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Abstract. The proposed model represents the construction of entropy generation,
heat transport, and ow characteristics of Ag-TiO2/blood ow in a Darcy-Forchheimer
stretching cylinder under the impact of Cattaneo-Christov heat ux and thermal radiation.
The basic PDEs are converted into ODEs using correct similarity transformations. The 4th-
order Runge-Kutta shooting system is used to solve these ODEs. Homotopy Perturbation
Method (HPM) for the nonlinear system is developed for comparison purposes, and
more accurate and reliable outcomes are illustrated through graphs and tables. The
impacts of various factors on velocity, temperature, and entropy production are analyzed
visually. The velocity pro�le is enhanced with larger magnetic �eld values, whereas the
temperature pro�le yields inverse e�ect. Higher values of the Darcy-Forchheimer number
enhance skin friction and heat transfer rates. In the present analysis, Ag-TiO2 are the
nanoparticles in blood that are considered as the base uid. This investigation has its own
contribution to biomedical engineering, including medicine and electronics. The mentioned
nanoparticles play an essential role in nanobiotechnology, particularly in cancer therapy and
nanomedicine, because these metal nanoparticles are thought to improve the photocatalytic
operation in the presence of titanium dioxide-drug delivery systems, particularly when
drugs are injected into the bloodstream.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Two types of uids found in nature are distinguished
by their viscosity: Newtonian and non-Newtonian.
In the absence of yield stress in Newtonian liquids,
shear stress is comparable to shear rate. H2O, low-
concentrated alcohol and air, and motor oil are com-
mon Newtonian uids. A vast majority of uids in
nature are non-Newtonian, i.e., their viscosity varies
in response to strain rate, resulting in uncertainty in
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viscosity measurements. The nonlinear rheological be-
havior of such liquids is dominant in various �elds like
milk production, pharmaceuticals, �ber technology,
energy storage, etc. To make a non-Newtonian uid
model, many nonlinear terms in governing di�erential
equations exist. There are many di�erent uid models
such as Maxwell, Eyring-Powell, Oldroyd-A, Oldroyd-
B, Carreau, Je�rey, Casson, and so on. Among
them, the most important model for suspension in
our everyday life is the Casson model [1], which is
a plastic uid model with numerous applications in
drilling operations, food processing, metallurgy, and
bio-engineering processes. Casson uid is a shear-
thinning uid with in�nite density at null rates of
shear and lower yield pressure, at which zero density
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and zero ow can be seen. It behaves like an elastic
solid and has molecular chains connecting the particles.
At signi�cantly higher shear stress values, this model
is reduced to viscous uid. This type of Casson
model also comprises the rheological impact of some
other uids, such as syrups, cosmetics, physiological
uids, foams, etc. For a detailed study on Casson
nanouid analysis, readers are referred to Ullah et
al. [2] who studied MHD slip ow of Casson liquid
along a nonlinear porous stretching cylinder transfused
in a porous medium with chemical response, heat gen-
eration/absorption, and viscous dissipation. Alwawi
et al. [3] carried out a heat transfer investigation for
a Casson nanouid ethylene glycol-based resemblance
circular cylinder with MHD e�ect. Sakkaravarthi and
Reddy [4] examined the MHD ow behavior of two-
dimensional Casson hybrid nanouid over a porous
curved stretching sheet in the presence of thermal
radiation. Ramasekhar and Reddy [5] investigated
the entropy generation of the non-Newtonian hybrid
nanouid in a permeable rotating disk in the presence
of thermal radiation, heat generation, and viscous
dissipation.

MHD is used herein to control ow uctuations
in a mixed convection system. Magnetohydrodynamic
mixed convective stream and its current transport
possessions are of numerous applications in nuclear
power plant conserving and electrical devices, drug
industry, mechanical engineering, medical engineering,
geophysics, magnetic drug targeting, engineering, and
astrophysics. MHD is applied to attractive medi-
cation focusing, magnetic devices for all separation,
cancer tumors treatment, magnetic endoscopy, and cell
death induced by hyperthermia, created by a magnetic
�eld. MHD involves the analysis of magnetic resources
and behaviors of electrically conducting uids, e.g.,
magneto uids include plasmas, salt waters, liquid
metals, and electrolytes [6{8]. Chamkha and Rashad
observed the ow of heat transfer around an object
that was very thin and had a magnetic �eld around
it. They investigated how the ow of nanouid around
a cone would change over time in the presence of an
external magnetic �eld. Dhanai et al. studied how
nanouid would move up on a slope. Hydromag-
netic ow analysis was carried out in [9,10]. Isa et
al. [11] investigated MHD mixed convection boundary
layer ow of a Casson uid bounded by a permeable
shrinking sheet with exponential variation. The e�ect
of MHD on Casson uid with Arrhenius activation
energy and variable properties was scrutinized in [12].
In their study, Shahzad et al. [13] investigated how
a stretched sheet would a�ect the motion of MHD
nanouid in a strati�ed medium containing gyrotactic
microorganisms. Sheikholeslami et al. [14] discussed
the e�ect of a homogeneous magnetic �eld on nanouid
ow between two circular cylinders.

Current MHD applications in engineering, resi-
dential, life sciences, and industrial production have
focused on the dynamics of heat transfer phenomenon.
Energy generation, space cooling, biomedical appli-
cations and magnetic drug targeting, and heat con-
duction in tissues are used to cool nuclear reactors
[15,16]. Therefore, to minimize the negative e�ects
of MHD, researchers have simpli�ed the singularity
of heat transfer and proposed various models of heat
ux. Originally, Akbar et al. [17] began this initiative
using classical continuum method and established the
utmost convectional heat ux classical in continuum
mechanics. This model is subject to one fundamental
aw, that is, the entire system is immediately impacted
by an initial disturbance. This is known as the
contradiction of heat conduction and it de�es the law
of interconnection. In order to resolve this problem,
Cattaneo [18] enhanced Fourier's law with the addition
of a thermal relaxation period that could handle heat
ux. Formerly, Christov [19] further modi�ed the
Cattaneo model of heat ux by subtracting it from
the Maxwell-Cattaneo model. Its uniqueness was es-
tablished by Tibullo and Zampoli [20]. The Cattaneo-
Christov model of heat ux is critical to bioengineering
and industrial progression such as hybrid power genera-
tors, heat reduction in microelectronic devices, nuclear
reactors, milk pasteurization, etc. [21]. To understand
Cattaneo-Christov's heat and mass ux mode, many
people have paid attention to it . Another relevant
study is the work of Kundu et al. [22]. Shahid et al. [23]
simulated mass and heat transfer in nanoparticle ow
in a Darcy-Forchheimer medium. Jakeer and Polu [24]
investigated the magneto-polymer nanouid containing
gyrotactic microorganisms over a permeable sheet with
the Cattaneo-Christov heat and mass ux model.

Fluid ow and heat transfer are irreversible pro-
cesses that can be quanti�ed in entropy generation
equations. The second law of thermodynamics states
that entropy is created, which is true. The term
entropy refers to the amount of energy unavailable in
a closed thermodynamic system. In 1980, the entropy
production rate was introduced by Bejan [25]. Entropy
is based on the Greek word entropy, which means
\moving in the direction of" or \change". In the case
of uid ow systems, entropy calculation is critical
because it categorizes the factors that contribute to
the loss of useful energy. As a result, the thermally
designed system loses its e�ectiveness. The production
of the system can rise by reducing the number of
items that make entropy. Several researchers including
Khan et al. [26] and Rashidi et al. [27] investigated
the entropy for nanouid ow with convective heat
transfer in di�erent geometric con�gurations. Today,
a few researchers are working on entropy in exclusive
geometry (see [28{34]).

Thermal radiation is characterized by a range of
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frequencies that extend from electromagnetic waves
through the visual light range to ultraviolet rays. They
include light from �re or the sun as well as the heat
coming from a radiator or stove. The properties of
radiation in the boundary layer ow are extremely
signi�cant because of their applications in engineering,
physics, and manufacturing �elds such as glass produc-
tion, gas-cooled nuclear reactors, polymer processing,
and furnace design as well as those in astronomical
technology such as aerodynamic rockets, propulsion
systems, missiles, spacecraft operating at high tem-
peratures, and power plants for interplanetary ights.
These processes cannot ignore thermal radiation e�ect.
This is called the Roseland approximation because it
describes how much heat is radiated in the energy equa-
tion. According to References [35{39], we can see that
the impact of thermal radiation is very strong in case of
large temperature di�erence. Ali et al. [40] performed
the mathematical investigation of natural response and
non-straight radiation for magneto-get nanouid over
an extending chamber. Mitri [41] and his team investi-
gated how sound radiation forced cylindrical particles
near an inexible boundary. Examples of viscous uid
cylinders and the characteristic radiation torque can
be seen in [42]. Investigations into the convective
ow and heat transmission of an incompressible viscous
nanouid past a semi-in�nite vertical stretching sheet
were carried out by Yahyazadeh et al. [43].

No study has previously investigated the ow of
blood and hybrid nanoparticles in a porous stretchable
stretching cylinder to describe medical phenomena and
treatment applications. Motivated by the primary re-
search, the current paper examines a relevant model for
MHD, porous, Darcy-Forchheimer, Cattaneo-Christov
heat ux, heat generation, and thermal analysis of
principal blood ow in the presence of a hybrid of Ag
and TiO2 nanoparticles to �nd relevant applications in
the case of drug delivery schemes, mainly when drugs
are inoculated into the bloodstream. This is how basic
Partial Di�erential Equations (PDEs) are changed into
dimensionless ODEs using similarity transformations.
These ODEs are then numerically resolved using the
bvp4c built-in function and the HPM method to
compare them. The e�ect of the speci�cations on the
uid velocity is depicted through graphs and associated
discussions.

2. Description of the mathematical model

This study attempts to analyze the double-dimensional
axisymmetric limit coating stream of incompressible
Casson hybrid nanouid radius A with a stretching
cylinder. The math of the movement is booked as the
x-axis is laterally with of the axis of the cylinder just
s curved co-coordinate r is ordinary to the axis of the
cylinder. It is accepted that the extending cylinder

has the direct axial velocity uw(x), and Tw(x) =
T1 + T0(x=l) is the wall temperature where l; U0, and
T0 are individually, the characteristic length, reference
velocity and temperature, respectively, whereas T1 is
the encompassing temperature. Further, speed, veloc-
ity, warm and focus slip circumstances, and happening
impacts are taken into account exterior surface of the
cylindrical body. It is also expected that a consistent
level of resistance attractive �eld B0 is oppositely
functional the outspread way. To overcome the un-
predictability of numerical calculation, the initiated
attractive �eld brought about by the movement of
electrically directing hybrid nanouid is ignored since
it is almost the same with applied attractive �eld B0
(see Figure 1). As a result of research in [44,45], the
Casson uid rheologic equation is developed as follows:
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Figure 1. The ow pattern of a hybrid nanouid.
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Boundary Conditions:

u = uw (x) + k0�hnf
�

1 +
1


�
@u
@r
;

v = v0; �khnf @T@r = hf (Tw � T1) ; 8x;
r = A; u! 0; T ! T1; r !1; (4)

where (u,v) are the velocity components in the (x,r)
directions, respectively; �, �, and � are density, kine-
matic consistency, and explicit warmth limit of Casson
nanouid, respectively; remains the non-Newtonian
boundary; k signi�es the porosity of a permeable
medium; � = �1 f1 + " [(T � T1) =�T ]g stands for
uid exible warm conductivity (where " is variable
warm conductivity boundary and �1 is the encom-
passing liquid warm di�usivity); v0 is pull/blowing
speed; and K0 is speed. T0 changes in a strictly
nonlinear fashion and illustrates incomplete di�erential
conditions into an arrangement of customary di�eren-
tial conditions (ODEs). We present the stream work
 (x; r) such that:
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The mathematical types of constants n1; n2; n3; n4, and
n5 can now be communicated as follows:

n1 =
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The skin friction coe�cient Cf and local heat transfer
rate from Nusselt number Nux on the surface of the
cylinder are de�ned as:

Cf =
2�w
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xqw
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; (11)

where surface shear stress and heat ux for Casson uid
are respectively given as follows:
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Local temperature and mass transfer rates are given
for local Rex = xuw=v Reynolds number.
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Entropy Generation Analysis: Entropy is de�ned phys-
ically as the measure of irreversibility and signi�es a
state of disorder in the system and its surroundings.
When heat is not completely used for work, the amount
of entropy it creates is known. Entropy generation is
so expressed as follows:
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Implementing Eq. (6) in Eq. (14), it becomes the
dimensionless entropy generation as follows:
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The Bejan number is delineated by Eq. (16) as shown in
Box I. The thermophysical parameters and comparison
of the velocities that can be employed in this analysis
are provided in Tables 1 and 3.

Colloidally diluted hybrid nanouid is used in this
case TiO2-Ag nanoparticle interruptions in a base uid
(blood). Blood and Ag-TiO2 hybrid nanoparticles are
shown in Table 1 with their thermophysical properties
at temperatures of 20�C{30�C, at which they work
best. Table 2 shows the mathematical models of
hybrid nanouid thermophysical properties [46]. The
correlations among the thermophysical properties of
hybrid nano liquids including e�ective heat capacity
(�cp)hnf , e�ective density �hnf , thermal conductivity
khnf , and electrical conductivity �hnf are as follows.

Density, viscosity, thermal conductivity (k), elec-
trical conductivity (�), heat capacity (�cp)f , and the
electrical conductivity of the base uid �f are all
represented by the letters �, �, Cp, and, k respectively.
Solid nanogranules Ag and TiO2 are represented by
subscripts 1 and 2, respectively, the base uid is
designated as f , and hybrid nanouids are referred to
as hnf . The shape of nanoparticles can be pronounced
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Box I

Table 1. Thermal characteristics of nanoparticles and base uid [46].

Physical properties � (kg/m3) Cp (J/kg.k) � (1/
m) k (W/mK)

Blood 1063 3594 0.8 0.492
Ag 10500 235 2:6� 106 429

TiO2 4250 686.2 6:30� 107 8.9538

Table 2. Mathematical models of hybrid nanouid thermophysical properties [46].
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by the shape parameter m, with values of m = 4:9; 3:7,
and 5.7 corresponding to cylindrical, brick-shaped,
and platelet nanoparticles, respectively. This study
focuses on platelet-shaped nanoparticles with m =
5:7. In addition, �1 and �2 denote the total volume
proportions of nanogranules distributed in the working
base uid.

3. Method for resolving the problem

3.1. Numerical procedure
The MATLAB is used to implement the list of nonlin-
ear ODEs (Eqs. (7) and (8)) as well as the boundary
conditions (Eq. (9)). To do so, the set of ODEs is �rst
modi�ed into ODEs of �rst order. The substitutes are
calculated by Eqs. (17){(19) as shown in Box II. With
the boundary conditions:

ya (1) = s; ya (2) = 1 +
�

1 +
1


�
�ya (3) ;

ya (4) = �Bi (1� ya (5)) ; yb (2) ; yb (4) : (20)

Entropy generation is obtained by Eqs. (21) and (22)

as shown in Box III. After converting the equations
and boundary conditions to the �rst order, we can
obtain our numerical �ndings for heat transfer rate and
shear stress, respectively. The dimensionless nonlinear
ordinary di�erential calculations are numerically solved
and the velocity and temperature graphs are shown
using MATLAB bvp4c. The numerical stability is
shown below.

3.2. Homotopy perturbation technique analysis
The nonlinear ordinary di�erential equations (Eqs. (7)
and (8)) along with the entropy generation (Eq. (15))
are tackled mathematically with the assistance of HPM
method.

Let consider the nonlinear di�erential equation
system below:
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Box III
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In this case, @ represents the domain's boundary, f(x)
is the arithmetic function, and �(�) is the operator
for nonlinear di�erential equations. Moreover, the
boundary operator is denoted by the letter A. P can
be generally divided into two parts: Nonlinear N and
linear L.

f (x) = L (&) +N (&) : (25)

The HPM structure is given as follows:

H (&; p) = (1� p) [L (&)� L (&0)]

+p [� (&)� f (&)] = 0; (26)

where:

� (x; p) :  � [0; 1]! R1: (27)

p 2 [0; 1] is a parameter for implanting and &0 is the
basic estimate of Eq. (23), which captures the boundary
conditions.

The solution given above can be written as a
power series in p:

& = &0 + p&1 + p2&2 + � � � � ��
p = 1 is the closest approach to the solution.

& = &0 + &1 + &2 + � � � � �:
3.3. HPM method implementation
In this section, the HPM method is used to solve
nonlinear ODEs (Eqs. (7) and (8)). With the boundary
condition (Eq. (9)), we build a Homotopy analysis
method to resolve Eqs. (28) and (29) as shown in
Box IV. Boundary circumstances are obtained by

Eq. (30) as shown in Box V. We examine f(�) and
�(�) in the following manner.

f (�) = f0 (�) + pf1 (�) + pf2 (�) + � � � � ��; (31)

� (�) = �0 (�) + �1 (�) + �2 (�) + � � � � � � : (32)

To replace Eqs. (23)-(25) with Eqs. (27){(28), we get
the following by contrasting the coe�cient of indis-
tinguishable powers of p terms and, then, setting the
direct condition framework.

0th-order:

f0 =
n1

n2
(1 + 2�!) f 000 +

n1

n2

�
(1 + 2�!)



�
f 0000 = 0;

�0 =
4!�n5

Prn4
�000 = 0: (33)

With 0th request conditions:

f0 (0) = s; f 00 (0) = 1 +
�

1 +
1


�
�f 000 ;

f 0 (1) = 0; �0 (0) = 1 +Bi�0 (0) ; � (1) = 0: (34)

1st-order:

f1 = 2
n1

n2
!�f 0001 +

2!n1f 000
n2

+
2n1!�f 0001
n2

� f 002

+
n1f 0001
n2

+
2!n1f 000
n2

� n1kf 00


+
n1f 0001
n2

�n3Mf 00 � n1kf 00 + f0f 000 � Frf 002 = 0; (35)

(1� p) n1

n2

�
1 +

1


�
[(1 + 2�!) f 000] + p

0@ n1
n2

�
1 + 1



�
[(1 + 2!�) f 000 + 2!f 00] + ff 00

�f 02 � �n3
n2
M + n1

n2

�
1 + 1



�
k
�
f 0 � Frf 02

1A = 0; (28)

(1� p)
�

(1 + 2�!)
1

Pr
n5

n4
� �tf2 � Rd

n4Pr
(1 + 2�!)

�
�00 + p

0BBB@
1
Pr

n5
n4

(2�0! + �00 (1 + 2�!))
� 1
Pr

1
n4
Rd (2�0! + �00 (1 + 2�!))

+n3
n4
MEcf 02 + n1

n5
Ec
�

1 + 1


�
(1 + 2�!) f 002

��t ��00f2 + ff 0�0
�

+ f�0 + 1
n4
Q�

1CCCA
= 0: (29)

Box IV

f (0) = s; f 0 (0) = 1 +
�

1 + 1


�
�f 00 (0) ; n5�0 (0) = �Bi (1� � (0)) � = 0

f (1)! 1; � (1)! 0 � !1
)

(30)

Box V
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�1 =
n5�000
Prn4

+
n1Ecf 000 2

n5
� �tf0f 00�00 � Rd�000

Prn4

+
2n1Ec�!f 000 2

n5
+
Q�0

n4
� �t�000f0

2 + f0�00

+
4!�n5�001
Prn4

� 2!�n5�000
Prn4

� 2Rd�000�!
Prn4

+
2n1Ec�!f 000 2

n5
+
n3MEcf 002

n4
+
n1Ecf 000 2

n5

+
2!n5�00
Prn4

� 2Rd!�00
Prn4

= 0: (36)

Considering the 1st-order constraints:

f1 (0) = s; f 01 (0) =
�

1 +
1


�
�f 000 (0) ;

f 01 (1) = 0; �1 (0) = Bi�01 (0) ; �1 (1) = 0: (37)

2nd-order:

f2 =
2n1�!f 0002

n2
+

2!n1f 001
n2

+
2n1�!f 0002
n2

+
n1f 0002
n2

+
2!n1f 001
n2

� n1kf 01


+
n1f 0002
n2

� n3Mf 0

�n1kf 01�2Frf 00f 01+f0f 001 +f1f 000�2f 00f 01 =0; (38)

�2 =
4Ecn1�!f 000 f 001

n5
+ f0�01 + f1�00 +

n5�001
Prn4

�2�t�000f0f � �tf0f 00�01 � �tf0f 0�00 � �tf1f 00�00

�Rd�001
Prn4

+
4n1Ec�!f 000 f 001

n5
+
Q�1

n4
� �t�001f0

2

+
2!n5�01
Prn4

� 2Rd!�01
Prn4

+
2n1Ecf 000 f 001

n5

+
4n5�!�002
Prn4

�+
2n5!��001
Prn4

+
2n3MEcf 00f 01

n4

�2Rd!��001
Prn4

+
2n1Ecf 000 f 001

n5
= 0: (39)

Consider the 2nd-order constraint:

f2 (0) = s; f 02 (0) =
�

1 +
1


�
�f 002 (0) ;

f 02 (1) = 0; �2 (0) = �2 (0) = 1 +Bi�02;

�2 (1) = 0: (40)

4. Results and discussion

The current study investigates the behavior of a
porous medium and Darcy-Forchheimer ow of Ag-
TiO2/blood owing a starching cylinder under a variety
of situations, including velocity slip, thermal radiation,
Casson uid, a convective boundary condition, and
Cattaneo-Christov heat ux. To obtain the required
solution to the updated nonlinear coupled equations,
the bvp4c approach was used. The e�ects of non-
dimensional governing parameters on f 0 (velocity) and
� (temperature) pro�les, NG (entropy generation), and
the Be (Bejan number), as well as the 1=2CfRe1=2

x
(skin-friction) and NuxRe�1=2

x (local Nusselt num-
bers), can be illustrated in the results. The current
analysis establishes universal values for the following
parameters:
! = 0:5; M = 0:7;  = 2:5; k = 0:5; P r = 21;

�t = 0:02; Ec = 0:03; Rd = 0:6; s = 0:05

Q = 0:3; �1 = 0:01; Br = 0:04; � = 0:01;

Bi = 0:1; Re = 0:01; X = 0:01:

Table 3 shows that the numerical result for the param-
eter magnetic �eld in NM corresponding to the HPM
in Maple is compared. Figures 2 to 5 compare the
homotopy perturbation approach with the numerical
method. In comparison to the numerical technique, the
HPM enjoys high precision for the following values:
! = 0:5;M = 0:5;  = 2:5; k = 0:5; P r = 21;

�t = 0:02; Ec = 0:03; Rd = 0:6; s = 0:02;

Q = 0:3; �1 = 0:01; Br = 0:4; � = 0:01;

Bi = 0:1; Re = 0:01; X = 0:1:

Table 3. Comparison of the numerical outcomes o� f 000(0) for di�erent values of MN when ! = 0 [47].

M Vajravelu et al. [47] Present
Numerical solution by

Keller-box method
Analytical
solution

HPM NM

0 1.000001 1.000000 1.000003 1.000008
0.5 1.224745 1.224745 1.224745 1.224744
1 1.414214 1.414214 1.414214 1.414213

1.5 1.581139 1.581139 1.581139 1.581138
2 1.732051 1.732051 1.732051 1.732050
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Figure 2. Comparison between NM and HPM for NG.

Figure 3. Comparison between NM and HPM for NG.

Figure 4. Comparison between NM and HPM for NG.

There are no deviations from these numbers across
the whole research except for those in the individual
�gures and tables. Dashed and solid lines represent
the Newtonian and non-Newtonian uids, respectively,
in graphical results.

Figure 5. Comparison between NM and HPM for NG.

Figure 6. Impact of M on f 0.

Figure 6 depicts the e�ect of magnetic param-
eter M on the radial velocity pro�le f 0 for various
combinations of the Ag-TiO2/blood mixture. It is
demonstrated that the radial velocity of the liquid
decreases with increasing values of the magnetic pa-
rameter M . These results are consistent with the fact
that the resistive force is important in deceleration and
directional uid ow. A magnetic parameter (M) has
a strong physical relationship with the resistive �eld,
which is known as the Lorentz force. The speed pro�les
over the boundary layer go down because the value of
M goes up. The greater the Lorentz force, which slows
the uid's velocity inside the boundary layer, the higher
the magnetic parameter (M) value. The e�ect of the
porosity on velocity variation in Newtonian and non-
Newtonian cases is depicted in Figure 7, as illustrated
in Figure 7. It is implied that rise in the porosity
reduces the uid velocity pro�le and boundary layer.

Figure 8 represents the characteristics of (M)
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Figure 7. Impact of k on f 0.

Figure 8. Impact of M on �.

magnetic �eld e�ects on temperature �eld �(�). The
increase in magnetic strength on the liquid ow gen-
erates friction, which produces some amount of heat
and as a result, the normal temperature of the liquid
rises. Figure 9 depicts the behavior of the temperature
pro�le �(�) in both Newtonian and non-Newtonian
cases. As the k value increases, temperature pro�le
�(�) acquires more heat by increasing its tendency.
Figure 10 depicts the increasing results of temperature
at higher values of Eckert number. As a result of
frictional heating, extra kinetic energy is stored in the
uid particles, resulting in the temperature outcome.
Thus, the temperature �eld increases as the Eckert
number (Ec) increases. Figure 11 shows that by
rising the radiation parameter, temperature pro�le
rises gradually. Figure 12 demonstrates that as �t
increases, the temperature pro�le decreases for the
both Newtonian and non-Newtonian cases.

Figure 9. Impact of k on �.

Figure 10. Impact of Ec on �.

Figure 11. Impact of Rd on �.
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Figure 12. Impact of �t on �.

Figure 13. Impact of M on NG.

The rising upside of the entropy generation NG
with increase in the magnetic �eld M parameter is
observed from Figure 13. The Lorentz force increases
the strength; as a result, the magnetic boundary M
becomes larger. Figure 14 shows that as the Brinkman
number Br increases, the rate of entropy generation NG
rises. The current situation in entropy generation rate
results from the fact that thick impacts have become
more pronounced with increase in Brinkman number
in both Newtonian and non-Newtonian cases.

Figure 15 shows the di�erence in Bejan number
(Be) pro�le caused by di�erent values. For both
non-Newtonian and Newtonian scenarios, following
increase in the M values, the Bejan number (Be)
pro�le increases. Figure 16 recommends that at a
greater Brinkman number, Bejan number reductions
are observed for both non-Newtonian and Newtonian
cases.

Figure 14. Impact of Br on NG.

Figure 15. Impact of M on Be.

Figure 16. Impact of Br on Be.



3614 M. Vijatha and P.B.A. Reddy/Scientia Iranica, Transactions F: Nanotechnology 29 (2022) 3603{3618

Figure 17. Impact of �1 and M on Cf=2
p
Rex.

Figure 18. Impact of �2 and M on Cf=2
p
Rex.

Figures 17 and 18 show the behavior of
1=2CfRe1=2

x coe�cient for various parameters like mag-
netic �eld and volume fractions �1 and �2. The
conducting of magnetic �eld and volume fractions of
�1 and �2 on skin friction coe�cient 1=2CfRe1=2

x is
shown in Figures 17 and 18. Figures 19 and 20
show the behavior of NuxRe1=2

x coe�cient for various
approximations of the ratio of velocities and magnetic
�eld (M), as well as volume fractions �1 and �2.
According to Figures 19 and 20, it can be realized
that NuxRe1=2

x decreases when the upsides of magnetic
�eld of volume fraction �1 rise, although the opposing
inclination is seen on account of magnetic �eld M and
volume fraction �2, which can be found in Figure 20.

5. Conclusion

The current study examined blood ow through
a stretching cylinder for drug delivery through a
porous medium using MHD. The Darcy-Forchheimer,
Cattaneo-Christov heat ux model, heat genera-
tion/absorption parameter, Eckert number, porosity
parameter, and radiation parameter results were all

Figure 19. Impact of �1 and M on NuxRe�1=2
x .

Figure 20. Impact of �2 and M on NuxRe�1=2
x .

taken into account. It was discovered that the proper-
ties of TiO2 and Ag had valuable antimicrobial recog-
nition and that they could be used in an Escherichia
coli culture to evaluate their antibacterial viewpoint.
In medicine, TiO2 and Ag hybrid nanouids are used
because they have a high pH value resulting from
temperature changes. In the �rst step, the governing
PDEs were converted into a system of ODEs and then,
solved numerically by the bvp4c method. Graphs were
used to investigate the changes in velocity, tempera-
ture, entropy, Bejan number, skin friction coe�cient,
and Nusselt number caused by changes in physical
parameters. The comparison graphs and tables for NM
and HPM methods were also included in this paper.
The main �ndings of the current study are given in the
following:

� One of the best nanocomposites for use in the blood
is made of TiO2 titanium dioxide and Ag silver,
because they can stop bacteria from growing and
stop new cells from forming, making them ideal for
use in blood;
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� In both cases of Newtonian or non-Newtonian, the
values of magnetic and porosity parameters increase
as the velocity decreases;

� Temperatures rise when a large number of factors
including M , k, and Ec are involved. This �nding
holds for hybrid nanouids, which are made up of
many di�erent types of nanouids. Furthermore,
the increasing values of Rd and �t result in a
decrease in the temperature �eld;

� The entropy generation pro�le is improved on ac-
count of a rise in M and Br parameters. As
the Bejan number and magnetic parameter value
increase, the Brinkmen number decreases;

� While increasing the wall slip parameter increases
the skin friction factor, increasing the porosity
parameter decreases the skin friction coe�cient;

� The above phenomenon helps Escherichia coli grow;
hence, TiO2 and Ag hybrid nanouids exhibit
proper performance to kill germs;

� The electric conductivity and pH values improve
with the higher amount of heat transfers. Therefore,
the objective of this study was to use the TiO2 +
Ag nanouids for medicine.

Nomenclature

A Radius of a cylinder (m)
U0 Reference velocity (m/s)
B0 Magnetic �eld (Nm�1A�1)
Br Brownian motion
Fr Inertia coe�cient
Ec Eckert number
M Magnetic �eld
h Mass ux vector
hw Surface mass ux of Casson uid
l Characteristic length (m)
N Number of collocation points
u; v Velocity components (m/s)
Tw Wall temperature (K)

Greek symbols

� Variable thermal di�usivity (m2/s)
�t Temperature time relaxation parameter
�ij Rate of strain tenser
�1 Ambient uid thermal di�usivity

(m2/s)
� Velocity slip parameter
�t Thermal slip factor
" Variable thermal conductivity

parameter

� Kinematic viscosity of uid (m2/s)
�e Relaxation time of heat ux !

(seconds)
� Product of deformation rate tensor
T1 Ambient temperature (K)
SG Characteristic entropy generation rate
S0 Entropy generation number
Rex Local Reynolds number
Pr Prandtl number
uw Linear axial velocity (m/s)
k Permeability of porous medium
k Thermal conductivity (Wm�1K�1)
NG Dimensionless form of entropy

generation
Nux Local Nusselt number
T0 Reference temperature (K)
s Suction/blowing parameter
S000gen Characteristic entropy generation rate

� Density of Casson nanouid (km/m3)
k Permeability parameter of porous

media
� Dimensionless temperature
 Stream function
 Non-Newtonian Casson parameter
� Variable of dimensionless
� Ratio of e�ective heat capacity
�w Surface shear stress of Casson uid
! Curvature parameter
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