxide
[25{27], or carbon nanotubes [28] to the uid, the
thermal conductivity of the uid is increased [29].
Researchers have studied many di�erent aspects of
nanouids including their thermal conductivity, which
is unusually high even at low nanoparticle concen-
trations. One of the �rst studies in this �eld was
conducted by Pak and Cho [30]. In an empirical
study, they investigated heat transfer from AL2O3-
Water and TiO2-Water nanouids in both laminar
and turbulent ow regimes and found that the heat
transfer coe�cient of nanouid nanoparticles with a
volume fraction of 3% was up to 12% higher than water-
based uid at some Reynolds numbers. Javaherdeh et
al. [31] numerically studied the thermal and hydrody-
namic behaviors of turbulent ow of non-Newtonian
nanouids in a helical double-tube heat exchanger. In
their study, aluminum oxide nanoparticles were used.
They investigated the e�ect of Reynolds number and
volume fraction of aluminum oxide nanoparticles on
heat transfer enhancement. Shari� Asl et al. [32] used
computational uid dynamics method to simulate heat
transfer in non-Newtonian turbulent ow of nanouid
in a horizontal tube. The results of their study illus-
trate that heat transfer coe�cient and Nusselt number
are higher in non-Newtonian nanouid than those in
the base non-Newtonian uid. Heat transfer coe�-
cient and Nusselt number also increase with increasing
nanoparticle volume fraction and Reynolds number.
Radwan et al. [33] investigated turbulent ow heat
transfer and pressure drop of aluminum oxide-water
nanouid empirically. They found that pressure drop
for the nanouid was higher than that for the base uid.
They also observed 25% enhancement in heat transfer
coe�cient. Thermal behavior of silicon dioxide-Water
nanouid in the Reynolds range of 5000{27000 under
constant ux and with inserted equipment inside tube
was investigated by Azmi et al. [34]. The results of
their study indicate increase in Nusselt number and
heat transfer enhancement. Heat transfer and thermal
e�ciency of heat exchangers with novel turbulators
were experimentally investigated by Nakhchi et al. [35].
Kongkaitpaiboon et al. [36] considered the impact of
perforated conical rings on the uid ow in tubes,
where a rather signi�cant enhancement in the heat
transfer was observed. Natural convection heat transfer
of TiO2 and Al2O3 nanouids in a rectangular cavity
while two heated �ns are located in the cavity was
investigated by Hatami [37]. Nalavade et al. [38]
investigated the geometrical inuence of perforated
twisted tapes on parameters such as heat transfer and

friction factor of smooth tubes. The mean heat transfer
coe�cient enhancement ratio at equal Reynolds num-
ber was also obtained.

Another passive method for enhancing heat trans-
fer is the use of turbulators, which has received special
attention in recent years [39{42]. One of the most
common used turbulators in thermal applications is
conical rings, which are among the most widely used
equipment for improving heat transfer due to their
easy installation, low cost, and high e�ciency. This
type of turbulators was �rst used by Yakut et al. [43].
Durmus [44] investigated heat transfer in conical rings
using experimental tests. In his study, air was con-
sidered as the working uid, and the performance of
the rings was studied in the Reynolds numbers ranging
from 15000 to 60000. Promvonge and Eiamsa-Ard [45]
studied the heat transfer behavior in tubes with a coni-
cal ring and helical turbulators empirically. In another
study, Promvonge [46] conducted experimental tests
to investigate the e�ect of conical rings. The results
of his study showed that the use of this equipment
could increase Nusselt number signi�cantly. Karakaya
and Durmus [47] studied the performance of conical
spring turbulators in improving heat exchangers heat
transfer. Liu et al. [48] studied the characteristics of
free convection heat transfer in tubes with conical rings
using experimental tests and numerical simulations.
Based on their study results, it can be seen that the
model presented by them enhances heat transfer while
also increasing the friction factor. Sheeba et al. [49]
showed that the performance of these turbulators was
optimal at a certain cone angle. In one of the most
recent studies, Xiong et al. [50] studied the performance
of conical rings in double-tube heat exchangers using
three-dimensional simulations. They used the k{"
method in their numerical simulations, and showed
that applying this type of turbulators could improve
the heat transfer coe�cient by 4.68% compared to
conventional tubes. Ibrahim et al. [51] studied di�erent
arrangements of conical rings in heat exchangers and
the geometric characteristics e�ect on thermal per-
formance of the turbulators. Nakhchi and Esfahani
[52] investigated the Cu-water turbulent nanouid ow
within a heat exchanger equipped with perforated
conical rings. The highest thermal performance of
1.10 was achieved using 1.5% Cu-water nanouid and
perforated conical rings at Re = 5000. Mohammed et
al. [53] numerically studied the turbulent convection
of Al2O3, CuO, SiO2, and ZnO nanouids ow in a
circular pipe prepared with conical ring inserts.

It should also be stated that heat transfer en-
hancement and thermal analysis are important in
designing heat exchangers. Using passive heat transfer
enhancement devices such as turbulators and nanopar-
ticles can increase the thermal performance of the
heat exchangers. Review of the studies indicates that
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the performance of tubular heat exchangers containing
nanouids equipped with perforated conical turbula-
tors has not been studied so far using multiphase nu-
merical models. The aim of this study is to supplement
the lack of information in this �eld. In the present
study, the e�ect of the number of the holes located on
conical rings on enhancing heat transfer in the presence
of nanoparticles is studied. For this purpose, by using
a two-phase nanouid model and computational uid
dynamics method, the performance of this type of
turbulators in the Reynolds number ranging between
4000{20000 is evaluated. Independent parameters
include the Reynolds number, the geometrical charac-
teristics of the conical turbulators, and the number of
holes located on them, the distance of the turbulators
(by specifying their number along the tube length),
and the volume fraction of TiO2 nanoparticles. The
e�ects of these parameters on friction factor, Nusselt
number, and Performance Evaluation Criterion (PEC)
are investigated.

2. Geometry and boundary conditions

The geometry of the model studied in this research
is shown in Figure 1. The model includes a heat
exchanger tube having length L equal to 1500 mm and
inner diameter D equal to 62 mm. The heat exchanger
tube is equipped with conical turbulators having two
rows of holes, which has been presented for the �rst
time in the current research. The length of the conical
rings, their throat diameter, and their thickness are
62 mm, 31 mm, and 2 mm, respectively. Numerical
results are extracted for di�erent numbers of conical
rings within the length of the tube (M = 1; 2; 4; 6; 8)
with constant spacing and di�erent numbers of holes in
a perimeter row (which is N = 0; 2; 4; 6; 8). Water uid
was used as the base uid and TiO2 nanoparticles were
added with di�erent volume fractions. The TiO2-water
nanouid enters the tube at a constant temperature
(Tin = 300 K), while the tube wall temperature (Tw)
is assumed constant at 350 K. At the inlet of the tube,
the velocity-inlet boundary condition is applied. Also,

Figure 1. The heat exchanger tube having perforated
conical turbulators.

pressure-outlet boundary condition is considered at the
tube outlet.

3. Two-phase model

In order to increase the accuracy of modeling, attention
to two-phase approaches has increased in recent years.
Lot� et al. [54] investigated Al2O3-water nanouid
forced convection ow. They compared Nusselt num-
ber results for several correlations of nanoparticles.
The equations in the two-phase mixture model are
expressed as follows:

Conservation of mass [55]:

r:��m~Vm� = 0; (1)

in which ~Vm is mean velocity and �m is mass density
of the mixture.

Momentum equation [55]:

r:��m�!Vm�!Vm� = �rP +r: h�m �r~Vm +r~V Tm
�i

+�m�mg (T�Tc)+r:
 

nX
k=1

�k�k~Vdr;k~Vdr;k

!
: (2)

Energy equation [55,56]:

r:
 

nX
k=1

�p;kVk (�kEk + P )

!
=r: (kmrT�Cp�mV T ) : (3)

Nanoparticles volume fraction equation [56]:

r: (�p�pVm) = �r: (�p�pVdr;p) ; (4)

where �p, Vm, and Vdr;p represent volume fraction,
velocity, and drift velocity of the nanoparticles. The
subscripts (f; p, and m) represent base uid, nanopar-
ticles, and the mixture, respectively. Mixture mean
velocity, viscosity, density and thermal conductivity are
expressed as follows [56]:

(�m; �m; �m) =
nX
k=1

�k (�k; �k; �k); (5)

Vm =

nP
k=1

�k�kVk

�m
; (6)

Vdr;k = Vk � Vm; (7)

where Vm is the mean velocity. � and �t are de�ned as
follows [56]:

� = �mrVm; (8)
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�t = �
nX
k=1

�k�kvkvk: (9)

Drift velocity is shown in the following relation as
the secondary phase (p) velocity relative to the base
phase (f) velocity provided by Nie et al. [57]:

Vpf = Vp � Vf =
�pd2

p

18�ffdrag
(�p � �m)

�p

[g � (Vm:r)Vm] : (10)

Drift velocity depends on relative velocity as follows:

Vdr;p = Vkp �
nX
k=1

�k�kVk
�m

: (11)

Also, the drag function by Schiller and Naumann is
expressed as [58]:

fdrag =

(
1 + 0:15Re0:687

p for Rep � 1000
0:0183Rep for Rep > 1000

(12)

where Rep = Vmdp=vm is the local Reynolds number
of nanoparticles.

The Reynolds and average Nusselt number, fric-
tion factor, and PEC, which are dimensionless param-
eters, are as expressed as follows [58]:

Nuav =
hDh

k
; (13)

where h and k are heat transfer coe�cient and thermal
conductivity, respectively.

Re =
�umDh

�
; (14)

where um is the uid mean velocity. The tube
equivalent hydraulic diameter (Dh) is expressed as:

Dh =
4A
Ph

; (15)

where A and Ph are the cross-sectional area and wetted
perimeter, respectively.

f =
2Dh

L
�P
�u2

m
; (16)

where �P is the calculated pressure drop between inlet
and outlet.

PEC used in this research to determine the
thermal performance of heat exchanger in simultaneous
presence of both turbulator and nanouid is calculated
as follows:

PEC =
(Nuav/Nuav;0)

(f/f0)1/3 ; (17)

where Nuav and Nuav;0 are the average Nusselt num-
ber of the tube in the presence of inserted equipment
and the smooth tube, respectively.

4. Simulations

4.1. Model meshing and grid independency
Geometry meshing of the used model for simulations
is demonstrated in Figure 2. The grid is concentrated
in areas close to the tube walls and turbulators. In
addition, high-density mesh has been used near the
conical ring holes to capture vortex production and cir-
culating ow. In order to ensure the grid independency,
calculations were performed for TiO2-water nanouid
having volume fraction of 2.5% at the Reynolds number
15000, and the results are given in terms of the average
Nusselt number in Figure 3. The changes in Nusselt
number for cells number less than 1:4 � 106 are less
than 1.17%. Therefore, the use of this grid for two-
phase model calculations is appropriate. Similar grids
have been used in all calculations of this study.

4.2. Method of solving equations
The simulations are performed using ANSYS Fluent
commercial code, and the SIMPLE algorithm is used
for velocity and pressure coupling. The second-order
upwind method has been selected to discretize momen-
tum and energy equations. In Figure 4, the results
from di�erent turbulent models (standard k{", RNG
k{", standard k-omega, and SST k-omega models) are
compared to the results of experimental tests from
reference [36]. According to the results, the RNG k{
e turbulent model provides results with the smallest

Figure 2. Geometry meshing of the used model.

Figure 3. Grid independency investigation for
TiO2-water nanouid with volume fraction of 2.5% at the
Reynolds number 15000.
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Table 1. Validation of Nusselt number and friction factor with experimental results of Ref. [32].

Nu f
Re Present study Ref. [26] Present study Ref. [26]

4000 41.4 42.7 0.96 0.93
8000 57.1 60.0 0.82 0.74
12000 71.7 74.6 0.59 0.61

Figure 4. Comparison of the results of di�erent turbulent
models with empirical results [32] for N = 4.

errors compared with the experimental results. Hence,
the k{" RNG model was used in the present study. The
convergence criterion for all the variables is 10�6.

4.3. Validating the results
For validating the numerical model, the friction factor
and the average Nusselt number for a tube having
conical rings equally spaced 6 times the rings diameter,
each having a perimeter row of 4 holes, are compared
with the experimental results of Kongkaitpaiboon et
al. [36] in Table 1. The results are extracted for the
boundary conditions and physical characteristics used
in the reference. Validation shows that the numerical
model is in acceptable agreement with the experimental
results.

5. Results and discussion

5.1. Impact of geometrical characteristics of
turbulators

Here, the e�ect of parameters of perforated turbulators
and TiO2-water nanouid on thermal performance is
studied. First, the e�ect of number of the holes (N)
and the number of turbulators (M) is studied. Figure 5
shows the average Nusselt number changes with the
Reynolds number for di�erent numbers of the conical
rings and their holes. Also, a comparison is made
between the tube equipped with these turbulators and
smooth tubes. The results are extracted for TiO2
nanoparticles with volume fraction of 0.1%. The
volume fraction of nanoparticles is intentionally chosen
to be very low to compare the e�ects of the parameters

Figure 5. Nusselt number changes with the Reynolds
number for: (a) di�erent numbers of conical rings and (b)
di�erent numbers of the conical ring holes.

M and N without the interference of the nanoparticle
e�ects. According to the results, by increasing the
Reynolds number from 4000 to 20,000, Nusselt num-
bers in all cases under investigation increase signi�-
cantly. This is mainly due to the fact that at high
Reynolds, the presence of conical rings causes greater
turbulence in the uid ow. As a result, turbulence
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of the thermal boundary layer increases and the heat
transfer is enhanced. The results show that the highest
Nusselt number is obtained for M = 8 of intact conical
rings (N = 0), which is about 288% higher than a
smooth tube at Re = 4000. The results indicate
that compared to the smooth tube, for M = 1 and
M = 6, the Nusselt number at the Reynolds number
4000 increases by about 88% and 176%, respectively.
As the number of turbulators increases, the average
Nusselt number rises. On the other hand, by increasing
the number of the holes, the Nusselt number decreases,
which is due to lower resistance in the ow and its
reduced turbulence. For example, for M = 6 and at
Reynolds 4000, by increasing the number of the holes
from zero to 8, the Nusselt number decreases by about
44%.

The e�ect of the number of the conical rings and
holes located on them on friction factor is shown in
Figure 6. Also, the results are plotted for the smooth
tube. Upon increasing the number of the turbulators,
which leads to a shorter distance between them, friction
factor increases signi�cantly. Given that reducing the
distance increases turbulence and resistance against the
uid ow, such a result is justi�able. In addition, it is
observed that the friction factor in the tube decreases
upon increasing the number of the turbulator holes. At
Re = 4000 for N = 2, N = 8, and N = 8, the friction
factor becomes about 7.74, 10.17, and 13.8 times lower,
respectively, than the case N = 0.

Figure 7 shows the velocity distribution at Re =
15000 for M = 6 and di�erent numbers of the holes N .
According to the results, it is observed that increasing
the number of holes reduces the resistance in the ow
path and as a result, Nusselt number and friction
factor are reduced. In addition, as can be seen, as
the number of the holes increases, the velocity of the
uid out of them decreases; as a result, Nusselt number
is reduced due to the lower turbulence in the areas
around the turbulator. This behavior con�rms the
reason for increasing the average Nusselt number by
decreasing the number of holes, as shown in Figure 5.
Figure 8 shows velocity streamlines in the middle of
the presented conical rings with 4 and 8 holes at
Re = 15000. As can be seen in these cases, the
maximum velocities are 0.97 and 0.78 m/s, respectively.
By increasing the number of the holes from 4 to 8, the
maximum velocity is reduced by 20%.

A closer view of what happens in the existence of
the conical ring insert is shown in Figure 9. The jet of
ow is moved from the middle areas by the holes to the
near wall areas, which increases the turbulence, as well
as heat transfer to the colder parts of the working uid.
The formed ow vortices disrupt the boundary layer
near the tube wall, which again increase heat transfer
in the tube under study in the present study. The
mentioned secondary ows created by the holes are

Figure 6. Friction factor variations with the Reynolds
number for: (a) di�erent numbers of conical rings and (b)
di�erent numbers of the conical ring holes.

demonstrated by velocity vectors, while the contour
coloring indicates velocity distribution in the vicinity
of the holes. The velocity curves in Figure 10 show
the velocity pro�les at the locations of the turbulator
holes. It is observed how the �rst and second rows of
holes redirect the primary ow to the near wall area,
which enhances heat transfer from the wall to the ow.

5.2. E�ect of TiO2 nanoparticles
Figure 11 demonstrates the e�ect of the TiO2 nanopar-
ticles volume fraction on Nusselt number for M = 2
and N = 6. The results show that the presence
of nanoparticles leads to an increase in the thermal
conductivity of the working uid and as a result, heat
transfer coe�cient and Nusselt number increase. By
increasing the volume fraction of TiO2 nanoparticles
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Figure 7. Velocity distribution at Re = 15000 for M = 6 and di�erent numbers of the holes.

Figure 8. Velocity streamlines in the middle of the conical rings with 4 and 8 holes at Re = 15000.

Figure 9. Velocity vectors in the vicinity of the turbulator holes at Re = 5000 for N = 4.

from 0% to 2.5%, Nusselt number at Re = 4000
increases by about 63%. The results show that at
Reynolds numbers higher than 6000, e�ect of the
nanoparticles on the increase of Nusselt number in-
creases with Reynolds number changes. One of the
reasons can be higher turbulence levels of the uid
ow. Also, the positive e�ect of Brownian motion can
be considered as another reason for increasing Nusselt
number. Chaotic and random motions of nanoparticles
in the uid �eld cause a delay in the development of the

thermal boundary layer, which enhances heat transfer
coe�cient and Nusselt number. It is also observed
that increasing the Reynolds number increases Nusselt
number. For instance, by increasing the Reynolds
number from 4000 to 10000 in the presence of the
based uid and the nanouid at a volume fraction of
0.5%, the average Nusselt number increases by 58% and
38%, respectively. Comparing the results of the base
uid and the nanouid having 0.5% volume fraction of
the nanoparticles, one can observe that the turbulator
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Figure 10. Velocity pro�les at the locations of the
turbulator holes at N = 4 and Re = 5000.

Figure 11. E�ect of TiO2 nanoparticles on Nusselt
number of the heat exchanger tube.

presented in the current study has greater e�ect on
increasing the average Nusselt number than the use of
the nanoparticles without having the turbulators.

Figure 12 shows friction factor changes in terms
of the Reynolds number for water and TiO2 mixture
with di�erent volume fractions of nanoparticles for
M = 2 and N = 6. By increasing the Reynolds
number, the friction factor for water and nanouid
decreases. The addition of nanoparticles to the base
uid increases the viscosity and, consequently, raises
the value of friction factor. AtRe = 4000, by increasing
the volume fraction of the nanoparticles to 1%, friction
factor increases by 20%.

5.3. PEC
Figure 13 shows PEC of the heat exchanger tube
presented in the current study for some of the studied
cases. Although it was stated that the presented

Figure 12. E�ect of the TiO2 nanoparticles on friction
factor.

Figure 13. Performance evaluation criterion of the heat
exchanger tube.
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turbulator, in general, would cause a signi�cant in-
crease in Nusselt number, according to the results of
Figure 13, it can be seen that this result is not always
true for PEC. Accordingly, depending on the operating
conditions of the heat exchanger, there are suitable
values for geometric parameters of the turbulator, for
which the thermal performance will have the maximum
values. For example, at Re < 14200 with M = 8
and N = 6, the turbulators perform well, while at
Re > 14200, the turbulator performs weaker and PEC
is less than one. Also, if Re > 4600, the turbulator
with characteristics M = 1; 2; 4; 6 and N = 6 shows
negative e�ect on thermal performance. In addition,
it can be seen that at Re = 4100, the new presented
turbulator with M = 8 and N = 4 enhances the heat
exchanger performance by 43%, which is signi�cant,
and is very desirable compared to other types of
turbulators.

6. Conclusions

In the present study, by using numerical methods,
heat transfer performance of TiO2-water nanouid
heat exchangers tube equipped with a new type of
conical ring turbulators with two rows of holes was
investigated. For this purpose, the e�ect of the number
of turbulators, number of the holes located on them,
and volume fraction of the nanoparticles (0 < � <
2:5%) on friction factor, Nusselt number and thermal
performance at the Reynolds numbers 4000 to 20,000
were studied. Nanouid simulation was performed
using a two-phase model. A summary of the important
results of the present study is as follows:

- Using perforated conical turbulators enhanced heat
transfer by creating recirculating ows in the pres-
ence of nanouids, which disrupt the boundary layer
along the heat exchanger tube;

- Nusselt number increases by 4.05, 3.75, 3.31, and
2.25 times at Re = 4000 for N = 0; 2; 4, and 8,
respectively. These types of turbulators have signif-
icant e�ect on increasing Nusselt number. However,
increasing the number of the holes reduces the
Nusselt number;

- Increasing the number of the turbulator holes re-
duces the friction factor. At Re = 4000, in
comparison with the case N = 0, it is about 7.74,
10.17, and 13.8 times lower for N = 2; 6, and 8,
respectively;

- The turbulators presented in this study increase
thermal performance by up to 43% compared to
smooth tube, if the parameters are determined
properly. The maximum Performance Evaluation
Criterion (PEC) of 1.43 is obtained for M = 8 and
N = 4 at Re = 4100.

Nomenclature

L Tube length (m)
A Cross section area (m2)
fdrag Drag function
Vdr;k Drift velocity of the nanoparticles

(m/s)
V Fluid velocity (m/s)
g Gravity (m/s2)
h Heat transfer coe�cient
Dh Hydraulic diameter (m)
Vm Mean velocity (m/s)
dp Nanoparticle diameter (nm)
M Numbers of conical rings
� Fluid density (kg/m3)
' Volume fraction (%)
N Numbers of holes
Nu Nusselt number
PEC Performance Evaluation Criterion
P Pressure (pa)
�P Pressure di�erence (Pa)
Re Reynolds number
T Temperature (K)
k Thermal conductivity (W/mK)
d Throat diameter (m)
D Tube inner diameter (m)
Ph Wetted perimeter
� Viscosity (Pa.s)
� Shear stress (Pa)
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