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Abstract. The Graetz-Nusselt problem is addressed with non-Newtonian power-law
nanouids with slip boundary conditions. In the said uid model, the power-law coe�cient
m and ow index n depend on the nanoparticle concentration '. The Al2O3-water nanouid
is considered and results are obtained for typical values of nanoparticle concentration,
i.e., ' = 1%; 2%; 3%; 4% and 5%. First of all, we calculate the analytical solution of
the fully developed velocity �eld for power-law nanouid via the Navier linear slip law.
Next, the temperature pro�le is obtained by utilizing the condition of the speci�ed surface
temperature. The longitudinal conduction (which is possible with a low Peclet number) is
also considered. The graphical results of mean temperature and local Nusselt number are
presented for various values of slip length, nanoparticle concentration, power-law index, and
Peclet number. As expected, the concentration of nanoparticles boosts the heat transfer
rate, while the slippery boundaries always provide larger ow rates of nanouid. The
analysis reveals that the presence of nanoparticles increases the local Nusselt number and
mean temperature. Furthermore, the thermal entry length is considerably enhanced upon
raising the nanoparticle concentration and slip length. In addition, decreasing the P�eclet
number also enhances thermal entrance length.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

The heat transfer phenomenon by virtue of uid ow
has potential applications in several industrial pro-
cesses and devices such as MEMS, electronic equip-
ment, energy devices, high-performance gas turbines,
chemical processing, and heat exchangers. In mod-
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ern science and technology, industrial liquids such as
distilled water, ink, ethylene glycol, molten plastics,
and polymers are widely used. Understanding the heat
transfer phenomenon is also important for improving
the thermal performance of various complex rheological
uids (low-conductive).

The addition of nanoparticles to base uid is one
of the most famous techniques to increase the thermal
performance of many uids. Nanoparticles exist in the
form of carbon, metals, and metal oxides etc. Nanou-
ids are comparatively more e�ective in the improve-
ment of thermal conductivity, and this feature makes
them popular in engineering applications. Pioneering
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work by Choi [1] revealed the usage of nanouids
to raise the thermal conductivity of uidic systems.
Xuan and Roetzel [2] investigated the heat transport
properties of nano uid in terms of thermal dispersion,
which occurs as a result of the random motion of
nano particles in base uid. A few classic studies
[3,4] approximated the nano uid as a Newtonian one
with modi�ed physical properties. It is a known fact
that most real uids are non-Newtonian in nature, so
Newtonian uids are not appropriate for predicting
the rheological behaviour of many nanouids. In this
context, Cheng et al. [5] elaborated on the rheology of
Cu-water nanouid. He mainly focused on the shear-
thinning properties of the nanouids. Later, carbon-
water nanouid rheology is adopted to increase the
shear-thinning nature of the uid. This can be accom-
plished by increasing the concentration of nanoparticle
volume fraction in the base uid. Santra et al. [6]
investigated heat transfer in a parallel plate duct with
Newtonian and non-Newtonian liquids for Cu-water
nanouid ow. Kumar et al. [7] proposed a model
in which thermal conductivity is a function of particle
diameter and temperature. Prasher et al. [8] explain
that a rise in the e�ective thermal conductivity (keff )
of nanouid is due to the localized Brownian movement
of nanoparticles. Maiga et al. [9] suggested a viscosity
correlation formula of  Al2O3-water nanouid with ',
which shows that the e�ective viscosity is higher than
that of the Brinkman model. Haris et al. [10] conducted
experimental studies on Al2O3-water and CuO- water
nanouid. They also explained that both of these
physical situations predict shear thinning behavior for
the typical values of higher shear stress. Furthermore,
notable studies related to nanouid can be found in the
[11{13].

The interaction between uid and walls is another
important aspect of uid mechanical problems. In that
context, the integration of slip boundary conditions
with the Graetz-Nusselt problem makes them even
more versatile. The concept of slip boundary condi-
tions was proposed by Navier [14]. Further, Thompson
and Thorian [15] elaborated the slip boundary condi-
tions by using molecular dynamic simulation. Mathews
and Hill [16] and Neto et al. [17] conducted two com-
prehensive studies on the signi�cance of slip boundary
conditions. In their analysis, they highlighted the
important feature of slip boundary conditions with
normal derivative for various ow situations, including
pipe ow, slit ow, and annular ow. They also
extended the linear slip condition-based analysis of
Navier with non-linear slip boundary conditions. To
our knowledge, no one has investigated the thermal
entry ow in a duct (either pipe or channel) for
combined non-Newtonian nanouid with slip boundary
conditions.

The main purpose of this analysis is to elabo-

rate on the inuence of the design of so-called plate
heat exchangers on their heat transfer performance.
Plate heat exchangers are very popular in the food
industry and are also used in the plastics industry
for a variety of reasons. They are often made out
of pro�led plates in the shape of many ducts with
pro�led walls. These ducts have rectangular cross-
sections that range from a few millimetres to hundreds
of millimetres. Liquids with low to moderate viscosities
are heated and cooled from both ends as they pass
through these ducts. It is asserted that the pro�lations
have the bene�t of not only enhancing the e�ciency
and the heat exchange area but also improving the
heat transfer. This may be valid in the context of
laminar ow, in which case the type of pro�ling may
be crucial. In addition, this investigation is also
helpful in the �elds of biomedical engineering and the
chemical industry for the improvement of several types
of thermal devices. Motivated by the aforementioned
literature, the objective of the present investigation
is to elaborate the slip ow analysis along with non-
Newtonian nanouid in both pipe and channel for the
speci�ed surface temperature case. Moreover, the axial
conduction is also taken into account. A few interesting
studies related to the classical Graetz problem can be
found in [18{28].

The present article is arranged as follows. The
analytical expression of the velocity �eld with linear
slip boundary conditions and the schematic diagram
of the ow problem are reported in Section 2. The
mathematical formulation and solution of the problem
are presented in Sections 3 and 4. The detailed dis-
cussions with graphical representation are incorporated
in Section 5. Finally, some conclusions are drawn in
Section 6.

2. Geometry, constitutive equations, and
velocity pro�le

Let the power-law nano uid enter either the parallel
plate or cylindrical con�nement along with fully devel-
oped velocity and speci�ed entering temperature (Ti)
as depicted in Figure 1. The pipe and channel wall(s)
are maintained at a constant wall temperature (Ts).
Our goal is to compute the local and mean Nusselt
numbers for power-law nanouids with longitudinal
conduction and slip at the wall(s). For this purpose,
we require the following relationships:

Continuity equation:
r: V = 0; (1)

Momentum equation:

�
dV
dt

= �rP +r: �: (2)

The constitutive expression for Power-law uid is [29]:
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Figure 1. Shemantic sketch of ow problem.

� = �m
24�����r1

2
(� : �)

�����n�1
35 �; (3)

and:

� = rV +rV t: (4)

2.1. Axisymmetric tube
The present theoretical analysis is based on the fol-
lowing assumptions: (i) spherical nanoparticles, (ii)
uniform particle size and shape, (iii) constant physical
properties, (iv) thermal equilibrium between liquid and
solid particles moving at the same speed, (v) steady
state, (vi) fully developed ow, and (vii) laminar ow:

Eq. (2) (under the aforesaid assumptions) takes
the following form:

0 = �dP
dx

+
m
r
d
dr

�
r
�
dV
dr

�n�
; (5)

where it is assumed that V = [0; 0; V ]. The non-
dimensional power-law velocity expression with Navier
(linear) slip law

�
V = �l dVd�r

��
�r=1

�
takes the following

form (details in [16]):

�V =
�

1� (�r)
1/n+1 +

�
1/n+ 1

�
�l
�
; (6)

where:

�r =
r
r0
; �l =

l
r0

�V =
V

Vmax
: (7)

3. Thermal analysis for power-law nanouid

The energy equation for thermal analysis can be writ-
ten as:

� cp
dT
dt

= kr2T + �: (8)

The expanded energy equation, with longitudinal con-
duction and negligible viscous dissipation, can be
written as [30]:

� cp
�
V
@T (x; r)
@x

�
= k

�
1
r
@
@r

�
r
@T (x; r)

@r

�
+
@2T (x; r)
@x2

�
; (9)

where it is assumed that T = T (x; r). In Eq. (9) �
is the density, cp the speci�c heat, and k the e�ective
thermal conductivity of the nanouid. The density of
nanouid [31] is:

� = '�p + (1� ') �bf ; (10)

where �p and �bf are the densities of nano particles and
base uid. The speci�c heat capacity can be written as
[32]:

�Cp = '�pCp;p + (1� ') �bfCb;bf : (11)

The e�ective thermal conductivity of nanouid (based
on experimental results [33]) is given as:

k = kbf (1 + 7:47') : (12)

The dimensionless variables are:

�r =
r
r0
; �x =

x
R eD pr r0

;

R eD =
Vmax r0

�
; � =

T � Ts
�T

;

Pe = ReDp r: (13)

Using Eq. (13) in Eq. (9), we obtain:

�V (�r)
�
@� (�x ; �r)
@�x

�
= �

�
@2� (�x ; �r)

@�r2 +
1
�r
@� (�x ; �r)

@�r

+
1
Pe2

@2� (�x ; �r)
@�x2

�
; (14)

where ReD denotes the Reynolds number and Pe
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denotes the P�eclet number. The non-dimensional
boundary conditions are:

� (0; �r) = 1; � (�x; 1) = 0;
@� (�x; 0)

@�r
= 0: (15)

The classical separation method is employed for the
solution of Eq. (14) subject to the boundary conditions
(Eq. (14)). The ansatz � (�x; �r) = N (�x)S (�r) yields
the following di�erential equations and boundary con-
ditions given by Eqs. (14) and (15):

N 0 (�x) + ��2N (�x) = 0; (16)

S00 (�r) +
1
�r
S0 (�r) + �2�

�2

Pe2 �
�

1�(�r)
1/n+1+

�
1/n+ 1

�
�l
��

S (�r)=0;
(17)

S0 (0) = 0; S (1) = 0: (18)

Eq. (16) is integrated as:

N (�x) = C exp
�� j�j�2�x

�
: (19)

Eq. (17) is not a regular SL-Problem and its eigen-
functions are not mutually orthogonal with respect to
its weight function. As a result, the modi�ed Gram-
Schmidt procedure (see [34,35]) is used in conjunction
with the MATLAB routine bvp4c to compute the
eigenfunctions S(�r) and constant in Eq. (19).

Now the solution to Eq. (14) can be written as:

� (�r; �x) =
iX
0

CiSi (�r) exp
�� j�j�2

i �x
�
: (20)

We will use the following relationship for the mean
temperature:

�m (�x) =

1R
0

�V � (�r; �x) �r d �r

1R
0

�V �r d �r
: (21)

The following formulas can be used to calculate the
local and mean Nusselt numbers:

Nu (�x) =
(�2)
�m (�x)

@� (�x; 1)
@�r

; (22)

Num (�x) =
1
�x

�xZ
0

Nu (x�)d x�: (23)

4. Flat channel

The momentum equation for channel ow analysis is:

0 = �dP
d�x

+m
d
d�r

��
dV
d�r

�n�
: (24)

Following the same solution procedure as given in [16],
the only valid expression of power-law uid velocity
with linear Navier-Slip law is as follows:

V =
�

1� (�r)
1/n+1 +

�
1/n+ 1

�
�l
�
; (25)

where:

�r =
r
r0
; �l =

l
r0
; �V =

V
Vmax

: (26)

For thermal analysis, the non-dimensional heat equa-
tion with associated boundary conditions is:

�V (�r)
�
@� (�x ; �r)
@�x

�
= ��

@2� (�x ; �r)
@�r2 +

1
Pe2

@2� (�x ; �r)
@�x2

�
; (27)

� (0; �r) = 1; � (�x; 1) = 0;
@� (�x; 0)

@�r
= 0: (28)

The solution procedure is the same as described in
the previous section. The mean temperature, local
and mean Nusselt number are achieved through the
following formulae:

�m (�x) =

1R
0

�V � (�r; �x) d �r

1R
0

�V d �r
; (29)

Nu (�x) =
(�4)
�m (�x)

@� (�x; 1)
@�r

; (30)

Num (�x) =
1
�x

�xZ
0

Nu (x�)d x�: (31)

5. Results and discussion

The computed results obtained via the aforesaid tech-
nique are discussed in this section. The problem
investigated in the present study depends on several
parameters, which are power-law index (n), nanoparti-
cle concentration ', slip length (l) and Peclet number
Pe. Solutions for both channel and tube cases are
obtained for several suitable sets of emerging param-
eters. Moreover, to make sure of the accuracy of the
current methodology, we compare our obtained results
with those that have already been published in the
literature. First, we validate our results for Newtonian
liquid (n = 1 and l = 0) with no axial conduction
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e�ects (Pe ! 1) with the corresponding results
presented by Johnson [36]. The variations in local
Nusselt number against axial distance in a steady state
are compared in Table 1. According to the table, our
computed �ndings are a perfect match for Johnson's
results [36]. Furthermore, the fully developed Nusselt
number for the uniform surface temperature case is
fairly close to the expected analytical value of 3.66.

In this analysis, the classical Graetz problem
is elaborated for non-Newtonian power-law rheology
with Al2O3-water nanouid and Navier slip boundary
condition. The empirical constants appearing in the
power-law model are taken to be dependent on the
nanouid solid volume fraction. Putra et al. [37]
(experimentally) presented the relationship between
the shear strain and shear stress for Al2O3-water nano
uid. Using this result, they calculated the values
of the empirical constants m and n for various solid
volume fraction values. These values are appropriately
interpolated and extrapolated, keeping in mind that
the shear stress decreases with a gradual increase in
' for a particular shear rate in the mixture. The
numerical values of empirical constants appearing in
the power-law model and thermophysical properties
are displayed in Tables 2 and 3, respectively. It is
also noted that for a shear thinning uid, the value

Table 1. Comparison of current approach with existing
data for n = 1 and Pe = 1000.

P.R. Johnson [36] Present approach
�x Nu(�x) Nu(�x)

0.01 7.47 7.47
0.02 6.00 6.00
0.04 4.91 4.91
0.06 4.44 4.44
0.1 4.00 4.00
0.2 3.71 3.71
0.3 3.66 3.66

Table 2. Numerical values for (m;n) [37].

Solid fraction, ' (%) m (Nsecn m�2) n

0.5 0.00187 0.880
1 0.00230 0.830

1.5 0.00283 0.780
2 0.00347 0.730

2.5 0.00426 0.680
3 0.0053 0.625

3.5 0.00641 0.580
4 0.0075 0.540

4.5 0.00876 0.500
5 0.01020 0.460

Table 3. Thermophysical properties at 20�C [37].

Property Liquid Solid

cp (J/kgK) 4181.80 383.1

� (kg/m3) 1000.52 8954.0

K (W/mK) 0.597 386.0

of ow index n is always less than unity. The present
analysis is carried out for Al2O3-water nanouid (based
on the experimental data provided by Putra et al. [37]).
Next, we will present the heat transfer analysis through
engineering quantities, i.e., mean temperature, local
and mean Nusselt numbers in the presence of nanopar-
ticle concentration ', slip length l and longitudinal
conduction (Pe).

The pro�les of mean temperature for various
values of nano particle concentration ', slip length (l),
and Peclet number (Pe) are presented in Figures 2
and 3 for at channel con�guration. It is observed
that mean temperature increases in the presence of
nanoparticle concentration. The e�ect of axil con-
duction is more prominent in the entrance region as
compared to the fully developed region. Moreover,
both slip length and Peclet number tend to increase
the mean temperature. A similar trend is observed

Figure 2. Mean channel temperature in the presence of a
nanouid volume fraction and a �xed slip length
(l = 0:10).

Figure 3. Mean channel temperature in the presence of
nanouid volume fraction and Peclet number at (l = 0).
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for the tube case from Figures 4 and 5. The local
Nusselt number for the channel case is presented in
Figures 6 and 7 for di�erent values of nanoparticle
concentration, slip length, and Peclet number. The
presence of nanoparticle concentration increases the
local Nusselt number at a �xed slip length. Further,
the axial conduction and slip parameters both amplify
the local Nusselt number. Similar observations are
obtained for tube geometry. This fact is con�rmed by
Figures 8 and 9. Further, the higher Nusselt numbers
are observed in the channel than in the tube. Figure 10
depicts the magnitude of both the local and mean

Figure 4. Tube mean temperature in the presence of a
nanouid volume fraction and a �xed slip length
(l = 0:10).

Figure 5. Mean temperature in the presence of nanouid
volume fraction and Peclet number at slip length for the
tube (l = 0).

Figure 6. The local Nusselt number for a channel with a
nanouid volume fraction and a �xed slip length
(l = 0:10).

Figure 7. Local Nusselt number and Peclet number for a
channel as a function of nanouid volume fraction at slip
length (l = 0).

Figure 8. The local Nusselt number for tubes with a
nanouid volume fraction and a �xed slip length
(l = 0:10).

Figure 9. Local Nusselt number and Peclet number at
slip length for tubes with nanouid volume fraction
(l = 0).

Figure 10. Local and mean Nusselt numbers for
(l = 0; ' = 0; P e = 1000).
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Figure 11. Nusselt number for parallel plate in the
presence of nanouid volume fraction and �xed slip length
(l = 0:10).

Figure 12. Nusselt number for pipe in the presence of
nanouid volume fraction and �xed slip length (l = 0:10).

Nusselt numbers. Clearly, the mean Nusselt number
is higher than the local Nusselt number. This trend is
typical for all values of nanoparticle concentration, slip
parameter, and Peclet number. A bar graph depicts
the magnitude of the local Nusselt number for both
geometries. Figure 11 is for the channel con�guration,
while Figure 12 is for the tube case. It is clearly
seen that the magnitude of local Nusselt number is
higher for the fully developed regime in the presence of
nanoparticle concentration and slip length. Moreover,
channel geometry achieves the highest local Nusselt
number in comparison with tube geometry.

6. Concluding remarks

The classical Graetz-Nusselt problem is extended to
non-Newtonian power-law nanouid in both circular
tubes and channels with slip boundary conditions. The
analytical expression of the velocity pro�le is obtained
for the Navier-slip boundary condition for both con-
�nements. The temperature �elds of the power-law
nanouid for the uniform surface temperature case
for both tube and channel geometries are obtained in
terms of an in�nite series solution. Finally, the mean
temperature and local Nusselt number showing the
temperature distribution of the power law nanouid are
calculated. The obtained results revealed the e�ects

of nanoparticle volume fraction, Peclet number, and
slip length on nanouid heat transfer. Here are a few
highlights:

� The mean temperature for pipe and channel con�ne-
ment rises as the volume fraction of nanoparticles
increases;

� Increasing the nanoparticle volume fraction in-
creases the local Nusselt number for a �xed Peclet
number and slip length;

� The heat transfer rate at the wall(s) increases as the
slip length increases;

� The local Nusselt number is always less than the
mean Nusselt number;

� Heat transfer signi�cantly depends on the shape of
the geometry. Channel geometry is more appropri-
ate in that context;

� Lowering the Peclet number and slip length, as well
as tuning the non-Newtonian nanouid character-
istics, allows the fully developed condition to be
reached sooner.

Nomenclature

� Density (kg/m3)
d=dt Material derivative
r Radial coordinate (m)
Vm Mean velocity (m/s)
cp Speci�c heat (J/kg. K)
V Velocity pro�le (m/s)
� Non-dimensional temperature
pr Prandtl number
�m Bulk temperature
Nu Local Nusselt number
r Gradient operator

� Is equal to A�
B�

A� Is equal to [1 + 1:47']

B� Is equal to [1 + '(�pCp;p��bfCb;bf�bfCb;bf )]

T Temperature (K)
' Nanoparticles concentration
x Axial coordinate (m)
m Model parameter (Nsexn m�2)
n Flow index
ReD Reynolds number
r0 Half width (m)
� Eigenvalue
Pe Peclet number
Num Average Nusselt number
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S Eigenfunction
i 1, 2, 3,...
� Shear stress (Pa)
� Dimensional parameter
�T Temperature di�erence (K)
Ts Surface temperature (K)
Tin Inlet temperature (K)
k Thermal conductivity (W/m.K)
kbf Thermal conductivity of base uid

(W/m.K)
�p Density of nanoparticle (kg/m3)

�bf Density of base uid (kg/m3)
Cp;p Speci�c heat of the nanoparticle

(J/kg.K)
Cb;bf Speci�c heat of the base uid (J/kg.K)
�l Slip parameter
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