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Abstract. Microuidic technology and Micro Electromechanical Systems (MEMSs)
have received much attention in science and engineering �elds over the last few years.
MEMSs are found in many areas like heat exchangers, chemical separation devices, bio-
chemical analysis, and micro pumps. Keeping these facts in mind, the prime purpose of
the current paper is to present the ow of Carreau nanouids through a microchannel
with electro-osmosis, Joule heating, and chemical reactions. The e�ect of the external
magnetic �eld is considered into account. For the problem formulation, the Cartesian
coordinate system is considered. The perturbed solutions are presented by making use of
regular perturbation method. The graphical results are prepared based on di�erent values
of uid ow phenomena like velocity, temperature, solutal nano-particle concentration,
Sherwood number, and Nusselt number with di�erent uid variables. According to our
analysis, velocity decrement is identi�ed with respect to enhancing the magnetic parameter
(Hartmann number). The Schmidt number, Radiation term, Prandtl number, and chemical
reaction term increased the solutal nano-particle concentration. The outcomes of the
Newtonian liquid model can be obtained from our scrutiny. The present scrutiny has
many applications in engineering sciences such as electromagnetic micro pumps and nano-
mechanics.
© 2023 Sharif University of Technology. All rights reserved.
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1. Introduction

Over the past few years, the study of nanouids has
attracted continuous consideration because of their
various engineering applications. Nanotechnology has
become the most important and interesting technology
in diverse �elds like biology, chemistry, engineering,
and physics [1{5]. The technology provides us with
plenteous pervasion, which will change the direction
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of technological improvements in terms of utilization
because of the spread of nanouids in thermal conduc-
tivity, potential advantages, and several applications in
biomedical engineering such as cancer treatment using
thermal therapy, power generation, heat exchanger,
transportation, microelectronics, ventilation, air con-
ditioning, and atomic framework cooling. Nanouid
plays an important role in the functioning of nanotech-
nology. It also has many industrial applications such as
plastic production, expulsion, liquefaction, hot moving,
glass �ber creation, wire drawing, and elastic plates.
Salahuddin et al. [6] investigated the ow of Carreau
nanouids inuenced by a stretching cylinder utilizing
Keller box technique with slip e�ects. Mabood et al. [7]
scrutinized the impacts of magnetohydrodynamics and
thick dispersal on the laminar boundary layer stream of
nanoliquid through a nonlinear extending sheet. Waqas
et al. [8] discussed the ow of a Carreau nanoliquid
via the exponentially convected stretchable area and
this model was evaluated by Range-Kutta-Fehlberg
technique. Hatami and Jing [9] presented a di�erential
transformation method to study viscous nanouid ow.
Din et al. [10] explored the impact of mass and heat
exchange on the ow of a nanouid between two
plates utilizing homotopy analysis technique. Hayat
et al. [11] scrutinized the steady laminar boundary
layer ow of a Carreau nanoliquid via a stretching
sheet and discussed the impacts of Brownian movement
and thermophoresis. Acharya et al. [12] presented the
squeezing ow of nanoliquids including Cu-H2O and
Copper-kerosene among two plates using di�erential
transformation technique. Kumar et al. [13] presented
heat transfer mechanism and nanouid microchannel
applications using heat convection techniques. Irfan et
al. [14] built up a scienti�c connection for unsteady
3D constrained Carreau nano-liquid convective ow
through an extended surface. Rana and Bhargava [15]
considered the laminar boundary ow of a nanoliquid
via a nonlinear stretching sheet and solved the resulting
nonlinear governing equations via variational �nite
element technique. Rohni et al. [16] contemplated the
time-dependent ow through a ceaselessly contracting
area with wall mass suction into H2O-based nanou-
ids. Sheikholeslami and Ganji [17] investigated the
nanouid stream and heat transfer through the plates
at an equi-distance utilizing di�erential transformation
technique. Sheikholeslami et al. [18] introduced the
shaky or unsteady ow of a nanouid squeezing among
two plates utilizing adomian decomposition scheme.
Sheikholeslami et al. [19] scrutinized the free convec-
tion of nanouids using lattice Boltzmann technique.
Ali et al. [20] employed bvp4c MATLAB scheme to
investigate the cross nanouid ow in the process of
melting. Shah et al. [21] presented the solutions of
Kellor box and bvp4c for the cross nanouid ow with a
chemical process on a melting surface. Ayub et al. [22]

used bvp4c solutions to study the radiative 3D cross
nano-liquid motion with buoyancy opposing/assisting
e�ects. Haider et al. [23] obtained numerical solutions
for the movement of second-grade nanouid via a
stretching surface using bvp4c scheme of MATLAB.
Ayub et al. [24] applied bvp4c and Kellor box methods
to discuss the cross nanouid ow in the case of the
melting heat transfer in the blood.

In the areas of technology and science, the
Magneto-Hydrodynamic (MHD) ow of the non-
Newtonian liquids has received much attention. This
attention results from many applications in innovation
and science, e.g., structure for cooling atomic reactors,
blood stream estimation procedures, turbo appara-
tus development of heat exchangers, establishment of
atomic quickening agents, and so on. Internal ows of
MHD uid in ducts and channels have received special
attention. Investigators are aware of the fact that
the magnetic �eld has the power to induce current in
a progressive conductive liquid and it, in turn, exert
force on liquid with varying magnetic �elds. This
entire basic idea is the supporting pillar of MHD
introduction. When an electrically permitting uid
ows through a magnetic �eld, the interaction between
the electromagnetic �eld and hydrodynamics produces
MHDs. Impact of magnetic �eld on nanouids with
various geometries has been examined by many in-
vestigators. Haq et al. [25] presented the stagnation
point ow of a nanoliquid with MHDs and thermal
radiation e�ects. Ellahi and Riaz [26] explored the
impact of MHDs through the pipe ow of a third-
grade liquid with variable viscosity. Ramesh and
Sharma [27] presented the fundamental ows of MHD
Carreau liquid and introduced slip boundary conditions
with radiation parameters and Joule heating utilizing
regular perturbation method. The ow and heat trans-
port of MHD Go-H2O nanouids among two at plates
was investigated by Dogonchi et al. [28] using Duan-
Rach approach in the presence of thermal radiation.
Pushpa et al. [29] studied the heat transfer of copper-
water nanoliquid in a cylindrical annulus with ba�e.
Khan et al. [30] presented the MHD squeeze ow of
electrically conducting liquid among two parallel disks
with suction/injection surface and hybrid nanouid.
Kandasamy et al. [31] examined a nano-particle shape
using the pressed MHD nanouid stream of ethylene
glycol, water, and motor oil through a permeable sensor
area under thermal radiation. Nadeem and Akbar [32]
scrutinized the Peristaltic transfer of Newtonian MHD
liquid with variable viscosity in a symmetric channel
under the impact of heat transport using adomian
decomposition method. Nadeem and Akram [33] inves-
tigated the impacts of partial slip over the peristaltic
stream of a MHD Newtonian liquid in a non-symmetric
channel. Warke et al. [34] presented the MHD ow
of micropolar liquid induced by a heated stretching
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sheet and nonlinear radiation. Srinivas and Kothanda-
pani [35] investigated the impacts of mass and heat
transport on peristaltic transfer in a permeable space
with consistent walls. Hayat and Hina [36] showed
the impacts of mass and heat transport on the MHD
peristaltic ow into a planar channel through compliant
walls. Some more recent and important studies in
the direction of MHD nanoliquid ows in diverse
directions can be seen in [37{51] and the references
therein.

The Micro Electromechanical System (MEMS)
and microuidic technology enjoy many applications
in di�erent branches of engineering and science like
lab-on-a-chip system in favor of drug conveyance, heat
exchangers, micro pumps, chemical separation de-
vices, biomedical diagnostics, and bio-chemical analy-
sis. Heat transport and uid ow inside microchannels
are involved in all the above-mentioned devices and
instruments [52]. One of the signi�cant di�culties
in micro-scale transport phenomenon is to have a
reliable ow invitation. The most commonly used
ow activation mechanism in micro devices involves
creating a pressure gradient with a pumping device.
Such procedures are cumbersome, utilize moving parts
to generate ow, and require frequent upkeep. In
the previous decade, utilization of electro-kinetics as
a stream impelling system in micro devices is be-
coming increasingly famous. Given the remotely ap-
plied electric �eld, stream incitation in microchannels
has striking applications in various micro-uidic de-
vices and systems. Keeping all these applications in
mind, many researchers have focused their research
on microchannel ows with electric �elds. Sridhar
and Ramesh [53] presented an analytical investiga-
tion of the Electro-Magneto-Hydrodynamic (EMHD)
radiative Je�rey nano-liquid ow in an asymmetric
peristaltic mechanism. Munawar and Saleem [54]
discussed the motion of Williamson hybrid nano-liquid
through ciliated walls with EMHD e�ects. Ijaz et
al. [55] provided mathematica solutions for the EMHD
nano-bio-uid ow in a peristaltic curved plate. Man-
dal et al. [56] discussed the propulsion of superim-
posed liquids in strait con�nements in the presence of
EMHD e�ects. Ghorbani et al. [57] proposed �nite-
di�erence solutions for the e�ect of EMHD on the
motion of Carreau-Yasuda liquid through a rectangular
microchannel. Murtaza et al. [58] used the Laplace
transform technique to discuss the ow of EMHD
Maxwell nanouid in a channel. Noreen et al. [59]
discussed the EMHD nanouid motion through asym-
metric peristaltic plates with various zeta potentials.
Mahapatra Bandopadhyay [60] analyzed the motion of
electro-osmotic viscoelastic liquid over the surfaces of
high zeta potentials.

Based on these �ndings, the present work deals
with a novel model for simulating the ow of solar

MHD Carreau-nanouid due to electroosmosis, which
can be considered as generalization of the viscous
uid model. The working liquid is a magnetized
Carreau nanouid that includes a base liquid contain-
ing suspended magnetic nano-particles. The curiosity
of the current work is the consolidation of MHDs
and nanouids dynamics to design a hybrid solar
pump system model. The problem is �rst modeled
and then, the perturbation solutions are evaluated
for the resulting system of equations. The graph-
ical results are prepared for velocity, solutal nano-
particle concentration, temperature, Nusselt number,
and Sherwood number. This model facilitates examin-
ing the uid dynamics problems administered by the
electroosmosis mechanism. This study is structured
as follows: Section 2 describes the modeling of the
problem along with the solutions. Section 3 provides
numerical outcomes and discussion. Section 4 concludes
this study.

2. Modeling

Consider the incompressible ow of a Carreau nano-
liquid in the microchannel with distance 2h. The
Cartesian system (x; y) is considered here to study
the present problem. In this system, x-axis is in the
horizontal direction of uid movement, while y-axis is
taken vertical to it with its origin at the microchannel
center. In transverse motion, liquid is conceived to be
electrically conducting with an applied magnetic �eld
of magnitude B0. Fluid particles are con�ned between
two walls. The upper and lower walls have been kept up
at steady temperature T0 and C0 is the nano-particle
volume fraction for these walls. Electroosmotic ow
has been taken into consideration and it gives rise to
the bulk motion of ionized uid on a �xed charged
surface. The schematic delineation of electroosmotic
stream along the horizontal microchannel is depicted
in Figure 1. Accordingly, it has been observed that the
surface of channel walls is attached with net-negative
charges due to which �ve ions get repulsed away
from the wall and +ve ions get pulled in towards the
wall, shaping an EDL (Electric Double Layer) near the
channel wall. At a point where the EDL collaborates
with the applied electric �eld, electroosmotic ow is
generated. The +vely charged ions of the EDL layer are
magnetized near cathode and repulsed via the anode
resulting in net transport of ionized uid towards the
electric �eld.

The equations of continuity, motion, energy,
and solutal-nano-particle concentration for Carreau
nanouids can be incorporated in the following
form [27,61]:

r � �q = 0; (1)
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Figure 1. Physical sketch of the
electroosmosis-modulated ow of a Carreau nano-liquid in
a micro channel.
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charge density, Ex applied electrical �eld, cp speci�c
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of the nanouids, T the temperature, t the time, kef
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�S =
��
�1 + (�0 � �1) (1 + ��_)a

�w�1
a

�
�_ij ; (5)

where:

�_ =
s

1
2

X
i

X
j

�_ij�_ji =
r

1
2

�: (6)

Herein, � stands for the second invariant strain tensor,
�1 viscosity of uid at an in�nite shear rate, �0
viscosity of uid at zero shear rate, � and a non-
Newtonian liquid quantities, w dimensionless power
law index, and �_ shear rate. The limiting cases can
be captured for shear thickening and shear thinning
impacts when w < 1 and w > 1, respectively. In the
ongoing investigation, �1 = 0 is considered. Besides,
for a = 2, this model provides the Carreau uid model.
For � = 0 or w = 1, it is a Newtonian uid model.

According to the notable Poisson-Boltzmann
equation for the microchannel, the electric potential
� is de�ned as follows [61]:
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respectively, containing bulk concentration, and "ef is
medium permittivity.
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servation equations; in this manner, non-dimensional
parameters are introduced as follows:

�x=
x
h
; �y=

y
h
; �u=

u
U
; M=

r
�ef
�0

B0h;

�T =
T � T0

T0
; �C =

C � C0

C0
;  =

�U
h
;

Grt =
�efgh�tT0

�0U
; Grc =

�efgh�cT0

�0U
;

� = hez

s
2n0

"ef�BTv
; �n =

n
n0
; �1 =

L2

h
;

�2 =
L3

h
; UHS=�Ex"ef &

�0U
; S=��efE2

xh2

kefT0
;

Ntc =
DtcC0

kefT0
; Nct =

DctT0

DsC0
; � =

L1

h
; (9)

here, M is the Hartmann number, u the dimensionless
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axial component, �T the non-dimensional temperature,
�p the non-dimensional pressure, �C the non-dimensional
solute nanoparticle concentration, Grc the solutal
Grashof number, Grt the thermal Grashof number, n
the dimensionless ions bulk concentration in the elec-
trolyte, UHS velocity of the Helmholtz-Smoluchowski,
S the Joule heating parameter, Ntc the Dufour thermo-
di�usive parameter, Nct Soret di�uso-thermo parame-
ter, and � dimensionless electric potential term. In
a steady state, the Poisson-Boltzmann condition is
reduced to the following:

d2�
dy2 = ��2

�
n+ � n�

2

�
; (10)

where � stands for the electroosmotic term. The ionic
dissemination can be achieved using Nernst Planck
equation, which is de�ned as:
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�
n�

d�
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�
= 0; (11)

exposed to the conditions featuring � = 0, n� = 1,
and @n�

@y = 0 at @�
@t = 0. In this condition, a

much-anticipated Boltzmann dispersion for the ions is
obtained as follows:

n� = e��: (12)

By substituting Eq. (12) in Eq. (10), the Poisson-
Boltzmann model for the electrical potential dissem-
ination in the electrolyte is obtained and it yields the
following:

d2�
dy2 = �2 sinh(�): (13)

Further, based on the estimate of low-zeta potential,
Eq. (13) is linearized, which tends to be disentangled
as:
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Using the above-mentioned assumptions along with
the dimensionless quantities, the subsequent governing
di�erential equations (after dropping the bars) can be
composed as:
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with the non-dimensional form of slip boundary condi-
tion being as follows:
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In general, (U1 = 0 and U2 = 0) are considered.
However, the current �ndings are extended to diverse
values of U1 and U2 graphically (meaning that the up-
per and lower plates are moving in di�erent directions
with constant velocities). Using Eqs. (16){(18) with
the assistance of boundary Conditions (19) and (20),
the expressions for solutal nano-particle concentration,
temperature, and velocity distributions are obtained as
follows:

C = C1emy + C2e�my � R
m2 ; (21)

T = B1emy +B2e�my +B3y2 + C3y + C4; (22)
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where Ci's (i = 1; 2; � � � ; 8) and Bj 's (j = 1; 2; � � � ; 74)
are basic algebraic calculations conducted by Mathe-
matica programming software.

3. Results and conversation

Here, the e�ects of numerous physical parameters
through the temperature T , velocity U , solutal
nanoparticle concentration C, Sherwood number Sh,
and Nu have been considered. According to these
�gures, velocity, temperature, and solute NPs concen-
tration pro�les are almost parabolic in nature.

Figure 2(a) presents the alteration of chemical
reaction term�via velocity dissemination. It is seen
that the velocity is reduced upon enhancing the es-
timations of chemical reaction parameter when Joule
heating parameter is positive. This is because the
chemical reaction in this system leads to the use of the
chemical; hence, velocity declines. However, without
Joule heating parameter and with negative values, the
velocity increases as the value of chemical reaction
parameter increases. Figure 2(b) visualizes the velocity
dissemination at di�erent values of �. The increase in
velocity followed by the rising values of velocity slip
term in all instances of Joule heating parameter is
observed in Figure 2(b). It is physically reasonable that
while the slipping of liquid takes place at the boundary,
liquid velocity is not equivalent to the boundary at
that point. Also, since more liquid slips at the
boundary, its velocity declines and is inuenced by the
boundary movement. From Figure 2(c), the velocity

declines upon enhancing the estimation of M in every
case of the three referenced Joule heating parameters.
This is due to the Lorentz force generated via the
application of constant magnetic �eld, which exhibits
resistance to the uid motion and constrains the ow.
Figure 2(d) tends to visualize the velocity dissemina-
tion at di�erent values of electroosmosis term � in
three di�erent situations of Joule heating parameters.
According to Figure 2(d), the velocity increments upon
increasing the estimation of electroosmosis parameter.
Figure 2(e) presents the behavior of motion of the
superior plate via velocity distribution. Increase in
velocity in all the cases is observed. For example, in
case of the movement of the upper plate to the opposite
direction of the ow, both plates are �xed and the
top plate moves with a constant velocity. In all these
cases, it is additionally noticed that higher velocities
are detected due to the movement of the upper plate
with a constant velocity. It is concluded that when
the plate moves, the layers that are close to the plate
are a�ected, hence higher velocity. Similar results are
expected due to the movement of the lower plate (see
Figure 2(f)).

Figure 3(a) analyzes the e�ect of variations in �
on the temperature dissemination. It is found that the
temperature diminishes with an increase in � when
Joule heating term is positive, and the temperature
increases when the Joule heating parameter is negative.
Figure 3(b) illustrates the variation of Soret di�uso-
thermo parameter with respect to the temperature
and from this �gure, the temperature is enhanced by
boosting the estimations of Soret di�uso-thermo term
on account of positive estimation of Joule heating term,
whereas in the event of negative estimation of Joule
heating term, the pattern is reversed. Figure 3(c) shows
the e�ect of variations of Pr on the temperature pro�le.
According to this plot, following the increase in the
estimated value of Pr, the temperature for negative
Joule heating term increases and the pattern is inverted
due to positive Joule heating term. The rise in Prandtl
number makes thermal di�usivity more fragile and the
thickness of the boundary layer more slender. A larger
Prandtl number would have lower thermal di�usivity
and lower Pr has higher thermal di�usivity. At a lower
value of Pr, the higher temperature dissemination is
noticed. A similar behavior is observed in Figure 3(d)
and (e) upon enhancing Rn and Sc. In this respect, an
increment in Rn reduces the thickness of the boundary
layer and increases the rate of heat transport in a
dissolving area in the presence of chemical impact.
Plot 3(f) depicts the nature of temperature slip term.
It is seen that the temperature increments with an
increase in the value of the temperature slip parameter
when the Joule heating parameter is positive, while
the temperature decreases when the Joule heating
parameter is negative.
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Figure 2. Pro�les of velocity for the di�erent uid parameters.

Figure 4(a) shows the impact of � over the
solutal nanoparticle concentration. From this �gure,
the solutal nanoparticle concentration is a decreasing
function of � for negative estimation of Joule warm-
ing parameter because the chemical reaction justi�es
the utilization of the chemical species; therefore, the
concentration pro�le diminishes along the ascending
function for positive estimation of Joule heating pa-
rameter. Figure 4(b) depicts that with the rise of Ntc,
the solutal nanoparticle concentration pro�le keeps
increasing for the negative Joule heating term and
decreasing for positive Joule heating term. Figure 4(c)
shows the uctuation of di�erent values of Pr in the
solutal nanoparticle concentration distribution. Based

on Figure 4(c), the rise of Pr leads to the reduction
of the solutal nanoparticle concentration pro�le for
S = �2 and when S = 2, the trend is opposite.
Figure 4(d) plots the variations of Rn via the solutal
nanoparticle concentration distribution. It is noted
that when Joule heating parameter is positive, the
solutal-nano-particle concentration is enhanced with
an increase in the value of radiation parameter and
when Joule heating parameter is negative, the solutal
nanoparticle concentration diminishes with increase in
the value of radiation parameter. A similar behavior
is followed by an increase in Schmidt number Sc (see
Figure 4(e)). Increase in the estimate of Sc corresponds
to the high rate of viscous dissemination, which causes
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Figure 3. Temperature distributions by the di�erent uid terms.

an increment in the solutal nano-particle concentration
of a uid. The impact of concentration slip parameter
through the solutal NP concentration is described in
Figure 4(f). It is obvious from this �gure that the
concentration augments upon enhancing the value of
concentration slip parameter at a negative value of
Joule heating term and the pattern is overturned at
a positive value of Joule heating term. In all the cases,
no variation is noticed for S = 0.

Figure 5(a){(e) visualizes the features between
radiation parameter Rn and Nusselt number Nu. From
Figure 5(a){(c), Nu augments with a rise in the values
of �, Pr, and Sc at negative values of Joule heating

term, while the opposite pattern is pursued at the
positive Joule heating term. This is because the de-
velopment of the radiation term Rn causes a decline in
the thickness of the boundary layer and increase in the
heat transport rate in the melting area in the presence
of chemical impact. Figure 5(d){(e) plots the impacts
of Nct and Ntc on Nu. It is noticed that Nu diminishes
upon boosting values of Nct and Ntc for S = �2 and
the case is inverted for S = 2. To study the e�ects
between radiation term Rn and Sherwood number
Sh, Figure 6(a){(e) has been prepared. According
to Figure 6(a){(c), with an increase in the values of
�, Prandtl number, and Sc, there is an increase in
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Figure 4. Solutal nanoparticle concentration by the di�erent liquid parameters.

Sherwood number for the non-negative Joule heating
term, while the pattern is reversed for the non-positive
Joule heating term. Figure 6(d){(e) visualizes the
conduct of Nct and Ntc on Sh. It is depicted that Sh
rises upon increasing values ofNct andNtc at a negative
value of Joule heating term and Sherwood number
is reduced at a positive value of Joule heating term.
Without Joule heating term, no change in Nu and Sh
is detected. It is clearly mentioned from Figure 7 that
the reported outcomes are in close agreement with the
existing results obtained by Ramesh and Sharma [27]
in the limiting cases of the current analysis.

4. Conclusions

The current study is a worthwhile attempt to study the
transport of Carreau nanouid in the in�nite parallel
microchannels. The impacts of radiation, magnetic
�eld, chemical reaction, and Helmholtz-Smoluchowski
velocity were considered. The solutions for the tem-
perature, velocity, and solutal nanoparticle concen-
tration were introduced utilizing regular perturbation
technique considering Carreau liquid parameter as
perturbation parameter. The numerical simulation was
presented to illustrate the nature of the ow quantities.
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Figure 5. Nu distributions by the di�erent uid terms.

The obtained �ndings are summed up in the
following form:

� The velocity exhibited a rising function of chemical
reaction term and slip velocity parameter in case
of negative Joule heating term, while the opposite
pattern was seen for positive Joule heating term;

� The velocity declined following the enhancement of
Hartmann number in all the cases of Joule heating
term;

� The temperature diminished with an increment in
�, Pr, Rn, Sc with positive Joule heating term;

� The solutal nano-particle concentration increased

via an increment in �, Pr, Rn, and Sc for the positive
Joule heating term;

� Very similar observations were obtained in Nu and
Sh through all the cases of Joule heating parameter;

� The results of the Newtonian liquid model could be
obtained by setting  = 0 and w = 1.

The �ndings of the current mathematical scrutiny
will be the benchmark for simulating a more general-
ized model in three dimensions for the nanouid/hybrid
nanouid ow in di�erent directions with thermophys-
ical properties.
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Figure 6. Sh distributions for the di�erent uid parameters.

Figure 7. Comparison between velocity pro�le the
existing pro�le in the literature.
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Nomenclature

B0 Magnetic �eld strength (T)
x Axial direction of ow (m)
y Transverse direction of ow (m)
�q Velocity vector (m s�1)
�nf E�ective density of nanoliquid (kg

m�3)
P Pressure (Pa)
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�ef E�ective electrical conductivity (S
m�1)

(cp)ef E�ective heat capacity of the nanouid
(J kg�1 K�1)

t Time (s)
kef E�ective thermal conductivity (W

m�1K�1)
T Temperature (K)

C Concentration of the liquid (mol m�3)

Dtc Temperature di�usivity coe�cient (m2

s�1)

Dct Mass di�usivity coe�cient (m2 s�1)

Ex Applied electrical �eld (V m�1)

Ds Solutal di�usivity (m2 s�1)

k Chemical reaction parameter (mol m�2

s�1)
T0 Ambient temperature ({)
C0 Ambient concentration ({)

u Velocity component (m s�1)

g Acceleration due to gravity (m s�2)
�c Concentration expansion coe�cient

(K�1)

�t Thermal expansion coe�cient (K�1)
�1 Viscosity of liquid at in�nite shear rate

(kg m�1 s�1)
�0 Viscosity of liquid at zero shear rate

(kg m�1 s�1)
� Material constant ({)
a Non-Newtonian liquid constant ({)
� Electric potential term (V)

�e Electrical charge density (C m�3)
w Power law index ({)

"ef Medium permittivity (F m�1)
n Ions bulk concentration in the

electrolyte (m�3)
M Hartmann number ({)
� Electro osmosis term ({)
UHS Helmholtz-Smoluchowski velocity (m

s�1)
Grt Thermal Grashof number ({)
Grc Solutal Grashof number ({)
Pr Prandtl number ({)
Rn Radiation parameter ({)

qr Radiative heat ux (W m�2)
S Joule heating parameter ({)

Ntc Dufour thermo-di�usive parameter ({)
Nct Soret di�usion-thermo parameter ({)
� Dimensionless chemical reaction term

({)
Sc Schmidt number ({)
�1 Temperature slip term ({)
�2 Concentration slip term ({)
� Velocity slip parameter ({)
Sh Sherwood number ({)
Nu Nusselt number ({)
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