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Abstract. This paper aims to present the Global Thin Plate Spline Di�erential
Quadrature (GTPS-DQM) method to achieve a numerical solution to viscous Burgers'
equation. This meshless and high-order model is introduced with the motive of diminishing
computational e�ort and dealing with irregular geometries. A Thin Plate Spline Radial
Basis Function (TPS-RBF) is used as a test function to determine coe�cients of derivatives
in di�erential quadrature. The present algorithm is applied to discretize and solve
the two-dimensional Burgers' equation in both rectangular and irregular non-rectangular
computational domains with randomly distributed computation nodes. To evaluate the
capability of the present model, several problems with di�erent boundary and initial
conditions and Reynolds numbers are solved and the obtained results are compared with the
analytical solutions and other previous numerical models. The obtained results show the
higher accuracy of the present model for solving Berger's equation with fewer computational
nodes than the previous models even in irregular domains.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Bateman (1915) �rst presented Burgers' equation [1]
that was later picked up by Burgers (1948) as a simple
mathematical expression of turbulence phenomenon in
hydrodynamics [2]. This system of nonlinear second-
order equations has many applications and is applicable
to the mathematical modeling of physical phenomena
such as boundary layer problems, turbulence, studying
shock wave formation, mass transfer, tra�c problems,
acoustics, and propagation in porous media [3]. This
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equation is de�ned in a dimensionless form as follows:
@u(x; t)
@t

+u(x; t)
@u(x; t)
@x

+ v(x; t)
@u(x; t)
@y

=
1

Re
r2u(x; t);

x =(x; y) 2 
 � R2: (1)

@v(x; t)
@t

+u(x; t)
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@x

+ v(x; t)
@v(x; t)
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=
1

Re
r2v(x; t);

x =(x; y) 2 
 � R2: (2)

The coupled set of Eqs. (1) and (2) is solved with
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the following initial condition:

u(x; 0) = u0(x); v(x; 0) = v0(x); x 2 
; (3)

and boundary conditions:

u(x; t) = L1(x; t); x 2 �; t > 0;

v(x; t) = L2(x; t); x 2 �; t > 0; (4)

where u(x; t) and v(x; t) are the components of the
velocity; u0, v0, L1, and L2 all are known functions.
Re is the dimensionless Reynolds number that shows
the ratio of inertial forces to viscous forces. Indeed,
the Burgers' equation is the same as the Navier-Stokes
equation in which there is no pressure gradient term
and it can demonstrate the properties of this equation.
Therefore, Burgers' equation is often used to evaluate
the stability and accuracy of numerical methods in
computational uid dynamics [4].

Due to its non-linearity, Burgers' equation only
has analytical solutions in special boundary and
initial conditions and it generally needs to be solved
numerically.

A mathematical transformation called HOPF-
COLE was used in [5,6] to transfer Eqs. (1) and (2)
from nonlinear to linear form and to present an analyt-
ical solution to this equation based on in�nite series.
Later, this method was extended in [7] to deal with
two- and three-dimensional forms of Burgers' equation.
Several numerical models have also been presented for
the solution of this equation in previous research.

The isoparametric space-time �nite element ap-
proach was introduced in [8]. A �nite element-based
algorithm with element size dependent on the solving
results in the previous step was also presented in [9].
The �nite di�erence solution was followed in [10,11].
The Generalized Boundary Elements Method (GBEM)
was adopted in [12], the direct variation method in [13],
the spectral element method in [14], approximating
functional in [15], and the Distributed Approximating
Functional (DAF) approach in [4]. The coupled vis-
cous Burgers' equation was solved by the Di�erential
Quadrature Method (DQM) in [16]. The di�erential
quadrature element method as a high-order solution
to Burgers' equation was employed in [17]. The cubic
B-spline �nite elements method was utilized in [18]. A
scheme based on the polynomial di�erential quadrature
technique for one-dimensional Burgers' equation was
introduced in [19]. The order-splitting extrapolation
method was adopted in [20] as a high-order solution
to Burgers' equation. An iterative reproducing kernel
method with a variable coe�cient was presented for
the numerical solution of one-dimensional fractional
Burgers' equation in [21]. A mesh-free spectral method
to solve the time-fractional coupled viscous Burgers'

equation was utilized in [22]. The high convergence
of the results was reported as the main challengeof
the numerical solution of Burgers' equation at high
Reynolds numbers [8,23,24]. This instability results
from the formation of an inviscid boundary layer due
to the domination of the convection term over the
di�usion term and consequently, occurrence of a shock
wave in the domain. A large number of mesh points
are needed to describe the �eld behavior in this thin
boundary layer region. This increase in the number
of mesh points brings about high computational e�ort
and reduces accuracy [15]. In addition, a majority of
previous studies have been limited to the numerical so-
lution of the Burgers' equation in a regular rectangular
computational domain.

The motivation behind this research was to over-
come the aforementioned shortcomings and by relying
on the well capability of Thin Plate Spline Radial Basis
Function (TPS-RBF) for interpolating scattered data
in complex geometry, non-requirement for additional
parameters like shape factor, etc., and the accuracy
of traditional DQM, an e�cient and truly meshless
method called Global Thin Plate Spline Di�eren-
tial Quadrature (GTPS-DQM) is developed for two-
dimensional Burgers' equation.

The paper is outlined as follows: Section 2
presents a brief description of the theory and numer-
ical formulation of TPS-DQM. Section 2.2 outlines
the discretization process of governing equation and
implementation of the algorithm. Section 3 resolves
the issues of various case studies via TPS-DQM in order
to evaluate the model e�ciency. Finally, Section 4 is
dedicated to the conclusion.

2. Methodology

2.1. Numerical formulation of TPS-DQM
The standard DQM was �rst proposed by Bellman and
Casti [25] based on the idea of quadrature integration
as a highly accurate and potent approach to approxi-
mate partial di�erential equations, and the method has
been recently used in many engineering problems owing
to its e�ciency [26{29]. According to the main concept
of the DQM, the nth-order partial derivatives of the
function f(x; y) at any mesh point (xi; yj) relative
to x and y are approximated by the linear weighted
summation of the function values at all mesh points on
the same axis x as follows:

@fn(xi; yj)
@x

=
NxX
k=1

Wn
x (i; k):::f(xk; yj) (i=1; 2; � � � ; Nx);

(5)

@fn(xi; yj)
@x

=
NyX
k=1

Wn
y (j; k)�f(xi; yk) (j=1; 2; :::; Ny);

(6)

where Wn
x and Wn

y are coe�cients of the nth order
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derivatives with respect to x, y and Nx, Ny are
the number of mesh points in x, y directions of a
Cartesian computation domain. In traditional DQM,
the coe�cients of the derivatives are determined by
using polynomials and harmonic functions as test
functions and cannot be used in complex and irreg-
ular geometries without additional techniques such
as domain decomposition and domain transformation
techniques [30].

To overcome this issue, RBF-DQM as a new class
of mesh-free methods was developed in [23] utilizing
Multiquadric Radial Basis Functions (MQ-RBF) as
the test function. In this approach, the computation
nodes that are distributed arbitrarily discretize the
computation domain and the nth-order partial deriva-
tives of the function f(x; y) at the ith computation
node xi = (xi; yi) are approximated by the linear
weighted summation of function values in the domain
as follows:

@fn(xi; yi)
@x

=
MX
k=1

Wn
x (i; k) � f(xk; yk); (7)

(i = 1; 2; � � � ; N);

@fn(xi; yi)
@x

=
MX
k=1

Wn
x (i; k) � f(xk; yk); (8)

(i = 1; 2; � � � ; N):

Despite the exibility and good performance of this
method for solving partial di�erential equations, it
su�ers from choosing the optimal value for addi-
tional parameters such as shape factor [31]. In
the present study, Thin Plate Spline (TPS) was
used due to its good capability for the interpola-
tion of 2D scattered data and non-requirement for
additional parameters such as shape factor as fol-
lows [32]:

'j(x; y) = 'j(r) = r2 ln(r); (9)

where r denotes the Euclidean norm as follows:

r = kX �Xjk =
q

(x� xj)2 + (y � yj)2: (10)

Moreover, partial derivatives of TPS ' can be obtained
through simple di�erentiation rules. For computing
coe�cients of derivatives for function '(x; y) by substi-
tuting Eq. (9) into Eqs. (7) and (8) at all computation
nodes, a linear system of equations is formed as
follows:266664

'1(x1; y1) '1(x2; y2) � � � � � � '1(xN ; yN )
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

'N (x1; y1) 'N (x2; y2) � � � � � � 'N (xN ; yN )

377775

8>>>>><>>>>>:
Wx(n)

i;1� � �
� � �
� � �

Wx(n)
i;N

9>>>>>=>>>>>; =

8>>>><>>>>:
@n'1(xi;xi)

@xn� � �
� � �
� � �

@n'N (xi;xi)
@xn

9>>>>=>>>>; : (11)

Since the value of function '(x; y) and its nth order
partial derivatives are all known, the linear system of
Eqs. (11) with N unknowns can be solved for weighting
coe�cients Wn

x (i; k). The algorithm can be similarly
used for determining the weighting coe�cientsWn

y (i; k)
of the y-derivatives and higher-order derivatives. It
is pertinent to note that for problems within irregular
domains, the weighting coe�cients are contingent upon
speci�c cases. These coe�cients are ascertained a
priori through the resolution of an algebraic system,
as delineated in Eq. (11) [33]. If N is considered
as the total number of mesh points (N = M), the
model called GTPS-DQM is considered; otherwise, if
it is selected as the limited number of mesh points
in the neighborhood of the reference node (N <
M), the model is called Local Thin Plate Spline
Di�erential Quadrature (LTPS-DQM). The GTPS-
DQM method, in which all points participate in the
estimation of derivative terms, has relatively higher
computational accuracy than LTPS-DQM. Although
in problems with a large number of computation
points, GTPS-DQM may increase the computation
time and cause an ill-condition in the coe�cients
matrix [26,27,33{39]. GTPS-DQM was utilized in the
present work.

Figure 1 represents a sketch for the arrangement
of computation nodes in an irregular domain 
.

2.2. Implementing TPS-DQM for Burgers'
equation

The general description of the TPS-DQM method was
presented in the previous section. The discretiza-
tion process of the spatial derivatives of the Burgers'
equation using the TPS-DQM method is presented in
this section. By approximating temporal derivatives
of Burgers' equation using �rst-order forward �nite
di�erence, Eqs. (1) and (2) are discretized in the
implicit form:

Figure 1. Reference and support nodes de�nition in
TPS-DQM.
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@v(x; t)
@t

�t+1 �= vt+1(x; t)� vt(x; t)
�t

=
�

1
Re
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@x

�v(x; t)
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@y

�t+1
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where superscripts t and t + 1 represent the values
in two consecutive time steps with interval �t. By
implementing TPS-DQM rolls as Eqs. (7) and (8) to
approximate spatial derivatives and some mathemati-
cal simpli�cations, we have:
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where i = 1; 2; � � � ; N . The system of nonlinear
Eqs. (14) and (15) can be solved by applying the
iterative Newton Raphson method to achieve the
�eld values of velocity components u and v. Several
MATLAB® functions were developed to implement
the present algorithm, and open-source software
GMSH was used for the unstructured meshing of the
two-dimensional domains.

3. Numerical results and discussion

To evaluate the performance of the TPS-DQM,three
two-dimensional examples were solved. The �rst and
third examples had exact solutions. In the second
example, a case with a well-known numerical solution
in the literature was resolved using the present method.
The third example was considered to demonstrate
the capability of TPS-DQM to deal with irregular
computation domains and geometry.

In the above examples, the accuracy of the present
model was appraised through error analysis for the
obtained results by computing root mean squared error
norms L2 and maximum absolute error L1 for error
indicators as follows [31]:

L2 =

vuut 1
N

NX
i=1

jui � ûij2; i = 1; � � � ; N; (16)

L1=max (jui � ûij) ; i = 1; � � � ; N; (17)

where ui and ûi are the results obtained from the
proposed model and the exact solution of the equation,
respectively, and N is the number of mesh points.

3.1. Example 1
Two-dimensional Burgers' equation with the following
analytical solution is considered as the �rst example
case. In [7], an exact solution to this example was
derived utilizing the HOPF-COLE transformation, a
mathematical technique that converts nonlinear partial
di�erential equations, particularly those of the Burgers'
type, into linear ones, thereby facilitating easier ana-
lytical solutions.

u(x; y; t) =
3
4
� 1

4
�
1 + Re

32 exp(�4x+ 4y � t)� ; (18)

0 � x; y � 1:0;

v(x; y; t) =
3
4

+
1

4
�
1 + Re

32 exp(�4x+ 4y � t)� ; (19)

0 � x; y � 1:0:

Dirichlet-type boundary conditions and the initial con-
dition for this example can be evaluated by the exact
solution. This example is solved in a rectangular
domain using the TPS-DQM method at Reynolds num-
bers 100 and 1000. The solutions were implemented
with di�erent numbers of nodes distributed randomly
in computation, as illustrated in Figure 2 and time step
�t = 5e�4.

Figure 3 represents the velocity components for
this example at t = 2:0 with Re = 1000 obtained from
TPS-DQM. As expected and mentioned in [40] at high
Reynolds numbers due to the domination of convection
term and a sharp gradient consequently, a wave with
constant velocity, like an intense shock wave, parades
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in the computational domain.
To demonstrate the e�ect of mesh resolution on

Figure 2. Unstructured distribution of computation
nodes in a rectangular domain.

the accuracy of the obtained result, the graphs of abso-
lute error for the example at Re = 1000 with N = 272,
441, 1507, and 2132 are portrayed in Figure 4. As is
clear, the present method has a high degree of accuracy
in solving the example, although its performance is
highly dependent on the number of points.

The performance of the present method in solving
the example with Re = 100 and di�erent numbers
of computation points is compared with those of
Galerkin-reproducing kernel method [40], Global RBFs
collocation method accompanied by �rst-order forward
di�erence approximation in time [41], fully implicit
�nite-di�erence method [42], local RBFs collocation
method accompanied by �rst-order forward di�erence
approximation in time [43], and method of fundamental
solution [44] as various well-known numerical solutions.

The results obtained at the selected points, which
are summarized in Tables 1 and 2, imply the higher ef-
�ciency and accuracy of the present method than other
methods, despite having equal computational nodes.

The graph of velocity components for the example

Figure 3. Numerical solution of velocity components for Example 1 at t = 2:0 with Re = 1000 and N = 1507.

Table 1. Numerical solution for u component with Re = 100 at t = 2:0.

u component
(x; y) L1 L2N (0.1,0.1) (0.3,0.3) (0.5,0.5) (0.3,0.7) (0.1,0.9) (0.5,0.9)

Exact | 0.500482 0.500482 0.500482 0.555675 0.744256 0.555675 | |

TPS-DQM

141 0.5004843 0.5004861 0.5004872 0.5570958 0.7440880 0.5561600 1.42e-03 6.17e-04
205 0.5004824 0.5004829 0.5004832 0.5561744 0.7441940 0.5558355 4.99e-04 2.16e-04
325 0.5004817 0.5004818 0.5004818 0.5557064 0.7442516 0.5556860 3.14e-05 1.37e-05
441 0.5004817 0.5004817 0.5004817 0.5557026 0.7442519 0.5556808 2.76e-05 1.16e-05

Ref. [40] 441 0.500479 0.500479 0.500479 0.555729 0.744234 0.555714 5.40e-05 2.87e-05
Ref. [41] 441 0.500470 0.500441 0.500414 0.554805 0.744197 0.554489 1.19e-03 6.02e-04
Ref. [42] 441 0.50035 0.50042 0.50046 0.55609 0.74409 0.55604 4.15e-04 2.43e-04
Ref. [43] 441 0.49983 0.49977 0.49973 0.55429 0.74340 0.55413 1.55e-03 1.04e-03
Ref. [44] 441 0.50012 0.50042 0.50041 0.55413 0.74416 0.55637 1.55e-03 7.09e-04
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Figure 4. Absolute error of velocity magnetite for Example 1 at t = 2:0 with Re = 1000.

with Re = 100 at t = 2:0 obtained by TPS-DQM based
on the results with N = 441 is illustrated in Figure 5.
Reduction in the intensity of the velocity gradient at
the wavefront is quite clear, compared to Re = 1000.

Graphs of the distribution of absolute error with
Re = 100 at t = 2:0 for di�erent mesh resolutions, as
portrayed in Figure 6, show the reduction of errors as
the number of mesh points increases.

Table 2. Numerical solution for v component with Re = 100 at t = 2:0.
v component

(x; y) L1 L2N (0.1,0.1) (0.3,0.3) (0.5,0.5) (0.3,0.7) (0.1,0.9) (0.5,0.9)
Exact | 0.999518 0.999518 0.999518 0.944325 0.755744 0.944325 | |

TPS-DQM

141 0.9995157 0.9995139 0.9995128 0.9429042 0.7559120 0.9438400 1.42e-03 6.17e-04
205 0.9995176 0.9995171 0.9995168 0.9438256 0.7558060 0.9441645 4.99e-04 2.16e-04
325 0.9995183 0.9995182 0.9995182 0.9442936 0.7557484 0.9443140 3.14e-05 1.37e-05
441 0.9995183 0.9995183 0.9995183 0.9442974 0.7557481 0.9443192 2.76e-05 1.16e-05

Ref. [40] 441 0.999520 0.999521 0.999521 0.944270 0.755765 0.944285 1.19e-03 6.02e-04
Ref. [41] 441 0.999530 0.999559 0.999586 0.945195 0.755803 0.945511 4.55e-04 2.68e-04
Ref. [42] 441 0.99936 0.99951 0.99958 0.94387 0.75592 0.94392 1.31e-03 8.88e-04
Ref. [43] 441 0.99826 0.99861 0.99821 0.94409 0.75500 0.94441 8.75e-04 4.15e-04
Ref. [44] 441 0.99946 0.99938 0.99941 0.94387 0.75558 0.94345 1.28e-04 5.59e-05
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Figure 5. Numerical solution of velocity components for Example 1 at t = 2:0 with Re = 100 and N = 441.

Figure 6. Absolute error of velocity magnetite for Example 1 at t = 2:0 with Re = 100.
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3.2. Example 2
Consider the two-dimensional Burgers' equation with
the following boundary and initial conditions [45], we
have:

u(x; y; t0 = 0) = sin�x � sin�y;
0 � x; y � 1:0; t � 0; (20)

v(x; y; t0 = 0)=(sin�x+sin 2�x)(sin�y+sin 2�y);

0 � x; y � 1:0; t � 0; (21)

u(0; y; t) = u(1; y; t) = u(x; 0; t) = u(x; 1; t) = 0;

0 � x; y � 1:0; t � 0; (22)

v(0; y; t) = v(1; y; t) = v(x; 0; t) = v(x; 1; t) = 0;

0 � x; y � 1:0; t � 0: (23)

The example was solved at Re = 100 in a rectangular
domain, the same as that in Figure 2, using TPS-DQM
with 3750 mesh points and �t = 0:001. Since there
is not any analytical solution to this problem, the
obtained results are compared against another
well-known numerical solution based on DAF [4].
The comparison of the results at the selected point
at t = 0:5, t = 1:0, as summarized in Table 3,
demonstrates that the proposed model achieves results
comparable to those in [4], despite far fewer mesh
points in consequence.

Figure 7 represents the contours of velocity com-
ponents for Example 2 at t = 0:5, 1.0. The compression

of contours of velocity components near the boundaries
and corners of the computational domain results from
the high value of the velocity gradient, which the
proposed model can capture accurately.

3.3. Example 3
To demonstrate the capability of the present method
to solve the Burgers' equation in an irregular and non-
rectangular computational domain, Example 1 with the
exact solution as Eqs. (18) and (19) was again resolved
in an elliptical computational domain. The ellipse with
a large diameter of 1.0 and a small diameter of 0.5 was
irregularly meshed, as shown in Figure 8.

The solution was performed using TPS-DQM at
Re = 100, 1000 with di�erent mesh resolutions and
time increments. The graphs of velocity components
obtained from results at t = 1:0 are shown in Figures 9
and 10.

Likewise, in this example, increase in the gradient
of the velocity components followed by the increase
of Reynolds number in the wavefront is visible, which
can be captured easily by the present method. The
error analysis is carried out for velocity components
in this example with Re = 100, 100 and various mesh
resolutions at t = 2:0 in Table 4. In this table, the
CPU times are also presented based on the run time
of MATLAB® code on a notebook featuring an Intel
Core i5-4200M @ 2.50 GHz, 6.0 GB of RAM.

The good agreement between the obtained results
with exact solution and the stability of method is
observed. In addition, the accuracy of the solution
rises upon increasing the mesh resolution, although
increasing the number of computational points leads
to high computational e�ort.

Table 3. Numerical solution of Eexample 2 for Re = 1:0e2.

DAF TPS-DQM

(N = 10000;�t = 0:001) (N = 3750;�t = 0:001)

Location t = 0:5 t = 1:0 t = 0:5 t = 1:0

x 0.1 u 0.0150939 0.0072642 0.0150855 0.0072614

y 0.1 v 0.1216201 0.0554181 0.1215602 0.0554008

x 0.2 u 0.1583939 0.0807567 0.1579790 0.0807072

y 0.8 v 0.9865377 0.5817142 0.9828976 0.5814791

x 0.4 u 0.1282258 0.0704512 0.1282049 0.0704444

y 0.4 v 0.700210 0.3690011 0.7000421 0.3689213

x 0.7 u 0.1335301 0.0681616 0.1336236 0.0682031

y 0.1 v 0.0999871 0.0744617 0.0998923 0.0744419

x 0.8 u 0.5637791 0.2957080 0.5638457 0.2957010

y 0.8 v 1.1851231 0.6967743 1.1854839 0.6967343

x 0.9 u 0.2812818 0.3664864 0.2796991 0.3664107

y 0.9 v 0.221959 0.7523752 0.2204293 0.7522460
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Figure 7. Contours of velocity component for Example 2 with Re = 100 and N = 3750.

Figure 8. Unstructured distribution of computation
nodes in an irregular domain.

Figures 11 and 12 illustrate graphs of the absolute
error distribution for velocity magnitude for Re = 100,
1000 with various discretization settings. As expected,
the highest value of absolute errors occurred near the
wavefront region. As mentioned earlier, it is due to the
large value of gradients near the wavefront. Moreover,
intensive domination of convection term and, conse-
quently, stronger pseudo shock wave at higher Reynolds
numbers led to the higher concentration of errors near
the wavefront region. Therefore, at Re = 100, the

errors spread over the whole computational domain,
while at Re = 1000, the errors are almost concentrated
in the wavefront region.

4. Conclusion

In this study, being a high-order and meshless method,
Thin Plate Spline Di�erential Quadrature (TPS-DQM)
was employed to solve the Burgers' equation. The
spatial derivatives were discretized implicitly by this
method in two-dimensional domains with unstructured
mesh distribution, and the equations were solved in
rectangular and non-rectangular irregular computation
domains. Results were compared with an exact and
well-known numerical solution. The results demon-
strated that despite the need for fewer mesh points and,
consequently, less computational e�ort, the TPS-DQM
model managed to solve the Burgers' equation more
accurately than previous models. Moreover, due to its
exibility and truly meshless nature, the present model
was able to solve Burgers' equation in irregular com-
putation domains. This process showed that the TPS-
DQM could accurately capture the physical behavior of
Burgers' equation in di�erent conditions and geometry.
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Figure 9. Numerical solution of velocity components for Example 3 at t = 1:0 with Re = 100 and N = 678.

Figure 10. Numerical solution of velocity components for Example 3 at t = 1:0 with Re = 1000 and N = 2135.

Table 4. Error norms for velocity components in Example 3 at t = 2:0.

Re N �t CPU
time (s)

u v

L1 L2 L1 L2

100

124 5e-3 23.26 1.37e-2 2.99e-03 1.14e-2 2.32e-03

217 1e-3 71.11 2.17e-4 1.25e-05 2.34e-4 1.53e-05

403 5e-4 125.36 1.74e-5 2.12e-06 2.3e-5 2.54e-06

678 1e-4 317.12 1.62e-6 1.26e-07 2.12e-6 1.13e-07

1000

403 5e-4 209.18 2.12e-2 2.11e-03 1.92e-2 1.35e-03

678 1e-4 392.75 3.34e-4 1.39e-05 2.86e-4 2.08e-05

1062 1e-4 521.17 2.11e-5 3.10e-06 1.92e-5 2.91e-06

2135 5e-5 612.74 3.17e-6 2.16e-07 2.97e-6 1.72e-07
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Figure 11. Absolute error of velocity magnetite for Example 3 at t = 2:0 with Re = 100.

Figure 12. Absolute error of velocity magnetite for Example 3 at t = 2:0 with Re = 1000.

It is believed that this method can be employed as a
powerful, simple, and accurate tool for solving other
hydrodynamic problems.
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