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Abstract  
Operating rooms serve as costly wards of hospitals, so any cost reduction, directly affects the 

total costs. Operating room consumable items are received from the supplier in sterile and 

nonsterile forms and then sent to the operating room before surgery. If the surgeon requests 

nonsterile items, these items are sent first to the sterile core, and then the sterilized items are 

transferred to the operating room. This research reduces logistics costs and increase surgeons' 

satisfaction in conditions of uncertainty.  There may be request during operation due to the 

patient's condition or other emergencies, like heavy bleeding and items breakdown which 

statistical distribution estimations are impossible. Hence, a robust approach was used for 

demands. Also, the parameters affecting supply chain costs and surgeons' satisfaction and the 

impact of different criteria on the selection of suppliers have been investigated. Moreover, 

suppliers are different in terms of cost and quality which have a direct effect on the satisfaction 

of surgeons. Therefore, in this paper, First, the Additive Ratio Assessment (ARAS) method 

was employed to rank suppliers, Then the augment ε-constraint was used to minimize costs 

and maximize surgeons’ satisfaction. Results indicated purchase cost and demand as the most 

effective parameters. 

Keywords: Surgical Supplies, Robust Optimization, Ranking Suppliers, Sterile Core 

1. Introduction  
Nowadays, the health chain has received considerable attention concerning cost and its direct 

connection with human lives. A hospital is one of the most critical parts of the health system, 

where operating rooms are the most vital wards. Hospitals are generally complex systems in 

which, policies and decisions are made to ensure providing services and reducing costs [1]. 

Although the health supply chain has received much attention, few used mathematical models 

for the health supply chain in the context of surgical items. Furthermore, conflict of interests 

among beneficiaries’ results in Multi-Criteria Decision Making (MCDM) techniques in 

hospitals. Therefore, the extant study aimed at reducing the cost of the supply chain, including 

purchase and procurement costs, by modeling the problem of operating room consumable items 

under uncertainty. On the other hand, this study added to suppliers' levels to allow surgeons to 

rank suppliers by providing their comments about delivered items to be satisfied with 

demanded items. In fact, what distinguishes this research from the previous papers are 1. 

presentation of a two-phase approach for suppliers’ selections and planning operating rooms 

and sterile core, and 2. simultaneous attention to the two issues of auction surgeons' satisfaction 

with consumable items based on suppliers' ranking and reducing supply chain costs under 

uncertain conditions. In this research, a purchase capacity was set to buy from suppliers to 

purchase from the next prior supplier if it is impossible to buy from a supplier with high 

priority. Moreover, pharmacy capacity, operating rooms, and sterile core were considered for 

various items to model the real-world situation. Additionally, intraoperative demand is 

indefinite for each patient. Therefore, there is not any certain distribution of demand regarding 

patient-specific conditions. Hence, the robust method was used to overcome the uncertainty 

aspect of the problem. 

The present study has been structured as follows: the second section presents a literature review 

on the related papers. The third section provides the statement of the problem. Mathematical 
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modeling and solution method are given in Section 4. The fifth section includes numerical 

examples and various analyses. Finally, the last section presents results and further 

recommendations. 
 

2. Literature review 
The hospital supply chain faces some issues, including complexity, uniqueness, operational 

challenges, difficult inventory tracking, and unpredictable medical supplies request [2] and 

supplier selection. In this case, Dellaert and Poel [3] extended the EOQ model to a so-called 

(R,s,c, S) model for inventory control in an academic hospital. Bijvank and Vis [4] assume that 

most inventory management systems at hospital departments are characterized by lost sales, 

periodic reviews with short lead times, and limited storage capacity. Zheng [5] compared 

certain and uncertain inventory systems. The internal supply chain of hospitals links logistic 

procedures to care services provided for patients. In this case, Agra et al. [6] used a 

mathematical model and branch-and-cut algorithm to distribute medical products from a 

warehouse to nursing wards. Bélanger et al. [7] employed a heuristic method for storing items 

required for the nursing unit. Lapierra and Ruiz [8] presented an approach for improving 

hospital logistics by coordinating the procurement and distribution operations while respecting 

inventory capacities. Mojarradi and Mozaffari [9] carried out a study to manage inventories in 

the medicine supply chain using system dynamics simulation. Hashemi et al. [10] presented a 

mathematical model for the health supply chain, including production and distribution centers, 

clinics, and age groups. Ahmadi et al. [11] developed a robust stochastic model for logistic 

actions in the operating room to minimize costs. Abedini et al. [12] presented a two-stage 

stochastic optimization model to deal with the uncertainty of patients entering the operating 

room. On the other hand, expansion of operating room capacity is lower than demand rise, so 

intrinsic uncertainty of surgical methods and patient entrance complicate the decision-making 

process. Diamant et al. [13] developed a discrete-time Markov chain model for inventory 

management of reusable surgical instruments in the operating room and suggested the hospital 

could reduce the number of these items by using on-site sterilization techniques. 

Rossetti and Selandari [14] studied the performance improvement of inventory delivery 

systems of the hospital, and they used the AHP method to evaluate the replacement of human-

based delivery systems with automation by employing economic, technical, and qualitative 

indicators. Supeekit et al. [15] presented a framework for the measurement of effectiveness and 

efficiency of healthcare logistics performance. Supeekit et al. [16] employed DEMATEL-

modified ANP to investigate the relationships among performance groups by describing the 

causal relationships among criteria and calculating weights for performance aspects. They 

determined the most crucial aspects of performance to improve it. Ahmadi et al. [17] had a 

review paper on inventory management of surgical supplies and sterile instruments in hospitals. 

They analyzed the literatures and identified the future research directions leading to operating 

room inventory cost reduction. Mahmoud et al. [18] investigated Access to surgical care as an 

efficiency issue: using lean management in French and Australian operating theatres. They 

considered different types of waste in operating theatres and a series of successful tactics to 

increase efficiency and eliminate wastefulness. Lonner et al. [19] optimized surgical trays to 

improve operating room efficiency and reduce costs in instrument processing in total 

joint arthroplasty. Their results showed that lean methodology was useful to eliminate 

redundant or underutilized instruments in total joint arthroplasty, improving surgical efficiency 

and generating substantial cost savings. Bhosekar et al. [20] developed a discrete event 

simulation model for coordinating inventory management and material handling in hospitals 

and operating rooms. Numerical analysis showed that coordination of inventory management 

of surgical instruments and material handling decisions could improve the service level 

provided by operating rooms. O’Mahony et al. [21] used lean six sigma to redesign the supply 

chain to the operating room department of a private hospital. They reduced costs and release 
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nursing time to care. Li et al. [22]  presented a robust multi-objective mathematical model for 

scheduling the operation room for emergency surgeries, considering the priority of surgeries to 

minimize the costs associated with elective and emergency surgeries and maximize the number 

of scheduled surgeries. Yalamanchi et al. [23] verified association of operating room costs and 

hospital waste with head and neck surgical instrumentation optimization. For this purpose, they 

used the data of a 3-years period for instrument processing, utilization, and associated 

institutional direct costs. Humphreys et al. [24] had an Overview of Hospital Capacity Planning 

and Optimization and identified the state of the art and gaps in the body of research. Then they 

created a holistic framework for understanding hospital capacity planning and optimization, in 

terms of physical elements, process, and governance. Furthermore, they presented several 

directions for future research. Neve and Schmidt [25] developed two models, optimizing either 

cost or service level for a periodic-review, base-stock inventory policy for a hospital, and 

considered actual net inventory and recorded net inventory for system performance measures. 

In the context of supply chain management, supplier selection can be defined as the process by 

which organizations score and evaluate a range of alternative suppliers [26]. Therefore, Stević 

et al. [27] developed the multi-criteria method of MARCOS o select sustainable suppliers in 

healthcare industries. They conducted a case study (a polyclinic) that included a ranking of 

eight alternatives concerning 21 criteria for all aspects of sustainability. Orji and Ojadi [28] 

employed MCDM approaches to analyze the relationships between response strategies to the 

COVID-19 Pandemic and used Triple-Bottom-Line criteria for sustainable supplier selection 

(SSS). Quality, cost, use of personal protective instruments, and IT were particularly 

introduced as the most significant factors for customer demand prediction while performing 

SSS during COVID-19 Pandemic. Moreover, the efficiency of the proposed method was 

approved based on the comparative analysis of other MCDM methods. In this regard, during 

the Covid period Biswas and Das [29] examined five obstacles of restrictions such as other 

human resources, implementation of local laws, carrying out transportation, carrying out raw 

materials and cash flow for the manufacturing sectors of India during the quarantine period. 

They proposed a method for analyzing fuzzy hierarchical analysis (Fuzzy-AHP) using 

triangular fuzzy for pairwise comparison matrices. It has been seen that human forces have a 

higher weight barrier than others. In addition, they also examine management concepts that 

will be useful for manufacturing departments to make appropriate decisions. Fazlollahtabar and 

Kazemitash [30] represented the relation between information systems and green supplier 

selection. They used best worst method, eight criteria, and 31 sub-criteria for decision-making. 

To the best of our knowledge, there is no paper which presented a two-phase approach for 

supplier selection of consumable items and planning the operating rooms and sterile core to 

minimize total cost and maximize the surgeon’s satisfaction under uncertain conditions. 

Therefore, we consider to this issue, and use a MCDM method for supplier selection for the 

first phase, and develop a new robust bi-objective mathematical model for the second phase to 

have better results. 
 

3. Problem Description 
In this research, a supply chain, including suppliers, Central Storage (CS), pharmacy, sterile 

core, and operating rooms is considered. There are different suppliers in terms of cost and 

quality of items, and the difference directly affects the satisfaction of surgeons. Hence, 

suppliers are ranked based on the various indicators and surgeons' ranks. 

In this research, the required equipment for the operating room includes necessary consumables 

for surgeries that do not return to the sterile and reuse a cycle after they were consumed. These 

items are purchased within two factories, sterile and nonsterile items. Only the sterile items are 

used in the operating rooms to protect the health of the patient; hence, the sterile core is before 

the operating room, regarding sterilization of purchase nonsterile items. 
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The items purchased from suppliers are stored in the central store next to the pharmacy in this 

study. Then the items were transferred to pharmacy shelves (you can forgo the cost and 

displacement distance of items between CS and pharmacy). The required items are prepared 

based on a list called preferred card and surgeon order, then sent to operating rooms before 

surgery (the nonsterile items are sterilized before being sent to the operating room). There may 

be some shortcomings during operations in the real world. The shortcomings are caused by 

item breakdown, errors of operating room staff, or emergency need for more items. In this case, 

a nurse brings the items from the pharmacy during the operation and then takes them to the 

operating room after were sterilized. Figure 1 shows more details of the studied supply chain. 

In this figure, black-colored arrows indicate the displacement of items before operation. Dotted 

arrows show the case of more items required during the operation.  

A maximum inventory capacity is considered per item entered at the locations. Moreover, a 

maximum rate is considered for purchase from each supplier, which is called purchase capacity. 

The problem under consideration here includes different operating rooms that their demands 

are met by sending items to each operating room based on the surgeon's request in the form of 

a pre-operating preferred list. In case of an intraoperative emergency (e.g., sudden bleeding, 

items breakdown, error of operating room staff, etc.) and more need for items, the nurse goes 

to the pharmacy to get the required items. If the items are primary nonsterile items, they must 

be sent to the sterile core and then transferred to the operating room. The intraoperative requests 

do not have a certain statistical distribution. On the other hand, procurement costs are different 

between pre-operation and intraoperative steps, so the latter is more costly. To solve the 

problem, pessimistic, probabilistic, and optimistic scenarios were designed based on Mulvey's 

robust method. Figure 1 depicts an overview of the case. 

 
Figure 1. Overview of Problem 

4. Modeling and Solution Method  
In this section, assumptions, indices, parameters, and variables are expressed and introduced, 

and then a mathematical model is proposed. The model was designed based on the following  

assumptions: 

• The purchase items are divided into sterile and nonsterile groups. The factory sterile 

items do not require sterilization in the sterile core.  

• All of the items required for an operation are kept in one cart. 

• The items are kept in the pharmacy and then sent to operating rooms.  

• The items are prepared before operation based on the surgeon-preferred card and then 

sent to operating rooms. The required intraoperative items are taken from the 

pharmacy by a nurse.  

• Purchase from each supplier is based on a certain capacity. 

• Demand is in two categories: pre-action demand is definite and intra-demand demand 

is indefinite. 

•  Purchasing from each supplier has a specific ceiling for each item. 

• Supplier evaluation criteria include purchase cost, item quality, after-sales service, 

item delivery time. 

• Orders from suppliers are made under definite conditions. 

• Items are delivered to the operating room after sterilization. 

• A specific type of surgery is unconsidered in this study and is generally considered. 

4.1. Mathematical Modeling  
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The model of the study was developed for robust optimization of multi-objective supply chain 

problems of surgical supplies by consideration of surgeon satisfaction and ranking suppliers. 

The following symbols were used in the model:  

Indices and Sets:  

𝑖: The index of sterile items purchased from the factory (e.g., syringe, sterile gas) 𝑖 ∈ 𝐼 

 𝑖′: The index of nonsterile items purchased from the factory (e.g., sampling swaps, bone-repair 

pins) 𝑖′ ∈ 𝐼′  

𝑘: The index of operating room 𝑘 ∈ 𝐾 

𝑣: The index of suppliers 𝑣 ∈ 𝑉 

0: Pharmacy  

0′: Sterile core  

𝑠, 𝑠′ : Indices of scenarios 𝑠′, 𝑠 ∈ 𝛺 

Parameters: 

𝐷𝑖𝑘
 : Demand for sterile item 𝑖 in operating room 𝑘  

𝐷𝑖′𝑘
 : Demand for a nonsterile item 𝑖′ in operating room 𝑘  

𝐷′
𝑖𝑘
 

: Demand for intraoperative item 𝑖 in operating room 𝑘 

𝐷′
𝑖′𝑘
 

 : Demand for an intraoperative item 𝑖′  in operating room 𝑘 

𝐶𝐿𝑖𝑘: Cost of supply and sending sterile item 𝑖 from the pharmacy before the operation to 

operating room 𝑘  

𝐶𝐿𝑖′0′: Cost of supply and sending the nonsterile item 𝑖′ from the pharmacy before the operation 

to sterile core  

𝐶𝐿𝑖′𝑘: Cost of supply and sending the item 𝑖′ after sterilization and before operation from sterile 

core to operating room 𝑘 

 FP0k: Fixed price of transferring a sterile item from factory to pharmacy, and operating room k 

during operation  

FP00′: Fixed price of transferring a nonsterile item from pharmacy to sterile core during 

operation 

 FP0′k: Fixed price of transferring a sterile item from sterile core to operating room k during 

operation 

 𝐶𝐴𝑃𝑖0: Capacity of pharmacy for sterile items 𝑖  

𝐶𝐴𝑃𝑖′0: Capacity of pharmacy for nonsterile item 𝑖′ 

𝐶𝐴𝑃𝑖′0′: Capacity of sterile core per nonsterile item 𝑖′ 

𝐶𝐴𝑃𝑖k: Capacity of operating room 𝑘 per sterile item 𝑖 

𝐶𝐴𝑃𝑖′k: Capacity of operating room 𝑘 per nonsterile item 𝑖′ 

𝐶𝑖𝑣: Purchase capacity of sterile item 𝑖 from supplier 𝑣  

𝐶𝑖′𝑣: Purchase capacity of the sterile item 𝑖′ from supplier 𝑣 

𝐶𝐵𝑖𝑣 ∶ Cost of buying sterile item 𝑖 from supplier 𝑣 

𝐶𝐵𝑖′𝑣: Cost of buying the sterile item 𝑖′ from supplier 𝑣 

𝑈𝑃: Variable cost of urgent preparation of items for the shortage per unit of product  

𝐶𝐸: Cost of emergence preparation of items for the shortage per unit of product 

𝑝𝑠  and 𝑝𝑠′: Probability of scenario 𝑠 and  𝑠′ for the demand of operating room 𝑘 

𝐴𝑣: Coefficient of surgeon satisfaction with products provided by supplier 𝑣  

𝑀: Very large positive number  

Variables: 

 Yik : Number of sterile items 𝑖 that are sent to operating room 𝑘 before operation based on the 

surgeon-preferred list through pharmacy items cart   

𝑄𝑖𝑣: Quantity of buying sterile item 𝑖 from supplier 𝑣 

𝑄𝑖′𝑣: Quantity of buying the primary nonsterile item 𝑖′ from supplier 𝑣 

 𝑇𝑖′0′: Number of primary non-sterile items 𝑖′ sent from pharmacy to sterile core before the 

operation  
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 𝑂𝑖′0′𝑘 : Quantity of item 𝑖′ taken from the sterile core before the operation for operating room 𝑘  

𝑊𝑖0𝑘
𝑠 : Quantity of sterile item 𝑖 taken from the pharmacy during operation for operating room 

𝑘 under the scenario 𝑠 

𝑊𝑖′0′𝑘
𝑠: Quantity of primary nonsterile item 𝑖′ from sterile core operating room 𝑘 during 

operation for under the scenario 𝑠  

 𝑁𝑖′0′
𝑠: Quantity of primary non-sterile item 𝑖′ sent from pharmacy to sterile core under the 

scenario 𝑠 

 𝐵𝑖0𝑘
𝑠: 1, if the sterile item 𝑖 must be taken from the pharmacy during operation in operating 

room 𝑘, 0, otherwise under the scenario 𝑠 

𝐵𝑖′00′
𝑠: 1, if primary non-sterile item 𝑖′ must be taken from the pharmacy during operation in 

operating room 𝑘, 0, otherwise under the scenario 𝑠 

𝐵𝑖′0′𝑘
𝑠: 1, if sterile item 𝑖′ must be taken from the sterile core during operation in operating 

room 𝑘, 0, otherwise under the scenario 𝑠 
θ: Positive number  

1  smin F OC BC EC= + +  

0 0 0   ik ik i i i k i k

i I k K i I i I k K

OC CL Y CL T CL O 

    

    

   

=  +  +     

(1) 

𝑂𝐶: Cost of preparation and transferring items from pharmacy to operating room before 

operation 

   iv iv i v i v

i I v V i I v V

BC CB Q CB Q 

   

=  +    (2) 

𝐵𝐶: Cost of buying items from suppliers 

( ) ( )

( )

0 0 0 00 00 0

   

0 0 0

 

         

     

s s s s

s k i k i k i i

s i I k K s i I

s s

k i k i ki I
s k K

EC FP B UPW FP B CE N

FP B CEW

 

    




  

 

     


= + + +

+ +

 

 
 

(3) 

𝐸𝐶S: Cost of preparation and transferring items from pharmacy to operating room during 

operation 

2max   (   ) (   ) v iv v i vv
v i i

F A Q A Q 



=  +     (4) 

The second objective function maximizes surgeon satisfaction. 
𝒔. 𝒕𝒐 

0                                                       iv i

v V

Q CAP i I


                                           

(5) 

'

0                                                     i v i

v V

Q CAP i I


                                                        (6) 

'       

'

0 0 0
                                     ,   s

i i i
N T CAP i I s    

+       (7) 

0                                                         ,   ,  s

ik i k ikY W CAP k K s i I+         (8) 

'

0 0                                                   ,  , s

i k i k i kO W CAP k K i I s    +       (9) 

Constraints (5)-(9) indicate the maximum capacity of locations, including pharmacy, sterile 

core, and operating room. 
                                                                 , ik ikY D i I k K+      (10) 

 

0                                                         ,  ,   s s

i k ikW D i I k K s     (11) 

 

0                                                            ,i k i kO D i I k K  
          (12) 

 

0                                                    ,   ,  s s

i k i kW D i I k K s       (13) 

Constraints (10)-(13) express the demand estimation based on the sum of items entered into 

the operating room before and during operation. 
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0 (  )                                       ,  s

ik i k iv

k K v

Y W Q i I s


+       (14) 

'

0 0                                              ,   s

i i i v

v

T N Q i I s     +     (15) 

' 

'

0 0 00
(    )                  ,  s s

i k i k ii
k K

O W T N i I s    


+ = +     (16) 

Constraints (14)-(16) are used to ensure the number of items (primary sterile and nonsterile) 

taken from the pharmacy and sterile core does not exceed the pharmacy and sterile core 

inventory.   
 

0 0 0                                  ,   ,  s s s s

i k i k i k ikB W B D i I k K s        (17) 

00 0 00                               ,   ,   s s s

i i iB N B M i I k K s              (18) 

 

0 0 0                      ,  ,  s s s s

i k i k i k i kB W B D i I k K s               (19) 

 0 00 0   ,    ,     0,1             ,  ,  ,s s s

i k i i kB B B s i I i I k K   
        (20) 

Constraints (17)-(18) are used to model the fixed cost of walking distances traveled by nurses 

to pick up an item from other locations during operation. 

                                                                          ,iv ivQ C i I v V     (21) 

                                                                        ,i v i vQ C i I v V 
     

This constraint indicates the purchasing capacity of buying from each supplier 

(22) 

      0                                    s s s ss
EC p EC s


− +      (23) 

( ) ( )

( ) ( )

( )

0 0 0 00 00 0

   

0 0 0 0 0 0

   

00 00 0 0 0

       

       

     

(

s s s s

k i k i k i i

s i I k K s i I

s s s s

k i k i k s k i k i k

s i I k K s k Ki I

s s s

i i k i k

i I i I k K

FP B UP W FP B CE N

FP B CE W P FP B UP W

FP B CE N FP B CE



     

  



   



    

 

       

 

  

  

+ + + +

+ − + +

+ +

 

  

 + ( )0      0)s

i k sW   + 

 

(24) 

 

  0                       s   s 
 (25) 

We use robust modeling to deal with uncertainty. 

4.1.1. Robust Modelling 
The scenario-based robust approach was introduced by Mulvey et al. [31]. They developed a 

model in which the indeterministic parameters were defined with a set of scenarios. In this 

optimization, if the solution is close to an optimal solution based on all defined scenarios, then 

the solution will be robust. In addition, the model is called a robust model if it is feasible based 

on all defined scenarios. The expressed definition indicates the robustness of the solution and 

quality. In other words, quality robustness means problem feasibility and not leaving the 

response space. 

Consider a linear programming model with the following stochastic parameters:  

min T TC x d y+  (26) 

.s to  
Ax b=  (26.1) 
Bx Cy e+ =  (26.2) 

0,  0x y   (26.3) 

Finally, the stochastic robust programming model is formulated as follows:  

( )  ( ) 2s s s s s s s s ss s s s
min p p p p      

     
 + − + +
      (27) 
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.     s t  
,Ax b=  

(27.1) 

                      s s s s sB x C y e s+ + =                              (27.2) 

    0                        s s s ss
p s  


− +    (27.3) 

  0 ,     0 ,   0 ,   0 ,           s s sx y s       (27.4) 

Study the paper written by Mulvey et al. (1995) for more details.   

Equation (3) converts to the following form based on Mulvey's mode: 

 

4.2. Solution Method  
Figure 2 illustrates the solution stages of the considered problem. 

 

Figure 2. Solution stages  

 

4.2.1. Additive Ratio Assessment (ARAS) Method  
The decision-making ARAS method was introduced by Zavadskas and Turskis [32]. The best 

alternative in this method is far from negative factors while close to positive factors. ARAS 

ranks alternatives through six stages: 

Stage 1) forming a decision-making matrix  
To form a decision table, options, indicators (criteria), indicators of weight indicators and the 

status of each option in each of the indicators must be determined. The decision matrix is shown 

below. 

( )  ( ) 2s s s s s s ss s s
min p p p    

      
 + − +
          

Then, we will have 
(28) 

( ) ( ) ( )1  2s s s s s s ss s s
min p EC p EC p EC    

 + − +
     

Finally, we will have 
(29) 

( ) ( )

( ) ( )

( )

0 0 0 00 00 0

 

0 0 0 0 0 0

 

00 00 0 0 0

(        

    ) (    

     

(

s s s s

s s k i k i k i i

s i I k K i I

s s s s

k i k i k s k i k i k

i I k K s k Ki I

s s s

i i k i k

i I i I k K

EC p FP B UPW FP B CE N

FP B CEW p FP B UPW

FP B CE N FP B CE



    

 

    

 

       

  

  

   

  

= + + + +

+ + + +

+ + +

  

  

  ( )

( ) ( )

( )

0

' ' ' '

' 0 0 0 00 00 0

'  

' '

0 0 0

  )

(        

    ) 2 )

s

i k

s s s s

s k i k i k i i

s i I k K i I

s s

k i k i k s

i I k K

W

p FP B UPW FP B CE N

FP B CEW 

 

    

 

  



 



 







−

+ + + +

+ +

  



 (30) 

 Robust modeling is shown as follows:  

 1min sF OC BC EC= + +  

 Then, we consider constraints (5)-(25).  
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01 01 0

1

1

          0,  ;   1,

n

iji in

mjm mn

x x x

X i m j n

xx x

xx x

 
 
 
  
 

= = = 
  
 
 
 

  

 (31) 

In Equation (31), the X decision matrix, m the number of options, and n the number of criteria 

describing each option ijx represent the performance of option i in terms of criteria j. 

Stage 2) normalization or un-scaling decision-making matrix. 
At this stage, the decision matrix should be normalized based on the gender of the criteria. The 

normalized decision matrix is shown below. 

01 0 0

1

1

     0,  ;   1,   

j n

iji in

mjm mn

x x x

X i m j n

xx x

xx x

 
 
 
 

  
 = = =
 
  
 
 
  
 

  (32) 

Stage 3) weighing the normalized decision-making matrix 
In this step, the balanced normalized decision matrix must be calculated. The weighted 

normalized decision matrix is shown as follows: 

01 0 0

1

1

     0,  ;   1,  

j n

iji in

mj mnm

x x x

X i m j n

xx x

x xx

 
 
 
 

  
 = = =
 
  
 
 
  
 

                          (33) 

In the above matrix (
ijx ) ̂ is the weighted normal value of the criteria, the relationship of which 

is defined below.  

1

1 
n

j

j

W
=

=                                                                                              (34) 

It is possible to evaluate the criteria with a weight of 0 1jW  , weights are a subjective 

criterion that is determined by the decision maker. In this study, the weight of the criteria was 

determined by Shannon entropy method. 

The normalized normalized values of the criteria are calculated using the following equation: 

;     0,ij ij jx x W i m= =  (35) 

Stage 4) calculating the optimal value  
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Using the following equation, we calculate the optimal value: 

1
           ; 0,

n

i ijj
S x i m

=
= =      (36) 

Where Si  is the value of the optimization function of option i . 

Stage 5) measuring degree of optimality and utility of alternatives  

After calculating the optimal value of each of the options in this step, the degree of usefulness 

or desirability of the options is calculated using the following equation. 

 
0

;   0,i
i

S
K i m

S
= =  (37) 

Which is 0S  actually the most ideal value among the optimization values calculated in the 

previous step. 

Stage 6) ranking alternatives 

In this step, using the degree of usefulness of each option, they are ranked. In fact, the options 

are ranked in descending order of their usefulness values. 

4.2.2. Augment ε-constraint method 
Interactive methods used to solve multi-objective problems differ based on the stage in which 

the decision-maker enters the decision-making process. In this case, the Augment ε-constraint 

method is the most widely used [33]. To solve the multi-objective model based on the Augment 

ε-constraint method in this research, the first objective of the model, which is cost 

minimization, is taken into account as the main objective, while the second objective is added 

to the constraint.  

5. Sensitivity Analysis  
This part of the study analyzed the sensitivity of parameters. To do this, an example with small 

dimensions was examined regarding the effect of various parameters, including the cost of 

purchase, operating expense, demand, purchase capacity, and coefficient of surgeons' 

satisfaction. In the first phase, suppliers were ranked based on the ARAS method. In the 

examined sample, three suppliers were considered, and the augment ε-constraint method was 

used within two phases.  

According to the stages mentioned in section 3.2.1, the ranking was done for three suppliers 

and three criteria. The weight of suppliers was measured by using the Shannon entropy 

weighting technique. The considered criteria included cost, quality, delivery time, and after-

sales services, of which cost and delivery time were negative while quality and after-sales 

services were positive. Table 1 reports the alternative and indicators of the problem, as well as 

the material and weight of indicators. The cost and delivery time indicators were negative, 

while the other indicators were positive. 

 

 
Table 1. Decision-making table  

 

The optimal value is measured for each indicator based on the first stage, and the obtained 

value is reported in Table 2.  
 

Table 2. Decision-making matrix by determining the optimal value  

 

As shown in Table 3, the normalized decision-making matrix is calculated in the second stage.  
 

Table 3. Normalized decision-making matrix  

 

In the third stage, the weighted normalized matrix is calculated, and the results are reported in 

Table 4. 
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Table 4. Weighted normalized decision-making matrix 

 

Optimal value and optimality degrees of alternatives are calculated through stages 5-6, and 

results are reported in Table 5. Ranking results have been proposed herein. 

 
Table 5. Matrix of optimal value and optimality degrees of alternatives 

 

Suppliers were ranked as follows:  

 3 2  1     v v v   

In the second phase, the problem was solved by using Augment ε-constraint method. It is worth 

noting that the considered example included i=2, t=2, v=3, k=2 dimensions. Table 6 reports 

different objective values of this example.  

 
Table 6. Different objective values of Example 1 using Augment ε-constraint method through  

 

For better understanding, the example has been illustrated in figures 2, 3, and 4 before 

performing sensitivity analysis. The mentioned example included three scenarios that are 

presented in a separate figure. The probability of occurrence of each scenario is randomly 

selected so that the optimistic scenario with probability ( 0.25p = ) is considered probable 

scenario with probability ( 0.50p = ) The pessimistic scenario with probability ( 0.25p = ) is 

considered. 

 
Figure 3. The first scenario of solving an example of the problem with small dimensions  

 

Figure 3 shows the inventory flow from suppliers to the operating room. As mentioned before, 

we have two operating rooms with different demands. The pre-operation demand of operating 

room 1 for sterile items equals 1

8

12
iD

 
=  
 

, in which the first row represents the demand for 

type 1 sterile items and the second row indicates the demand for type 2 sterile items. Moreover, 

the pre-operation demand of operating room 1 for factor nonsterile items is shown as 

1

5

4
iD 

 
=  
 

 in which the first row represents the demand for type one nonsterile item and the 

second row indicates the demand for type-two nonsterile items. Demand for sterile items type 

one and two during operation in an operating room 1k  equaled 2 and 2, respectively ( 1

2

2
iD

 
=  
 



), while demand for primary nonsterile items type one and type two equaled 1 and 3 ( 1

1

3
iD 

 
=  
 



), respectively during operation for operating room 1k . 

The pre-operation demand for type one and type two items in the operating room is estimated 

to be 8 and 12, respectively (
8

12
ikY

 
=  
 

) in which the first row represents the estimated demand 

for item type one, and the second row indicates the demand for item type twp. The demand for 

primary nonsterile items equaled 4 and 5, respectively ( 0 1

5

4
iO  

 
=  
 

). The estimated demand 
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for sterile items during operation equaled 01

2

2
iW 

 
=  
 

 in operating room 1, and the estimated 

demand for nonsterile items during operation equaled 0 1

1
 

3
iW  

 
= 
 

 in operating room 1. In the 

vectors mentioned above, the first and second rows represent the estimated demand for items 

type one and type two, respectively. In this case, the demand for operating room 2k  was 

indicated based on the following indices: 2  iD , 2  iD  , 2  iD  , 2iD 
 ; 0

3
 

6
iN  

 
=  
 

indicates the 

estimated sum of primary nonsterile items, required during operation in both operating rooms, 

transferred from pharmacy to sterile core for sterilization; 0

11
   

9
iT  

 
= 
 

indicates an estimated 

sum of pre-operation primary nonsterile items, required in both operating rooms, transferred 

from pharmacy to sterile core for sterilization. The following figures indicate further details. 

Figures 4 and 5 depict scenarios 2 and 3, respectively.  

 
Figure 4. The second scenario of solving an example of the problem with small dimensions 

  

Figure 5. The third scenario of solving an example of the problem with small dimensions 

 

Different sensitivity analyses have been proposed for the considered problem.  

 
Figure 6. The effect of changes in purchase costs on objective function’ values  

 

As seen in Figure 6, an increase in purchase cost makes the first objective function ascending 

since it minimizes costs, so an increase or decrease in costs affects this function directly. 

However, a decline in costs leads to ascending direction of the second objective. As seen in the 

figure, a 100% decline in this value causes a high rise in cost. However, an increase in costs 

does not lead to any considerable rise in changes in the second objective function. The reason 

stems from the requirement of operating room items that must be accessible for surgeons even 

if they are expensive.  

 
Figure 7. The effect of changes in operating expenses on objective functions’ values  

 

Figure 7 illustrates the effect of changes in operating expenses (cost of commuting to sterile 

core or pharmacy during the operation) on two objective functions. As seen in this figure, a 

rise or decline in the considered parameter cause no change in the first and second objective 

functions. It can be explained based on the impressibility of operating expenses compared to 

purchase costs.  

 
Figure 8. The effect of changes in demand values on objective functions’ values 

 

Figure 8 indicates the effect of changes in demand on both objective functions. In the 

mentioned changes, the demand for both items is increased or decreased simultaneously. As 

can be seen in this figure, a decline in demand leaves a linear effect on values of the objective 

function, while an increase greater than 25% in demand leads to the unfeasibility of the 

problem. The case seems logical since the demand exceeds the items inventory in the 

pharmacy.  
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Figure 9. The effect of changes in purchase capacity on objective functions' values   

 

Figure 9 shows the impact of changes in purchase capacity on both studied objective functions. 

The changes occurred in both items provided by all suppliers simultaneously. Purchase cost 

means a limitation in the number of items sent by the supplier. According to Figure 9, an 

increase in purchase capacity leads to a rise in the numbers of first objective functions, while a 

decline greater than 25% in this parameter makes the problem infeasible. The case seems 

logical since the inventory of items becomes less than demand. In this case, surgery cannot be 

performed.  

 
Figure 10. The effect of changes in satisfaction of the second supplier on objective functions' 

values   

 

Figure 10 shows the effect of changes in the coefficient of satisfaction with the second supplier 

on both objective functions. The coefficient of satisfaction with suppliers has been assumed as 

a number within the 1-100 scale based on the ARAS ranking method. For instance, Figure 10 

indicates the second rank of the second supplier with an assigned coefficient of 70. According 

to this figure, an increase of greater than 40% in satisfaction with the second supplier makes 

the problem infeasible. 

 
Figure 11. The effect of changes in satisfaction of the third supplier on the objective functions’ 

values  

 

According to Figure 11, increased or decreased satisfaction with the third supplier directly 

affects the reduction of surgeons' satisfaction. However, this effect on the first objective 

function is minor because a decline in satisfaction with a third supplier makes other suppliers 

prior, so customers prefer to buy items from other suppliers. 

 
Table 7. Comparison between values of the first objective function in different scenario 

probabilities 

 

Table 7 reports five cases calculating Pareto front values of the first objective function, 

minimum value, maximum value, standard deviation, and mean value based on the different 

probabilities of scenarios. In the five cases, (p1=0.25, p2=0.5, p3=0.25), (p1=0.33, p2=0.33, 

p3=0.33), (p1=1, p2=0, p3=0), (p1=0, p2=1, p3=0), and (p1=0, p2=0, p3=1) modes have been 

defined for each case, respectively. Accordingly, the least value of the first objective function 

is seen in the third mode of (p1=1, p2=0, p3=0). Moreover, the higher value of the first 

objective function is associated with the fifth mode. It means that if the whole demand for items 

during the operation occurs in the optimistic scenario, then the lowest cost is imposed on the 

system, while the highest cost is imposed if the case occurs in the pessimistic scenario. The 

shortest distance from the mean value is seen in the first mode, while the longest distance is in 

the third mode. Additionally, the standard deviation rate was constant in all Pareto points.   

Table 8 compares the deterministic and non-deterministic modes for different samples. 

Accordingly, values of the objective function in the deterministic sample are less than the 

robust mode in each sample. In robust cases, the model responds to the non-deterministic 

demand under different scenarios and assigns those amounts to prepare and purchase these 

values, which results in higher costs. Meanwhile, the second objective function depends also 

on the same values, so there is also an increase in the second objective function as in the first 

one. In the deterministic case, the solution time of the fourth example onwards has been 

extended drastically. Moreover, in the non-deterministic mode of the third example, solution 
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time has been dramatically extended compared to the deterministic model. The larger the size 

of the problem, the more complicated the model will be. The case occurs sooner in non-

deterministic problems since several constraints and parameters are added to these problems.  

It should be noted that the computer used is with the processor Intel(R)Core (TM) i5– 5005U  

CPU@2.00GHz  and Microsoft Windows 10 operating system. 

 
Table 8. Comparative results of deterministic and non-deterministic methods     

 

6. Conclusions and Recommendations  
The extant study examined a two-objective supply chain programming for surgical supplies by 

considering suppliers' rank under uncertainty. The studied items were divided into sterile and 

nonsterile items sent to the operating room at the surgeon's request. All items should be 

sterilized and then sent to the operating room. Therefore, a sterile core must exist in the 

hospital. The nonsterile factory items are sterilized in the sterile core and then sent to the 

operating room. Under emergency conditions, some items must be sent to the operating room 

during the operation. The emergency case may occur due to patients' needs, items breakdown, 

staff error, bleedings, and unpredicted problems, which may be different per case. Hence, there 

is not a certain distribution for demand. Mulvey's robust method was used to encounter 

uncertainty and discreet non-deterministic data of the problem.   

The problem was programmed within two-phase by using the multi-criteria decision-making 

method of ARAS and Augment ε-constraint. Regarding the conflict between logistic managers 

and surgeons, the present study strived to reduce the costs of surgical supplies and minimize 

the second objective function of surgeons' satisfaction simultaneously by ranking suppliers. 

From the viewpoint of surgeons, suppliers are distinguishable in terms of quality and cost, so 

these differences directly affect their job. Therefore, it can be concluded that the managerial 

perspective of this study is from the perspective of operating room management and efforts to 

address the challenges of providing items and surgeons' satisfaction. Results obtained from 

numerical examples and sensitivity analysis indicated that the model assigned higher value to 

objective functions in non-deterministic mode rather than in the deterministic case. Moreover, 

sensitivity analysis showed the higher sensitivity of the model to the demand and cost values 

that leave the highest effects on the values of objective functions. Solution time was extended 

from the fourth example onwards in both deterministic and non-deterministic modes 

concerning the effect of enhanced dimensions of the problem on the solution time. Further 

studies can consider the following recommendations:  

• Considering other operating room supplies to define new problems, such as surgical 

instruments that can be reused or reversible in a sterile cycle  

• Adding the number of storage warehouses to maintain surgical equipment  

• Integrating the problem of sterilization timing and consumables of the operating room to 

understand the importance of the surgery ward  

• Considering temporary storage warehouses for rapid access of staff to intraoperative 

equipment  

• Considering the emergency operations to develop uncertain conditions  
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Captions of figures: 

Figure 1. Overview of Problem 

Figure 2. Solution stages  

Figure 3. The first scenario of solving an example of the problem with small dimensions  

Figure 4. The second scenario of solving an example of the problem with small dimensions 

Figure 5. The third scenario of solving an example of the problem with small dimensions 

Figure 6. The effect of changes in purchase costs on objective function values  

Figure 7. The effect of changes in operating expenses on objective function values  

Figure 8. The effect of changes in demand values on objective functions  

Figure 9. The effect of changes in purchase capacity on objective functions' values   

Figure 10. The effect of changes in satisfaction of the second supplier on objective functions' values   

Figure 11. The effect of changes in satisfaction of the third supplier on the objective functions’ values  
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Table 2. Decision-making matrix by determining the optimal value  

Table 3. Normalized decision-making matrix  

Table 4. Weighted normalized decision-making matrix 

Table 5. Matrix of optimal value and optimality degrees of alternatives 

Table 6. Different objective values of Example 1 using Augment ε-constraint method through  

Table 7. Comparison between values of the first objective function in different scenario probabilities 

Table 8. Comparative results of deterministic and non-deterministic methods     
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Table 1. Decision-making table  
Option- Criteria After-sales service Delivery time Quality Cost 

Criteria type Positive Negative Positive Negative 

Weight criteria 0.20522 0.31714 0.43716 0.0429 

Supplier 1 1 36 1 15 

Supplier 2 3 72 3 18 

Supplier 3 5 24 1 18 

 

Table 2. Decision-making matrix by determining the optimal value  
Option-Criteria After-sales service Delivery time Quality Cost 

Criteria type Positive Negative Positive Negative 

Weight criteria 0.20522 0.31714 0.43716 0.0429 

Optimal value 7 12 10 15 

Supplier 1 1 36 1 15 

Supplier 2 3 72 3 18 

Supplier 3 5 24 1 16 

 

Table 3. Normalized decision-making matrix  
Option-Criteria After-sales service Delivery time Quality Cost 

Criteria type Positive Negative Positive Negative 

Weight criteria 0.20522 0.31714 0.43716 0.0429 

Optimal value 0.14793617 0.1153981 0.18181818 0.174880763 

Supplier 1 0.021276596 0.1153981 0.01818182 0.058293588 

Supplier 2 0.063829787 0.0961651 0.05454545 0.029146794 

Supplier 3 0.106382979 0.1081857 0.01818182 0.087440382 

 

Table 4. Weighted normalized decision-making matrix 
Option- Criteria After-sales service Delivery time Quality Cost 

Criteria type Positive Negative Positive Negative 

optimal value 0.030654681 0.0554617 0.07948364 0.004950578 

Supplier 1 0.004366383 0.0184882 0.00794836 0.004950578 

Supplier 2 0.013099149 0.0092436 0.02384509 0.004125481 

Supplier 3 0.021831915 0.0277308 0.00794836 0.004641166 

 

Table 5. Matrix of optimal value and optimality degrees of alternatives 
Option- Criteria The optimal value of options The degree of usefulness of the options 

optimal value 0.17046058 0.9999999 

Supplier 1 0.035752553 0.2097409 

Supplier 2 0.050313335 0.2951611 

Supplier 3 0.062152288 0.3646138 

 

Table 6. Different objective values of Example 1 using Augment ε-constraint method through  
Iteration First Objective Function (Cost) Second Objective Function (Satisfaction) 

1 2043.660 5480 

2 2086.660 6180 

3 2155.660 6870 

4 2261.660 7570 

5 2466.660 8260 

6 2688.660 8950 

7 2936.660 9650 

8 3202.660 10340 

9 3483.660 11050 

10 3784.660 11730 

11 4084.660 12420 
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Table 7. Comparison between values of the first objective function in different scenario probabilities 
Pareto point case 1 case 2 case 3 case 4 case 5 Min Max Average Stdev 

1 2043.66 2043.57 2037.11 2043.91 2049.71 2037.11 2049.71 2043.592 3.99 

2 2086.66 2086.57 2080.11 2086.91 2092.71 2080.11 2092.71 2086.592 3.99 

3 2155.66 2155.57 2149.11 2155.91 2161.71 2149.11 2161.71 2155.592 3.99 

4 2261.66 2261.57 2255.11 2261.91 2267.71 2255.11 2276.71 2261.592 3.99 

5 2466.66 2466.57 2460.11 2466.91 2472.71 2460.11 2472.71 2466.592 3.99 

6 2688.66 2688.57 2682.11 2688.91 2694.71 2682.11 2694.71 2688.592 3.99 

7 2936.66 2936.57 2930.11 2936.91 2942.71 2930.11 2942.71 2936.592 3.99 

8 3202.66 3203.57 3196.11 3202.91 3208.71 3196.11 3208.71 3202.592 3.99 

9 3483.66 3483.57 3477.11 3483.91 3489.71 3477.11 3489.71 3483.592 3.99 

10 3784.66 3784.57 3778.11 3784.91 3790.71 3778.11 3790.71 3784.592 3.99 

11 4084.66 4084.57 4078.11 4084.91 4090.71 4078.11 4090.71 4084.592 3.99 

 

Table 8. Comparative results of deterministic and non-deterministic methods     
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First 

Objective 
Function 

Second 

Objective 
Function 

1 2 2 2 3 1436.890 5070 3578 2155.660 6870.000 2.765 

2 12 5 10 9 39955 139830 3078 44550.600 149940 3.937 

3 22 10 20 15 137390 489045 4.437 203840 103326 1004.32 

4 30 15 25 20 139721 308658 1003.094 234777.050 502922 1334.437 

5 40 20 28 22 286496 233141 1002.078 483137.300 437016 1332.969 
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Figure 1. Overview of Problem 

 

 

Figure 2. Solution stages 

 

Solve the problem of multi-criteria decision 

making with ARAS method 

start 

finish 

Dealing with problem uncertainty by implementing 

Malloy's robust approach and solving the multi-

objective problem of operating room equipment 

planning with the augmented epsilon constraint method 
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Figure 3. The first scenario of solving an example of the problem with small dimensions  

 

 

 
Figure 4. The second scenario of solving an example of the problem with small dimensions 
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Figure 5. The third scenario of solving an example of the problem with small dimensions 

 

 

 
Figure 6. The effect of changes in purchase costs on objective function’ values  

 

 

 
Figure 7. The effect of changes in operating expenses on objective functions’ values  
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Figure 8. The effect of changes in demand values on objective functions  

 

 

 
Figure 9. The effect of changes in purchase capacity on objective functions' values   

 

 

 
Figure 10. The effect of changes in satisfaction of the second supplier on objective functions' 

values   
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Figure 11. The effect of changes in satisfaction of the third supplier on the objective functions’ 

values  
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