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Abstract. The current study proposes an e�cient numerical method to evaluate the
e�ects of the variable heat 
ux, viscous dissipation, and slip velocity on the viscous Casson
Heat Transfer (CHT), considering the unsteady stretching sheet that took into account the
e�ect of heat generation or absorption. In this respect, Finite Element Method (FEM) was
employed to solve the resulting ODEs that described the problem. The e�ects of the factors
governing the HT such as unsteadiness parameter, slip velocity parameter, Casson parame-
ter, local Eckert number, heat generation parameter, and Prandtl number were studied. In
addition, the local skin friction coe�cient and local Nusselt number on the stretching sheet
were also computed. Finally, the obtained solutions con�rmed that the proposed procedure
could be an easy and e�cient tool for �nding a solution to such 
uid models.
© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Heat Transfer (HT) resulting from unsteady stretching
sheet has attracted ever-increasing research interest
owing to its numerous practical applications in various
manufacturing processes and technology since Crane [1]
presented an analytical solution for the model of steady

ow for a Newtonian 
uid deduced by a stretched 
at
sheet which moved through its plane at a velocity
varying linearly in the range of �xed points. The
problem posed by Crane [1] was then extended, taking
into account a porous sheet by Gupta et al. [2],
obtained an exact solution of the system under study.
Grubka and Bobba [3] investigated the thermal �eld

*. Corresponding author.
E-mail address: minc@�rat.edu.tr (M. Inc)

doi: 10.24200/sci.2022.60176.6644

and came up with a solution to the energy equation
using the properties of Kummer's functions. In the
same �eld of study, a number of other relevant research
studies have been carried out [4{17].

In nature, several 
uid types can be classi�ed as
a Casson 
uid that is marked by a purely viscous 
uid
with high viscosity. Some of the studies on this type of

uid may be found in [18{20]. Most of the previous
studies have neglected the slip velocity condition at
the boundary over a Stretching Surface (SS) while it
is of importance in the case of obtaining the desired
properties of the outcome. Many studies have been
conducted and listed as [21{24] owing to the important
applications of the HT characteristics in the case of slip
e�ects over an SS.

Inspired by the former research, many researchers
have successfully applied a variety of numerical meth-
ods in this �eld [25{28] among which the Finite El-
ement Method (FEM) is the most acknowledged one
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[29,30] owing to its advantages that help solve this
class of equations where the solution coe�cients can
be easily obtained through any one of the numerical
programs. For this reason, FEM was found to be much
faster than other methods. Kochnev [31] investigated
the FEM for atoms. Zhang and Cu [32] explored the
condensed generalized �nite element method in detail.
Tolle and Marheineke [33] presented the extended �nite
element method. Bertrand et al. [34] discussed the
robust and reliable �nite element methods in porome-
chanics.

Nevertheless, the motivation behind this study
was to employ an extensively validated, highly e�-
cient, and variational �nite element code to study
the Casson 
uid 
ow over a USS with internal heat
generation, viscous dissipation, and variable heat 
ux
involving Boundary Conditions (BCs) of slip e�ect.
This investigation will be of immediate interest to
all those processes that are highly a�ected by the
heat enhancement concept, e.g., the in
ow of blood
through the industrial artery, which can be polished
by a material governing the blood 
ow. In this study,
FEM was used to numerically solve the normalized
boundary layer equations to examine the e�ects of the
following parameters and coe�cients on the relevant

ow variables in detail:

M Magnetic variable
� Casson variable
S Unsteady variable
m Time indices variable
r Space indices variable

 Local heat generation/absorption variable
� Velocity slip variable
Pr Prandtl number
Ec Local Eckert number

This study is organized as follows. A full description
of the problem is given in Section 2. The procedure of
�nding the solution through the �nite element method
is discussed in Section 3. The numerical simulations
are performed and explained in Section 4. Finally, the
concluding remarks are given in Section 5.

2. Description of the problem

Consider an electrically Casson 
uid 
owing unpre-
dictably through an extending horizontal impermeable
sheet. Along the y-axis, a strong magnetic �eld is
imposed (Figure 1). Because the magnetic Reynolds
number of the 
ow is assumed to be very small, the
induced magnetic �eld is ignored. We also suppose
that the 
uid is subjected to heat generation and heat

ux, and that all 
uid properties remain constant.

Figure 1. Schematic diagram of the problem.

The x and y axes were considered to be along and
perpendicular to the plane of the sheet, respectively.
Suppose that:

U =
cx

1� �t : (1)

Here, we need to show that the shape of the sheet
velocity in Eq. (1) is held only for times t < ��1 unless
� = 0. Then, consider [35]:

qs(x; t) = ��@T
@y

= T0
dxr

(1� �t)m+ 1
2
; (2)

where � is the 
uid thermal conductivity; T and T0 are
the temperature and reference temperature of the 
uid,
respectively; and d is a �xed number. Now, the state
for an incompressible 
ow of a Casson 
uid is described
by the following rheological equation [36{38]:

�ij =

8<: 2(�B + Py=
p

2�)eij ; � > �c

2(�B + Py=
p

2�c)eij ; � < �c

The heat generation/absorption term Q can be ob-
tained as [38]:

Q =
�
Q0(T � T1); T � T1;
0; T < T1: (3)

For this kind of 
ow, we have [39]:

@u
@x

+
@v
@y

= 0; (4)

@u
@t

+ u
@u
@x

+ v
@u
@y

= �(1 +
1
�

)
@2u
@y2 � �B2

0
�

u; (5)

@T
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+ u
@T
@x

+ v
@T
@y

=
�
�cp

@2T
@y2 +

�
cp

(1 +
1
�

)
�
@u
@y

�2

+
Q0

�cp
(T � T1); (6)

where u and v are the velocity components, � is the

uid density, � = �B

p
2�c=Py is the Casson variable.

The suitable BCs can be represented as:
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u = U(x; t) +N1

�
1 +

1
�

�
@u
@y
; v = 0;

��@T
@y

= qs(x; t); at y = 0; (7)

u! 0; T ! T1; as y !1: (8)

It is critical to point out that the �rst part of Eq. (7)
represents the slip velocity phenomenon. Physically,
this phenomenon has signi�cant technological appli-
cations such as polishing arti�cial heart valves and
interior cavities, to name a few [24,40]. Here, N1 =
N(1 � �t) 1

2 is the velocity slip factor which changes
with time, and N the initial value of velocity factor.
Likewise, the third part of Eq. (7) is utilized to deter-
mine the rate of heat transfer, which is essential for the
cooling process [41]. The mathematical formulation of
the model can be simpli�ed by inserting the following
dimensionless coordinates:

� = (
c
�

)
1
2 (1� �t)�1

2 y; u =
cx

1� �tf 0(�);

v = �
p
c�

(1� �t) 1
2
f(�); (9)

T = T1 + T0(
dxr

�
p
c=�

)(1� �t)�m�(�): (10)

Eqs. (9){(10) are valid only for �t � 1, where f(�)
is the dimensionless stream function and �(�) is the
dimensionless temperature.

Based on the last two equations, the mathemat-
ical problem de�ned in Eqs. (5){(8) will be reduced
to a collection of ODEs and their associated boundary
conditions, as shown below:�

1+
1
�

�
f 000+ff 00�f 02� �

2
S f 00�(S +M) f 0 = 0;

(11)

1
Pr

�00 + f�0 � rf 0� � �
2
S�0 + Ec

�
1 +

1
�

�
f 002

� (Sm� 
)�=0; (12)

f = 0; f 0 = 1 + �
�

1 +
1
�

�
f 00; �0 = �1;

at � = 0; (13)

f 0 ! 0; � ! 0; as � !1; (14)

where a prime denotes di�erentiation w.r.t. � S = �
c ;

is the unsteadiness parameter; Ec = U2

cp�T ; �T =
T0( dxr

�
p
c=�

)(1 � �t)�m; 
 = xQ0
U�cp is the native heat

generation (> 0) or absorption (< 0) parameter; and
Pr = ��cp

� .

In engineering and practical applications, our
interest lies in the realization of the paramount physical
parameters of the 
ow behavior and HT characteristics
by analyzing Cfx and Nux. These non-dimensional
parameters are de�ned as:

Cfx=�2Re
�1
2
x

�
1+

1
�

�
f 00(0); Nux=

Re
1
2
x

�(0)
; (15)

where Rex = Ux
� is the local Reynolds number.

3. Procedure of solution by the FEM

FEM is a powerful method for the numerical treatment
of the di�erential equations, taking into consideration
the basic assumption that the whole domain is divided
into Finite Elements. In addition, this method is
a versatile numerical procedure used for solving many
di�erent problems such as 
uid mechanics [42], heat
transfer [43], etc. FEM is implemented through the
following steps [44]:

1. Finite-element discretization: The �nite-element
mesh is constructed by a collection of these ele-
ments.

2. Element equations derivation:

� Construct the Variational Formulation (VF) of
the presented problem for all typical elements
isolated from the proposed mesh;

� Assume an approximate solution of the VF and,
then, substitute it with the element equations;

� Construct the sti�ness matrix (the element ma-
trix) in terms of element interpolation functions.

3. Element equations collection: Collect the algebraic
equations to obtain a large number of algebraic
equations.

4. BCs insertion: Insert the essential and natural BCs
into the collected equations.

5. Algebraic equations solving: Assess the set of alge-
braic equations using any of the suitable numerical
techniques.

The solutions to the simultaneous ODEs, as given in
Eqs. (11) and (12) with the BCs (Eqs. (13) and (14)),
will be obtained through the following steps:

Suppose that f 0(�) = h(�). Then, the set of
Eqs. (11){(12) will be:

f 0 � h = 0; (16)�
1+

1
�

�
h00+fh0� h2�0:5S� h0� (S+M)h=0; (17)
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1
Pr

�00 + f�0 � rh� � 0:5S��0 + Ec
�

1 +
1
�

�
h02

+ (
 � Sm)� = 0: (18)

The corresponding BCs in the bounded domain (0; �1)
are obtained as:

f(0) = 0; h(0) = 1 + �
�

1 +
1
�

�
f 0(0);

�0(0) = �1; (19)

h! 0; � ! 0; as � !1: (20)

3.1. Variational formulation
The variational form associated with Eqs. (16){(18)
over a typical linear element (�e; �e+1), can be con-
structed:Z �e+1

�e
�1[f 0 � h]d�; (21)Z �e+1

�e
�2[(1 + ��1)h00 + fh0 � h2 � 0:5S�h0

� (S +M)h]d�; (22)Z �e+1

�e
�3

�
1
Pr

�00 + f�0 � rh� � 0:5S� �0

+ Ec(1 + ��1)h02 + (
 � Sm)�
�
d�; (23)

where �1, �2, and �3 are the arbitrary test functions
that may be observed as the variation of f , h, and �.

3.2. Finite element formulation
We have:

f(�) =
2X̀
=1

f`�`; h(�) =
2X̀
=1

h`�`;

�(�) =
2X̀
=1

�`�`; (24)

with �1 = �2 = �3 = �`, and ` = 1; 2.
In our calculations, the shape functions for a

typical element (�e; �e+1) are chosen by:

Linear element:

�e
1 =

�e+1 � �
�e+1 � �e ; �e

2 =
� � �e

�e+1 � �e ;

�e � � � �e+1: (25)

Quadratic element:

�e
1 =

(�e+1 � �e � 2�)(�e+1 � �)
(�e+1 � �e)2 ;

�e
2 =

4(� � �e)(�e+1 � �)
(�e+1 � �e)2 ;

�e
3 = � (�e+1 � �e � 2�)(� � �e)

(�e+1 � �e)2 ;

�e � � � �e+1: (26)

The FEM of the formed equations can be described by:0BBBB@
�
K11� �

K12� �
K13��

K21� �
K22� �

K23��
K31� �

K32� �
K33�

1CCCCA
0BBBB@

[f ]

[h]

[�]

1CCCCA

=

0BBBB@
�
b1
��

b2
��

b3
�
1CCCCA ; (27)

where [Krs] and [br] (r; s = 1; 2; 3) are interpreted as:

K11
ij =

Z �e+1

�e

�
�i
d�j

d�

�
d�;

K12
ij = �

Z �e+1

�e
(�i�j) d�; K13

ij = 0;

K21
ij =

Z �e+1

�e

�
�i
d�j

d�

�
d�; K23

ij = 0;

K22
ij =�

Z �e+1

�e

� �
1 + ��1��d�i

d�
d�j

d�

�
�
�

0:5S�i
d�j

d�
+ (S +M)�i�j

��
d�

�
Z �e+1

�e

�
�i�h�j

�
d�;

K31
ij =

Z �e+1

�e

�
�i ��0�j

�
d�;

K32
ij =� r

Z �e+1

�e

�
�i���j

�
d�

+ Ec
�
1 + ��1� Z �e+1

�e

�
�i �h0 d�j

d�

�
d�;
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K33
ij =

Z �e+1

�e

��
1
Pr

��
d�i

d�
d�j

d�

�
� 0:5 Sm

�
�i
d�j

d�

�
+ (
 � Sm) (�i�j)

�
d�;

b1i = 0; b2i = � �1 + ��1���i
dh
d�

��e+1

�e
;

b3i = �
�

1
Pr

��
�i
dh
d�

��e+1

�e
; (28)

where:

�h =
2X̀
=1

�h`�`; �h0 =
2X̀
=1

�h`
d�`

d�
;

�� =
2X̀
=1

��`�`; ��0 =
2X̀
=1

��`
d�`

d�
:

4. Numerical simulation

The estimated value of the wall temperature �(0) of
for di�erent values of the Prandtl number Pr was
compared with those obtained by Prasad et al. [45]
to examine the accuracy of the proposed numerical
method. According to the results listed in Table 1,
our �ndings are in good agreement with the �ndings
already published in the literature.

This section discusses the conduct of the physical
parameters governing the proposed model namely M ,
�, S, m, r, 
, �, Pr and Ec. These physical parameters
are used in the range of 0:0 �M � 0:9, 0:0 � S � 1:4,
0:2 � � � 1, 0:0 � � � 1:0, 0:7 � Pr � 2:0,
0:0 � Ec � 0:9, 1:0 � m � 4:0, �1:0 � 
 � 1:0
and 1:0 � r � 4:0 [39]. As a result, the values of the
parameters with �xed values are displayed graphically
as M = � = 0:2, Pr = 1:3, Ec = 0:2, r = m = 2:0,
� = 0:5, and S = 0:8. Figure 2(a) and (b) examine
the in
uence of magnetic number M on the velocity
and temperature pro�les respectively. Figure 2(a)
exhibits that the velocity is a decreasing function of
M , whereas Figure 2(b) is an increasing function of
the same parameter M .

Table 1. Comparison of wall temperature �(0) with the
results obtained by Prasad et al. [45] (Newtonian case)
when M = 1; � = S = 0; r = 1; Ec = 0, and � !1.

Pr Prasad et al. [45] Present work

0.7 1.3755 1.37549852
1.0 1.0993 1.09927985
2.0 0.7066 0.70655958
5.0 0.4087 0.40868792
10.0 0.2776 0.27759875

Figure 2. (a) Velocity pro�les for M . (b) Temperature
pro�les for M .

Figure 3(a) is plotted to examine the dimen-
sionless velocity pro�les inside Boundary Layer (BL)
for di�erent values of S. As observed in this �gure,
increase in the value of the unsteadiness parameter
leads to a fall in the 
ow velocity pro�les inside the
BL. In addition, under the e�ect of heat 
ux along the
sheet, the temperature pro�les along the BL and wall
temperature �(0) decrease upon increasing the same
parameter (Figure 3(b)) and the cooling rate at higher
values of S is quite high while it decreases at smaller
values of S.

Figure 4(a) shows the velocity pro�les versus the
similarity variable � for di�erent values of �. As
observed, an increase in � value leads to an increase
in the velocity pro�les along the sheet; however, the
reverse is true away from the sheet. In addition,
the thickness of the BL decreases upon increasing
�. Figure 4(b) depicts the temperature pro�les for
di�erent values of the same parameter according to
which both the temperature in the thermal BL and wall
temperature �(0) increase followed by increasing the
Casson parameter but in weakly di�erences between
values of the same parameter.

Figure 5(a) and (b) show the e�ect of 
 on the
velocity and temperature pro�les. As observed in
Figure 5(a), both velocity pro�les inside the BL and
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Figure 3. (a) Velocity pro�les for S. (b) Temperature
pro�les for S.

Figure 4. (a) Velocity description for �. (b) Temperature
description for �.

Figure 5. (a) Velocity description for �. (b) Temperature
description for �.

BL thickness decrease as the slip velocity parameter
increases. Physically, under the slip condition, the
slipping 
uid reduces the surface skin friction values
between the 
uid and stretching sheet. As a result,
increasing the value of the slip velocity parameter
will reduce the 
ow velocity in the region of the BL.
The dimensionless temperature pro�les within the BL
region for the slip velocity parameter are illustrated in
Figure 5(b) according to which any increase in 
 may
result in an increase in both wall temperature �(0) and
the 
uid temperature pro�les in the thermal BL.

Figure 6(a) graphically shows the e�ect of the
Prandtl number, Pr, on the temperature distribution
above the sheet. In this �gure, a decrease in the Pr
may result in increase in the thermal BL thickness,
temperature pro�les, and temperature of the wall
�(0) mainly because the higher values of the Prandtl
number correspond to the weaker thermal di�usivity.
Clearly, the Prandtl number has a direct e�ect on
the temperature �eld, as shown by the governing
equations (Eqs. (11)-(14)); however, it does not a�ect
the 
uid velocity �eld. For this reason, changing the
Prandtl number values did not a�ect the 
uid velocity
distributions. Figure 6(b) elaborates the e�ect of the
Eckert number on the temperature pro�le. Evidently,
the e�ect of increasing Eckert number Ec will increase
both the temperature pro�les along the BL and surface
temperature �(0). This is, of course, a consequence
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Figure 6. (a) Temperature description for Pr. (b)
Temperature description for Ec.

of the fact that at higher values of the Ec, there is
signi�cant heat generation due to viscous dissipation
near the sheet. In this regard, viscous dissipation in a

ow due to a stretching sheet is bene�cial to providing
the required temperature.

Figure 7(a) and (b) illustrate how temperature
pro�les are a�ected by the change in the space index
parameter r or (the time index parameter m) when
other parameters remain �xed. These �gures indi-
cate that the dimensionless temperature pro�le turns
depressed following increase in the values of the two
parameters. Likewise, the e�ect of increasing these two
parameters will cause a decline in the temperature of
the wall �(0).

Moreover, Figure 8 illustrates how temperature
pro�les are a�ected by the variations in the heat gener-
ation/absorption parameter 
 when other parameters
remain constant. This �gure also indicates that the
thermal BL thickness values increase when 
 > 0
becomes stronger, while the opposite e�ect can be
observed when 
 < 0. In addition, the highest tem-
perature behavior for the 
uid in the BL was obtained
with the greatest heat generation parameters 
 > 0.
Likewise, the e�ect of heat absorption parameters 
 <
0 causes a drop in the temperature pro�les as the heat
dissipated from the sheet is absorbed.

Figure 7. (a) Temperature description for r (b).
Temperature description for m.

Figure 8. Temperature description for 
.

Table 2 shows the e�ect of di�erent values of
physical governing parameters of M , �, S, m, r, Pr, �
and Ec, all required for the evaluation �(1 + 1

� )f 00(0)
and 1

�(0) . Of note, an increase in the value of the
unsteady parameter causes an increase in both Cfx and
Nux. In addition, the local Cfx decreases by increasing
� while Nux increases by increasing the values. With
an increase in � both the local Cfx and Nux are
reduced. In addition, any increase in the values of Ec
and 
 leads to a decrease in Nux. Further, an increase
in the Pr will increase Nux value, mainly because
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Table 2. Variation of �(1 + 1
� )f 00(0) and 1

�(0) for distinct values of M;S; �; �; 
; Ec; r;m and Pr.

M S � � Pr Ec r m 
 �(1 + 1
� )f 00(0) 1

�(0)

0.0 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.42101 1.78389

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.48953 1.76116

0.5 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.58118 1.73096

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.48975 1.76104

0.2 1.0 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.53819 1.86843

0.2 1.0 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.58376 1.97008

0.2 1.4 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.62672 2.06688

0.2 0.8 0.2 0.2 1.3 0.2 2.0 2.0 0.2 1.84905 1.74277

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.48953 1.76116

0.2 0.8 1.0 0.2 1.3 0.2 2.0 2.0 0.2 1.29823 1.76601

0.2 0.8 1.5 0.2 1.3 0.2 2.0 2.0 0.2 1.21724 1.76669

0.2 0.8 0.5 0.0 1.3 0.2 2.0 2.0 0.2 2.31847 1.83242

0.2 0.8 0.5 0.5 1.3 0.2 2.0 2.0 0.2 0.99485 1.66516

0.2 0.8 0.5 1.0 1.3 0.2 2.0 2.0 0.2 0.65078 1.56523

0.2 0.8 0.5 0.2 0.8 0.2 2.0 2.0 0.2 1.48953 1.38704

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.48953 1.76116

0.2 0.8 0.5 0.2 2.0 0.2 2.0 2.0 0.2 1.48953 2.16256

0.2 0.8 0.5 0.2 1.3 0.0 2.0 2.0 0.2 1.48953 1.86381

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.48953 1.76116

0.2 0.8 0.5 0.2 1.3 0.5 2.0 2.0 0.2 1.48953 1.62677

0.2 0.8 0.5 0.2 1.3 0.2 1.0 2.0 0.2 1.48953 1.54332

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.48953 1.76116

0.2 0.8 0.5 0.2 1.3 0.2 3.0 2.0 0.2 1.48953 1.96055

0.2 0.8 0.5 0.2 1.3 0.2 2.0 1.0 0.2 1.48953 1.44167

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.48953 1.76116

0.2 0.8 0.5 0.2 1.3 0.2 2.0 1.0 0.2 1.48953 2.02621

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 -1.0 1.48953 2.14588

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 -0.5 1.48953 1.99512

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.0 1.48953 1.83129

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.5 1.48953 1.64976

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 1.0 1.48953 1.44167

a 
uid with a higher value of Pr possesses a large
heat capacity, thus intensifying the HT. Finally, Nux
increases as the space index parameter, heat absorption
parameter, and time index parameter increase in value.

5. Conclusions

The BL heat transfer of a Casson 
uid over an
unsteady stretching sheet with slip e�ects, viscous
dissipation, variable heat 
ux, and internal heat gener-
ation/absorption was analyzed in this study.

The governing PDEs were converted into the
ODEs using a suitable dimensionless transformation
which were numerically treated by appointing the
FEM. According to the results, increasing the values
of S, heat absorption parameter, or the Pr would
lead to an increase in Nux. In addition, Cfx and
Nux values decreased upon increasing �. Further,
the 
uid temperature rose followed by increasing the
magnetic number and Eckert parameters. Likewise,
both higher values of the slip velocity parameter or
Casson parameter caused a decrease in the velocity
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pro�le. Finally, it was observed that the Nux decreased
as both the heat generation parameter or the Ec
increased; however, the opposite was true for �. In
addition, as the time index parameter or space index
parameter increased in magnitude, Nux value was
elevated.
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