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Abstract. Statistical pattern recognition has emerged as a promising and practical
technique for data-based health monitoring of civil structures. This paper intends to
detect nonlinearity changes resulting from damage by some simple but e�ective signal
analysis methods. The primary idea behind these methods is to use measured time-
domain vibration signals based on exploratory data analysis without applying any feature
extraction. First, statistical moments and central tendency measurements on the basis of
the theory of exploratory data analysis are considered as damage indicators to monitor their
changes and detect any substantial variations in measured vibration signals. Subsequently,
cross correlation and convolution methods are proposed to measure the similarity and
overlap between the measured signals of the undamaged and damaged conditions. The
main innovation of this study is the capability of the proposed signal analysis methods
for implementing nonlinear damage detection without any feature extraction. Numerical
and experimental models of civil structures are employed to demonstrate the e�ectiveness
and performance of the proposed methods. Results show that nonlinearity changes caused
by damage lead to reductions in the values of cross correlation and convolution methods.
Moreover, some statistical criteria are applicable tools for the global structural health
monitoring.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Structural Health Monitoring (SHM) is a practical
process that aims to evaluate the health of civil,
mechanical, and aerospace structures. The new branch
of this process is carried out by vibration data as a non-
destructive strategy for performing damage detection
problems [1,2], �nite element model updating [3{6],
automated operational modal identi�cation [7,8], and
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structural life prediction [9]. In the �eld of SHM,
structural damage leads to adverse changes in inherent
characteristics of the structure such as mass, sti�ness,
and damping. These undesirable changes will adversely
alter dynamic features or vibration responses. Another
e�ect of damage is the nonlinear behavior that results
from sti�ness reduction, material failure, and geometric
deterioration [10,11].

The process of damage detection can be catego-
rized into the three main levels: (1) damage existence,
(2) damage localization, and (3) damage quanti�cation
[12]. The primary purpose of the �rst level is to
evaluate whether damage is available throughout the
structure [13{17]. This level is usually known as the
global health monitoring. The other levels are local
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procedures for identifying the damaged area of the
structure and estimating the severity of the damage
by data-based [18{22] and model-based methods [23{
25]. Statistical pattern recognition is a new data-
based approach in the process of SHM, which employs
signal processing and statistical methods. The imple-
mentation of this approach can be divided into four
main steps of the operational evaluation, sensing and
data acquisition [26], feature extraction, and statistical
feature analysis and classi�cation [27].

Feature extraction is a tool for discovering mean-
ingful information, called damage-sensitive features
in the �eld of SHM, from raw measured signals by
advanced signal processing methods [28,29]. Among all
techniques, one can mention time series analysis [30{
33] and operational modal identi�cation [7,8]. Feature
analysis/classi�cation exploits the extracted features in
an e�ort to perform the SHM task through machine
learning algorithms [34]. Most of the feature classi�-
cation methods are based on the concept unsupervised
learning. This category of machine learning does not
need any information (features) of the damaged state
of the structure for generating training data [14,35].
In contrast, the other category is supervised learning,
which requires information of both undamaged and
damaged conditions [36,37]. Generally, the procedures
of damage existence and localization can be carried out
in an unsupervised learning mode, while the process
of damage severity estimation relies on a supervised
learning mode [27]. On the other hand, machine
learning algorithms are highly useful for the problem of
missing data, which is an important challenge in SHM
[38].

The key merit of using signal analysis methods
is their capability to avoid the feature extraction
procedure. Kopsaftopoulos and Fassois [39] used
statistical hypothesis testing problems on the basis
of nonparametric and parametric methods in order
to identify structural damage. The primary idea
of their research is that a null hypothesis of the
nonparametric or parametric methods is indicative
of a healthy condition and an alternative hypothesis
implies the damaged condition. Yang et al. [40]
proposed a data-based damage detection method by
Inner Product Vector (IPV) approach. This method
was composed of the cross-correlation of displacements
related to the mode shapes extracted from vibration
time-domain responses. Wang et al [41] applied the
IPV method, which used the cross correlation function
of velocity and acceleration time-domain responses.
Catbas et al [42] used a correlation-based methodology
as an e�ective nonparametric data analysis approach
to detecting and localizing structural changes using
strain data. They applied the correlation coe�cients
of the strain measurements and established a discrep-
ancy matrix by computing the di�erence of correlation

coe�cients between the undamaged and damaged con-
ditions. Sarmadi et al [43] proposed a non-parametric
signal processing method based on Ensemble Empirical
Mode Decomposition (EEMD) and the well-known Ma-
halanobis distance for damage localization. Vazirizade
et al [44] developed a nonlinear damage detection using
the EEMD and arti�cial neural network.

Despite numerous methods regarding statisti-
cal pattern recognition, the process of extracting
the damage-sensitive features may be complex, time-
consuming, and laborious. In general, it may not be
necessary to always extract such features for evaluating
the global condition of the structure or �nding whether
the structure su�ers from damage. To tackle this
problem, it is feasible to directly analyze raw measured
vibration signals without any feature extraction. Ac-
cordingly, this article intends to introduce some simple
but e�ective signal analysis methods for the problem
of global SHM. The idea behind these methods is to
use raw random vibration data by statistical and signal
analysis tools. First, some e�cient exploratory data
analysis measures including statistical moments (i.e.,
mean, standard deviation, skewness, and kurtosis) and
central tendency measurements (median and trimmed
mean) are considered as damage and nonlinearity
indicators to monitor their variations caused by the
occurrence of damage. Second, two non-parametric
signal processing techniques based on cross correlation
and convolution are suggested to measure the similarity
and overlap between vibration time-domain signals
in the undamaged and damaged conditions. A new
strategy is also developed to use the proposed signal
analysis methods for assessing the global SHM. Despite
the applications of the statistical moments in signal
processing regarding the problem of SHM, the contri-
butions of this research can be summarized as suggest-
ing the central tendency measures and signal analysis
methods, particularly based on the signal convolution.
Numerical and experimental benchmark structures are
applied to verify the accuracy and capability of the
proposed methods. Results demonstrate that the cross
correlation and convolution methods are potentially
able to detect the nonlinearity conditions due to dam-
age occurrence. Moreover, most of statistical criteria,
with the exception of mean and standard deviation,
properly detect the global state of models.

The layout of this paper is as follows. Section 2
gives fundamental concepts of the exploratory data
analysis including discussion about statistical moments
and measures of central tendency. In Section 3,
the cross correlation and convolution methods are
described. Section 4 presents a new strategy for imple-
menting the global SHM. In the following, Sections 5
and 6 demonstrate the accuracy and performance of the
proposed methods using a numerical benchmark model
of concrete beam and a numerical model of laboratory
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frame. Eventually, the conclusions of this study are
remarked in Section 7.

2. Exploratory data analysis

2.1. Statistical moments
In statistics, the statistical moments are important and
useful tools for estimating the meaningful information
from any kinds of data, particularly for randomly
distributed data. The most well-known statistical
moments are the mean, standard deviation, variance,
skewness, and kurtosis, which can reduce dimensional-
ity of the randomly sampled data and provide a feature
of the unit dimension. For a k-dimensional random
data, A = [a1; a2; :::; ak] 2 Rk, the mean (�) and
standard deviation (�) are formulated as:

� =
1
k

kX
i=1

Ai; (1)

� =

vuut1
k

kX
i=1

(Ai � �)2: (2)

The skewness is a measure of the asymmetry of the
probability distribution of a random variable around
the sample mean. If skewness is negative, the data
are spread out more to the left of the mean than to
the right. In contrast, if it is positive, the data are
spread out more to the right. The skewness of a random
variable with the normal distribution is zero. The
skewness () of a k-dimensional random data, A 2 Rk,
is de�ned as:

 =

1
k

kP
i=1

(Ai � �)3

�3 : (3)

The kurtosis is a measure of the stretch of the prob-
ability distribution of a random variable. In a similar
way to the concept of skewness, it is a descriptor of
the shape of a probability distribution. In other words,
the kurtosis of a probability distribution shows its form
based on the kind of data distribution. In this regard,
the kurtosis of any univariate normal distribution is 3.
The equation of this statistical moment for the random
variable, A, is given by:

� =

1
k

kP
i=1

(Ai � �)4

�4 : (4)

The basic idea behind the proposed application of
the statistical moments is that nonlinear changes in
a structure lead to alterations in the normality of
distribution of the measured vibration signals. In
most cases, it is an accurate assumption that the
vibration response of a healthy structure has a normal
distribution; hence, damage alters the normality of

measured vibration data. Therefore, the aforemen-
tioned statistical moments are considered to detect
nonlinear conditions.

2.2. Measures of central tendency
The median and trimmed mean are two measures that
are resistant to outliers or abnormal conditions. The
sample mean (�) is sensitive to these problems so that
an undesirable data value can move the average away
from the center of the rest of the data by an arbitrarily
large distance. The median of a �nite list of numbers
can be found by arranging all the observations from the
lowest value to the highest value and picking the middle
one. If there is an even number of observations, then
there is no single middle value; the median is usually
de�ned to be the mean of the two middle values. The
basic idea of the trimmed mean is to ignore a small
percentage of the highest and lowest values of a sample
when determining the center of the sample. If there
are outliers in the data, the trimmed mean is a more
representative estimate of the center of the body of the
data than the mean. To compute the trimmed mean of
a data set (vector) A 2 Rk, reorder it from the smallest
to the largest value. By choosing a speci�c percentage,
the trimmed mean is calculated as follows:

tm =
1

k � h
k�hX
i=h+1

ak:i; (5)

where h = k � p and p is a scalar value denoting the
percentage of the removed components from the set
A. For example, if A is a vector with 200 elements
(k) and p = 10%, the scalar value h is equal to 20.
Moreover, ak:i is the ordered sample of A, where ak:k
and ak:1 stand for the maximum and minimum values,
respectively. It is worth remarking that the median is
the mean trimmed 100% and the arithmetic mean is
the mean trimmed 0%.

3. Signal analysis methods

3.1. Cross correlation
In signal processing, the cross-correlation is a measure
of similarity of two series as a function of the lag of one
relative to the other. In other words, this method com-
putes the correlation between the two random variables
X and Y. The cross-correlation method places against
autocorrelation and partial autocorrelation functions
that measure the correlation of a random variable with
itself. For the two random distribution data, X 2 Rn
and Y 2 Rn, the vector of cross correlation at delay �
is de�ned as follows:

r =

nP
i=1

(X (i)� �X) (Y (i� �)� �Y )s
nP
i=1

(X (i)� �X)2

s
nP
i=1

(Y (i)� �Y )2

; (6)
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where �X and �Y denote the mean of random variables
X and Y, respectively. From the signal process-
ing sense, if these random variables are independent
data, the probability density of the di�erence Y-X
is formally given by the cross-correlation; however,
this terminology is not used in the probability and
statistics.

In the context of SHM using the statistical pattern
recognition paradigm, the variable X denotes a training
data set coming from the measured response data in
the undamaged and damaged conditions. In addition,
the variable Y is a test data set that consists of the
measured response data in both of the undamaged
and damaged conditions. When the test data includes
the undamaged vibration signals, the cross correlation
computes the correlation of signals between undamaged
conditions, which can be chosen as a threshold level.
From the correlation theory, any deviation from this
level is an indication of nonlinearity changes or damage
occurrence.

3.2. Convolution
In the signal processing community, the convolution
of two signals, X and Y, represents the area of
overlap under the points as X slides across Y [45].
From a mathematical viewpoint, the convolution is a
mathematical operation on two functions, producing a
third function that is typically viewed as a modi�ed
version of one of the original functions. In the time-
domain signals, the convolution of two signals involves
integrating (for the continuous signals) and summing
(for the discrete signals) the product of the two signals,
where one of them is shifted [46]. The equation of
convolution for the two random distribution data X 2
Rn and Y 2 Rm is written in the following form:

c =
1X

j=�1
X (j) �Y (q � j + 1) : (7)

In this expression, c is the vector of convolution with
the length of q, where q = n+m� 1. Mathematically,
the convolution is similar to the cross-correlation;
however, there is a di�erence between them. In general,
the cross correlation is a process to �nd the degree of
similarity between two signals, whereas the convolution
is a measure of e�ect of one signal on the other. In
the signal processing, the convolution is a �ltering
operation and the cross correlation is a measure of
relation between two signals.

From the convolution theory, if the structure does
not su�er from damage, this indicates that there is
an entire overlap between the two measured vibration
signals. For a damaged structure, on the other hand,
the overlap between the measured vibration data in the
two conditions (the undamaged and current) decreases,
implying nonlinear changes resulting from damage. In
a similar way to the cross-correlation method, the

variables (signals) X and Y are chosen as the training
and test data sets.

4. SHM strategy

In order to optimally apply statistical and signal
analysis methods in the context of SHM, it is very
important to establish a meaningful and applicable
framework that facilitates evaluating the state of the
structure and detecting any probable damage. In
other words, this framework enables us to observe and
monitor the structural conditions and use statistical
methods. On the basis of the proposed methods in
the previous sections, signals in di�erent structural
states are compared together to make a decision about
the condition of the structure and implement practical
global health monitoring.

The easiest approach is to separately compare the
sensor signals at the same location in the undamaged
and damaged conditions. However, this is a time-
consuming and di�cult process because it is necessary
to compare a large number of sensor signals with
numerous cross-correlation or convolution data. To
overcome this problem, a new strategy is presented here
by collecting measured response data in each structural
condition in a vector. Assume that X� and Y� are
m-by-n matrices, where m is the data samples and n
denotes the number of variables (sensors) in the un-
damaged and current (possibly damaged) conditions,
respectively. As a sample, the undamaged data set
(sensor signals) can be expressed as follows:

X� =

266664
x11 x12 � � � x1n

x21
. . . x2n

...
. . .

...
xm1 xm2 � � � xmn

377775 : (8)

It is possible to make a vector using a vectorization of
this matrix. In mathematics, the matrix vectorization
is a linear transformation that converts the matrix into
a column vector [3]. For example, the vectorization of
the matrix X� is a column vector with mn elements,
where the �rst m rows indicate the �rst column of this
matrix. Under such circumstances, the column vectors
in the undamaged and damaged conditions are written
as follows:

X=
�
x11 ::: xm1 x12 ::: xm2 ::: x1n ::: xmn

�T; (9)

Y=
�
y11 ::: ym1 y12 ::: ym2 ::: y1n ::: ymn

�T : (10)

With this strategy, all data samples of all sensors
in each structural condition are collected into these
vectors and they make the proposed methods possible
to practically evaluate the global state of the structure.
Accordingly, if the vector-style set Y belongs to the
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damaged condition, one expects to observe signi�cant
changes in the proposed signal processing measures.

5. Numerical veri�cation

5.1. A benchmark concrete beam
To verify the performance and e�ectiveness of the pro-
posed methods, a numerical benchmark model of the
reinforced concrete beam is used, as shown in Figure 1.
The model is a simply supported beam with length 5 m,
height 0.5 m, and width 0.01 m constructed based on
the Euler-Bernoulli beam theory. It was assumed that
similar damping mechanisms were distributed through-
out the beam; hence, Rayleigh damping was applied
to establish a full damping matrix. The numerical
beam was modeled with 4-node linear 2D elements with
reduced integration and the ABAQUS Explicit �nite
element code was used for the simulations [47].

In the simulation process, it was assumed that
15 sensors were installed at the top and bottom of
the beam, which measured acceleration time series
responses in the transverse or vertical direction at
the top or bottom edges of the beam. A randomly
uniform transverse load was applied to the top surface
of the beam in order to excite the beam. The load

histories were low-pass �ltered below 1000 Hz, resulting
in �ve active dynamic modes of the structure. The
measurement period was two seconds with 4001 data
points. To simulate structural damage, a single vertical
crack was modeled at the location of sensor 8 at the
bottom edge. This damage realistically simulated a
breathing crack with nonlinear behavior, which is a
common damage pattern in many concrete structures.
Table 1 shows several damage cases with di�erent
severities in the numerical beam.

Unlike Ref. [47], the �rst two measurements of
acceleration responses in the undamaged (Measure-
ments 1-2) and damaged (measurements 11-12) cases
are chosen for use in the global health monitoring
and signal analysis methods. Therefore, the simulated
acceleration response data is composed of a matrix
with 8002 data points from �fteen sensors under seven
damage scenarios. For example, Figure 2 indicates the
acceleration time histories of sensor 8 in cases 1 and 7,
respectively.

5.2. Normality distribution tests of the
vibration responses

One way to understand the nature of the measured
vibration signals is to use hypothesis tests. There

Figure 1. The numerical benchmark concrete beam [47].

Figure 2. The acceleration time histories at sensor 8 in the numerical beam: (a) Case 1 and (b) case 7.

Table 1. The damage cases in the numerical beam model.

Case Structural state Description Performance

1 Undamaged No crack Linear
2 Damaged Crack length = 10 mm Nonlinear
3 Damaged Crack length = 20 mm Nonlinear
4 Damaged Crack length = 30 mm Nonlinear
5 Damaged Crack length = 50 mm Nonlinear
6 Damaged Crack length = 100 mm Nonlinear
7 Damaged Crack length = 150 mm Nonlinear
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Table 2. Hypothesis tests for recognizing the distribution of the measured data.

Acceleration response data
Hypothesis tests Index Undamaged Damaged

Chi-square p-value 0.8155 0.0234
Null hypothesis H0 H1

Anderson-Darling p-value 0.5115 0.0005
Null hypothesis H0 H1

Lilliefors p-value 0.2874 0.0055
Null hypothesis H0 H1

Figure 3. The normal plots of acceleration time histories at sensor 8: (a) Case 1 and (b) case 7.

are a large number of tests that can be applied to
�nd the distribution of data. The hypothesis tests
are statistical tools that numerically examine the data
distributions. All statistical hypothesis tests have the
same terminology and structure in such a way that a
test may yield a null hypothesis (H0) or may become an
alternative hypothesis (H1). The former is an assertion
about data samples that refers to a general statement
in the sense that there is no relationship between the
samples and no di�erence between them. In other
words, the null hypothesis means that the test accepts
the main assumption under study. On the contrary, the
alternative hypothesis is a contrasting assertion about
the data that can be tested against the null hypothesis.

Each hypothesis test can present a numeric
amount called p-value, which is the probability of the
test under the null hypothesis. The signi�cance level of
a test is a threshold of probability and a typical value of
this level is 0.05. If the p-value of a test is less than this
level, the test rejects the null hypothesis. By contrast,
if the p-value is greater than the signi�cance level, there
is insu�cient evidence to reject the null hypothesis.
Table 2 shows three hypothesis tests for understanding
the normality distribution of the acceleration time

histories at sensor 8 in cases 1 (undamaged) and 7
(damaged).

As can be seen from this table, all hypothesis tests
in the undamaged state indicate that the acceleration
response is normal since the p-values of the tests are
larger than 0.05 and the null hypotheses are H0. In
addition, these tests con�rm that the acceleration time
history in the damaged case does not have the normal
distribution resulting from the p-values less than 0.05
and the rejection of the null hypothesis in each test.
Thus, it can be argued that the simulated damage
changes the normality of the response data.

Another approach to evaluating the normality of
data is to apply a graphical tool such as the normal
or Q-Q plot. Figure 3 illustrates the normal plots
of the acceleration time histories in cases 1 and 7 at
the location of sensor 8. Figure 3(a) belongs to the
normal plot of the acceleration time history in the
undamaged case. It is seen that there is no dispersion
in the samples of the normal plot from the straight line.
Figure 3(b) shows the normal plot of acceleration time
history in the damaged case. As can be observed, some
components of the normal plot do not coincide with
the straight line, indicating the presence of the non-
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normality distribution in the acceleration time history
in the damaged condition.

5.3. Nonlinearity detection
A damaged structure typically behaves nonlinearly
since damage alters the behavior of the structure from a
linear state in its undamaged condition to the damaged
one. For a damage identi�cation problem, the structure
is typically excited at a low level of excitation, which
results in linear and elastic dynamic responses, even in
the damaged structure. In this section, the statistical
criteria, cross correlation, and convolution methods are
employed to detect nonlinearity in the beam. Table 3
represents the mean and standard deviation in all cases
of the beam.

It is observed that the mean and standard devia-
tion of the acceleration time histories collected into the
vectors X and Y do not substantially change with the
damage occurrence. This means that these statistical
moments are not appropriate tools for SHM by raw
vibration data. On the other hand, Figure 4 illustrates
the box plot of the other statistical criteria including
the median, trimmed mean, skewness, and kurtosis for
evaluating the global state of the beam.

As shown in Figure 4, all of the statistical criteria
change due to the emergence of damage. It is clear
that the median, the trimmed mean, and the kurtosis
increase by increasing the damage severity from the
second case to the seventh case. In addition, the values

Table 3. The values of mean and standard deviation in
the beam.

Cases Mean Standard deviation
1 0.00039 0.9929
2 0.00038 1.0677
3 0.00041 1.0694
4 0.00042 1.0710
5 0.00040 1.0727
6 0.00039 1.0721
7 0.00043 1.0516

of skewness are reduced by increasing the damage
extent. In this �gure, case 7 has the highest dispersion
in comparison with the other damaged cases. Such
alterations imply that these criteria are useful for
assessing the global state of structures for monitoring
their behavior.

In order to detect nonlinear changes in the nu-
merical beam, the matrices of the acceleration time
histories of the �fteen sensors regarding the undamaged
and damaged conditions are converted into the column
vectors based on Eqs. (9) and (10). Subsequently, one
only needs to determine the vectors of cross-correlation
and convolution. Figure 5 illustrates the results of
cross-correlation method in the case of beam in the
undamaged or baseline condition (case 1), the damaged
state with the lowest level of the damage severity (case
2), and the damaged state with the highest level of the
damage severity (case 7). As Figure 5 shows, there are
several large and striking peaks in the cross-correlation
values of the undamaged condition in comparison with
the corresponding cross-correlation values of the dam-
aged states. On this basis, one can consider such peaks
as thresholds for nonlinearity detection. Furthermore,
the values of cross-correlation decrease by increasing
the level of damage from case 1 to cases 2 and 7 so
that the state with the highest damage severity (case 7)
has the lowest cross-correlation quantities. This means
that there is no similarity between the cross-correlation

Figure 5. Nonlinearity detection by the cross-correlation
method in cases 1, 2, and 7.

Figure 4. The statistical criteria for the global structural health monitoring in the beam.
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values of these cases due to the occurrence of damage in
the numerical beam. In fact, the elimination of peaks
is indicative of the dissimilarity between the vibration
signals of the undamaged and damaged conditions.
Figure 6 indicates the convolution values of sets X
and Y. As can be seen, the damage to the beam
leads to a clear reduction in the convolution values;
however, unlike the cross-correlation method, there are
not striking peaks in the convolution method.

One way to quantitatively evaluate the global
state of the beam is to compute Euclidean norm of
cross correlation and convolution vectors. Having
considered are the vectors of the cross correlation and
convolution r and c; hence, the Euclidean norms of
these vectors are de�ned as er = jjrjj2 and ec = jjcjj2,
respectively. Figure 7 shows the amounts of these
norms in cases 1{7. As can be observed, the norms of
the cross correlation and convolution in the damaged
cases are reduced by increasing the level of the damage.
In Figure 7, the largest norm value belongs to the
undamaged condition and the damaged case 7 has the
smallest quantity. Therefore, it can be concluded that
damage leads to the reduction of the norms of the
cross correlation and convolution vectors. Although
the values of these methods are di�erent, both of them
have similar Euclidean norm amounts.

Figure 6. Nonlinearity detection by the convolution
method in cases 1, 2, and 7.

Figure 7. Euclidean norms of the cross correlation and
convolution methods.

6. Experimental validation

6.1. A laboratory benchmark model
The validation of the proposed methods for nonlinear-
ity detection is then carried out by a set of experimental
data from a laboratory benchmark model with the
nonlinear behavior due to damage occurrence. This
model is a three-story aluminum frame, as shown in
Figure 8. The schematic and sensor locations in the
frame are displayed in Figure 9. Four accelerometers
were mounted on the oors and a random vibration
load was applied by means of an electrodynamics
shaker to the base oor along the center line of the
frame. The experimental data includes acceleration
time histories acquired from the mounted sensors at
each oor. The sensor signals were sampled at 320 Hz
for 25.6 seconds in duration discretized into 8192 data
sampled at 3.125 microsecond intervals. Further details
about the test structure are available in [27].

Nonlinear damage was introduced by contracting
a suspended column with a bumper mounted on the
oor below to simulate fatigue crack that could open
and close under loading conditions or loose connections
in the structure. Di�erent levels of damage severity
were created by diverse gap distances between the
suspended column and the bumper. Table 4 shows �ve
damaged conditions as well as an undamaged (baseline)
condition of the test structure. The baseline condition
represents a healthy state in the frame in the sense
that there no linear or nonlinear changes in the test
structure. In the damaged conditions, 0.20 mm gap
distance implies the lowest level of damage, whereas
0.05 mm gap distance is an indication of the highest
one. As a sample, Figures 10 and 11 illustrate the
vibration load data (input signals) at channel 1 and the

Figure 8. The three-story laboratory frame [27].
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Figure 9. Basic dimensions of the three-story building structure [27].

Figure 10. The vibration load signals of the test structure at channel 1: (a) Case 1 and (b) case 6.

Figure 11. The acceleration response signals of the test structure at channel 5: (a) Case 1 and (b) case 6.

Table 4. The damage scenarios in the laboratory frame [27].

Case Condition Description Performance

1 Baseline Healthy Linear

2 Damaged Distance between bumper and column tip 0.20 mm Nonlinear

3 Damaged Distance between bumper and column tip 0.15 mm Nonlinear

4 Damaged Distance between bumper and column tip 0.13 mm Nonlinear

5 Damaged Distance between bumper and column tip 0.10 mm Nonlinear

6 Damaged Distance between bumper and column tip 0.05 mm Nonlinear
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acceleration responses (output signals) at the location
of channel 5 in cases 1 (baseline condition) and 6 (the
highest damage scenario), respectively.

6.2. Normality distribution tests of the
vibration responses

In order to realize the nature of vibration data, either
input (the excitation force) or output signals (the
acceleration time histories), the normality distribu-
tion tests including chi-square, Anderson-Darling, and
Lilliefors are implemented in this section. In this
regard, the random vibration load signal subjected to
channel 1 and the acceleration time histories acquired
at channel 5 in the undamaged (case 1) and damaged
(case 6) conditions are examined. Table 5 indicates
these hypothesis tests to perceive whether the vibra-
tion signals in the laboratory frame in the structural
conditions are normal.

From Table 2, it can be understood that the input
signals in both healthy and damaged conditions are
normal since the amounts of p-value in these cases
are larger than 0.05 and the results of null hypothesis

are H0. The same conclusions can be achieved for
the output signal of the healthy condition; however,
the corresponding result in the damaged state shows
that there is no normal distribution in the acceleration
response of the damaged condition. This observation
is valid for the other damaged scenarios.

For further investigation, Figures 12 and 13 dis-
play the normal plots of the excitation forces and the
acceleration responses, respectively. As shown in Fig-
ure 12, both of the excitation signals in the undamaged
and damaged conditions have normal distributions. In
addition, the normal plot in Figure 13(a) demonstrates
a normality distribution for the acceleration signal in
the undamaged condition, whereas there is an obvious
dispersion in the components of the normal plot in
Figure 13(b). This observation suggests that the
acceleration time history in the damaged condition
does not have normal distribution. As a consequence,
the obtained results in this section con�rm that the
nonlinear change caused by damage alters the normal-
ity of random vibration data. However, this conclusion
depends on the type of vibration load, that is, if the

Table 5. The hypothesis tests for the recognition of data normality distribution.

Hypothesis tests Index Input signals Output signals

Healthy Damaged Healthy Damaged

Chi-square
p-value 0.1613 0.4668 0.5653 0

Null hypothesis H0 H0 H0 H1

Anderson-Darling p-value 0.2748 0.1862 0.5768 0.0005

Null hypothesis H0 H0 H0 H1

Lilliefors p-value 0.1545 0.2778 0.3886 0.001

Null hypothesis H0 H0 H0 H1

Figure 12. The normal plots of the excitation force at channel 1: (a) Case 1 and (b) case 6.
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Figure 13. The normal plots of the output signals (acceleration time histories) at channel 5: (a) The healthy state and
(b) the sixth damaged state.

input signal or the random vibration load applied to
an undamaged structure has a normal distribution, the
dynamic responses of the structure will be normal.

6.3. Nonlinearity detection
In this section, the proposed statistical and signal
analysis methods are considered to detect the nonlinear
changes in the laboratory frame caused by the occur-
rence of damage. For this purpose, the matrices of
acceleration responses of all sensors in each case are
transformed into a column vector; hence, the response
data vectors are applied to compute the statistical
moments and central tendency measurements. Table 6
indicates the results of mean and standard deviation
for the vectors of vibration signals in all structural
conditions. Based on the data given in this table, the
amounts of the mean and standard deviation are not
altered signi�cantly from the second case to the sixth
case, meaning that these statistical moments fail to
detect the nonlinearity change properly.

Figure 14 shows variations in the median and
trimmed mean related to the central tendency measures
as well as the skewness and kurtosis. As can be
observed in Figure 14, the frame conditions di�er such
that the values of median, trimmed mean, and kurtosis

Table 6. The values of mean and standard deviation of
the vectors of response data.

Cases Mean Standard deviation

1 {0.0037 0.4755

2 {0.0051 0.4844

3 {0.0038 0.4611

4 {0.0038 0.4652

5 {0.0038 0.4278

6 {0.0037 0.3754

increase with increasing the level of the nonlinear
damage, whereas there is a remarkable reduction in
the value of skewness. In this �gure, the sixth damage
scenario involves the highest dispersion in comparison
with the other cases, particularly the undamaged
condition. On the other hand, Figures 15 and 16
display the results of cross correlation and convolution
methods for detecting changes in the nonlinearity of
the laboratory frame, respectively.

From Figure 15, there are several striking peaks
at the cross-correlation of the �rst case. Moreover, the
values of cross correlation are reduced by increasing
the level of damage. Comparing these values between

Figure 14. The statistical criteria for the global SHM in the frame.
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Figure 15. Nonlinearity detection in the frame by the
cross-correlation method in cases 1, 2, and 6.

Figure 16. Nonlinearity detection in the frame by the
convolution method in cases 1, 2, and 6.

Figure 17. Nonlinearity detection by the
cross-correlation method at sensor 4 in cases 1, 2, and 6.

the lowest level of damage (case 2) and the highest
one (case 6), one can realize that damage leads to a
reduction in the cross-correlation values. Figure 16
compares the vectors of convolution values in cases 1,
2, and 6. This �gure reveals that there is no similarity
among these conditions. Thus, it can be deduced that
the damage reduces the values of convolution.

For further investigation, Figures 17 and 18 dis-
play the results obtained from cross correlation and
convolution methods at the location of channel 4 in
cases 1, 2, and 6. The main reason for choosing this
sensor is that the location of nonlinear damage (the
gap between the bumper and suspended column) in
the laboratory frame has been de�ned at this channel.

From Figure 17, it can be perceived that the cross
correlation of channel 4 in the undamaged condition
has a large and remarkable peak in comparison with
other damaged cases. This means that the vibration

Figure 18. Nonlinearity detection by the convolution
method at sensor 4 in cases 1, 2, and 6.

Figure 19. The variances of cross correlation and
convolution in all cases at sensor #4.

signals at this channel resulting from the damage are
not similar in terms of cross correlation. As the large
peak is not available in cases 2 and 6, this implies the
occurrence of damage or nonlinear conditions.

In contrast to the cross-correlation method, as
Figure 18 appears, there is not any striking peak in
the convolution of the acceleration response data of
the �rst case. However, it is seen that the quantities of
convolution reduce upon increasing the damage sever-
ity from cases 1 to 6. Comparing the results obtained
from cross-correlation and convolution methods, one
can understand that the former outperforms the latter
due to the possibility of producing a threshold level
(the striking high peak) from the vibration signals in
the undamaged condition.

Eventually, Figure 19 shows the Euclidean norms
of the cross-correlation and convolution vectors in all
scenarios. Accordingly, the Euclidean norms of these
methods decrease by increasing the severity of damage.
Similar to the numerical model, the result veri�es that
the damage to the frame leads to serious reductions
in the values of cross-correlation and convolution.
Another conclusion is concerned with the similarity of
the norm values in these methods. Although the cross
correlation and convolution experience di�erent levels
of variation, they yield the same Euclidean norms.
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7. Conclusion

This article aimed to introduce new signal analysis
methods to detect nonlinear changes due to damage
occurrence in civil structures. Initially, the statisti-
cal moments including the mean, standard deviation,
skewness, and kurtosis as well as the central tendency
measurements such as the median and trimmed mean
were applied to examine their numerical amounts
in di�erent structural conditions. In the following,
the cross-correlation and convolution methods were
proposed to �nd the similarity and overlap between
the vibration signals in the undamaged and damaged
conditions. To use these methods for assessing the
global Structural Health Monitoring (SHM), a new
strategy was presented through the vectorization of the
multivariate datasets of the vibration signals.

On the basis of the numerical and experimental
benchmark models, the mean and standard deviation
of the acceleration responses failed to detect nonlinear
changes, whereas the other statistical criteria could
trigger structural changes due to the occurrence of non-
linear damage. As the main conclusion, the values of
the median, trimmed mean, and kurtosis increased by
increasing the severity of damage, while a contrary re-
sult was obtained from the skewness criterion. The nor-
mal plots of the acceleration time-domain data showed
that if the excitation signals subjected the structure to
be normal, damage could change their normality. This
conclusion was numerically veri�ed by the chi-square,
Darling-Anderson, and Lilliefors hypothesis tests.

Furthermore, nonlinear damage could cause sig-
ni�cant reductions in the cross correlation and con-
volution values. On the other hand, the Euclidean
norms of these methods reduced with increasing the
level of damage, con�rming the capability of cross
correlation and convolution methods for detecting non-
linear changes. The comparison of the cross-correlation
and convolution methods indicated that the former
could provide an obvious threshold level as the striking
peaks, making it more practical than the convolution
method. This is because such peaks did not observe
the convolution values of the vibration signals of the
undamaged conditions.

For further research, it is recommended that the
proposed methods be evaluated or developed by using
di�erent excitation load and noise levels. This is
because the excitations of undamaged and damaged
conditions may be quite di�erent in forms and energy.
In another numerical study, it is suggested that smaller
ratios of sti�ness reductions be investigated so as to
simulate minor damage scenarios.
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