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Abstract. In the presence of outliers in the data set, the utilization of robust regression
tools for mean estimation is a widely established practice in survey sampling with single
auxiliary variable. Recently, with the aid of some non-conventional location measures
and traditional Ordinary Least Square (OLS), proposed a class of mean estimators using
information on two supplementary variates under a simple random sampling framework.
The utilization of non-traditional measures of location, especially in the presence of outliers,
performed better than existing conventional estimators. In this study, a new class of
estimators of mean utilizing quantile regression is proposed. The general forms of Mean
Square Error (MSE) and Minimum Mean Square Error (MMSE) are also derived. The
theoretical �ndings are being reinforced by di�erent real-life data sets and simulation study.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

The success of all kinds of development plans and
projects in any country depends on e�orts made in
preparing, following up, and evaluating these plans.
Consequently, data and information play an essential
and pivotal role for decision-makers. The data and
information can be provided in two ways: sampling
surveys and comprehensive surveys. The sampling
surveys gained popular acceptance being less expensive
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than comprehensive surveys of the �nite population
(see, [1,2]). The challenge faced by sampling survey
is to �nd the best possible estimates based on existing
data and any appropriate auxiliary or supplementary
information that can help to improve the estimation
and enhance the information about population. One
of the primary concerns of survey sampling is mean
estimation that can be improved by utilizing auxiliary
information (see, among others, [3{16]).

On a variety of topics, numerous surveys have
been conducted for the sake of data collection. Such
surveys have become an accepted part of modern life.
However, survey results have been increasingly in
u-
enced by growing trends in non-responses, with loss
of accuracy. The presence of an unwanted number of
irregular response outliers in the data may lead to false
results. Outliers can change the regression parameters
and degree of accuracy compared to those parameters
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evaluated without such outliers (see, [17,18]). This
indicates that a reasonable measure is required when
the data is contaminated by the presence of outliers.
Quantile Regression (QR) has emerged as a useful
supplement to standard regression technique. Further,
it is also robust to outliers. Boscovich laid down QR in
the eighteenth century even before the establishment
of Ordinary Least Square (OLS) regression estimators
(see, [19,20]). For many decades, the use of QR was
restricted due to �nancial issues or natural research,
but now, it is used virtually in all �elds of social and
economic sciences. In light of the preceding lines, we
are introducing the QR coe�cient rather than OLS in
mean estimation.

In this article, we propose a new family of esti-
mators for estimation of population mean via a more
scrupulous use of auxiliary variables. This objective
is achieved by considering QR. The applicability of the
scheme is demonstrated under simple random sampling
framework by employing di�erent data sets from var-
ious �elds of inquiries. Moreover, a keen comparative
investigation was carried out on the estimators of Abid
et al. [1] and the proposed family by means of numerical
evaluations.

The rest of this article is structured as follows:
A brief review of the assigned to Abid et al. [1] is
given in Section 2. A new class of quantile-regression-
type estimators is proposed in Section 3. Moreover,
expressions of large sample properties, namely Mean
Square Error (MSE) and Minimum Mean Square Error
(MMSE), are shown in Section 3. In Section 4, various
numerical comparisons are made between real-life data
sets and simulation study in order to shed light on the
performance of the proposed estimators with respect
to competitive estimators. The concluding remarks are
given in Section 5.

2. Existing family of estimators

Let f
 = 1; � � � ; Ng be a �nite population of N iden-
ti�able units, and (y>0, x1 > 0, x2 > 0) represent the
subject variable (Y ) and the supplementary variables
(X1, X2), respectively. Suppose a sample of size n
be drawn from the population under Simple Random
Sampling Without Replacement (SRSWOR) and let
� = ( 1

n � 1
N ). Abid et al. [1] introduced a class of

estimators for estimating population mean as follows:

ta(i) =Q1�y
� �X1 1(i)+�1(i)

�x1 1(i)+�1(i)

�
+Q2�y

� �X2 2(i)+�2(i)

�x2 2(i)+�2(i)

�
;

for i = 1; 2; � � � ; 16; (1)

where  1(i), �1(i),  2(i), and �2(i) represent known non-
conventional and conventional measures of X location
such as mid-range (MRx1, MRx2), Hodges-Lehmann

Table 1. Family members of mean estimators of Abid et
al. [1].

ta(i)  1(i) �1(i)  2(i) �2(i)

ta(1) 1 MRx1 1 MRx2

ta(2) 1 TMx1 1 TMx2

ta(3) 1 HLx1 1 HLx2

ta(4) 1 DMx1 1 DMx2

ta(5) �2(x1) MRx1 �2(x2) MRx2

ta(6) �2(x1) TMx1 �2(x2) TMx2

ta(7) �2(x1) HLx1 �2(x2) HLx2

ta(8) �2(x1) DMx1 �2(x2) DMx2

ta(9) Cx1 MRx1 Cx2 MRx2

ta(10) Cx1 TMx1 Cx2 TMx2

ta(11) Cx1 HLx1 Cx2 HLx2

ta(12) Cx1 DMx1 Cx2 DMx2

ta(13) �yx1 MRx1 �yx2 MRx2

ta(14) �yx1 TMx1 �yx2 TMx2

ta(15) �yx1 HLx1 �yx2 HLx2

ta(16) �yx1 DMx1 �yx2 DMx2

(HLx1, HLx2), tri-mean (TMx1, TMx2) and decile-
mean (DMx1, DMx2), coe�cient of variation (Cx1,
Cx2), and coe�cient of kurtosis (�2(x1), �2(x2)) of the
�rst and second supplementary variables. The correla-
tion coe�cients for (Y , X1, X2) are denoted as (�yx1,
�yx2, �x1x2). The sample means of (Y , X1, X2) are
�y, �x1, �x2. Further, ( �X1, �X2) represent the population
means of the �rst and second supplementary variables,
respectively. Two tuning parameters, Q1 and Q2, are
attached for minimizing the MSE of ta(i). All the
family members determined by Abid et al. [1] are listed
in Table 1. The MSE of ta(i) is given by:

MSE (ta(i)) =� �Y 2(C2
y +Q2

1#
2
1C

2
x1

+Q2
2#

2
2C

2
x2

�2Q1#1�yx1CyCx1�2Q2#2�yx2CyCx2

+ 2Q1Q2#1#2�x1x2Cx1Cx2); (2)

where the optimum value of Q1 obtained by Eq. (3) as
shown in Box I. Using the unity condition of weights
Q�1 +Q�2 = 1, they found Q�2 = 1�Q�1.

3. QR-type estimators

Outliers are the observations in a data set that ap-
pear to be inconsistent with the rest of that data
set. The presence of outliers signi�cantly a�ects the
mean estimation, which is one of the most impor-
tant measures of central tendency. Mean estimators
using OLS regression coe�cient are the most ideal
choices for the estimation of population mean, i.e.,
�Y . However, outliers may have a signi�cant impact
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Q�1 =
#2

2C2
x2

+ #1�yx1CyCx1 � #1#2�x1x2Cx1Cx2 � #2�yx2CyCx2

#2
1C2

x1
+ #2

2C2
x2
� 2#1#2�x1x2Cx1Cx2

: (3)

Box I

on the traditional regression coe�cient calculated from
OLS tool. Hence, the estimate of the population
mean, i.e., �y, based upon OLS may indicate poor
performance. One of the natural solutions is to adopt
quantile regression. It can be used as a robust ap-
proach in circumstances when data is non-normal and
contaminated with outliers. Further, it is also robust
to outliers [19,21]. QR is similar to the customary
least squares regression (OLS-R) in the sense that both
of them explore connections among endogenous and
exogenous variables. The primary distinction between
the two is that OLS-R selects the parameter estimates
with the least squared deviation from the regression
line, while QR selects parameter estimates that have
the least absolute deviation from the regression line.
Therefore, in this study, we are proposing a group of
quantile regression-type estimators by extending the
idea of Abid et al. [1], as given below:
tp1 = Q1

�
�y + by:x1(0:10)

� �X1 � �x1
��

+Q2
�
�y + by:x2(0:10)

� �X2 � �x2
��
; (4)

tp2 = Q1
�
�y + by:x1(0:15)

� �X1 � �x1
��

+Q2
�
�y + by:x2(0:15)

� �X2 � �x2
��
; (5)

tp3 = Q1
�
�y + by:x1(0:25)

� �X1 � �x1
��

+Q2
�
�y + by:x2(0:25)

� �X2 � �x2
��
; (6)

tp4 = Q1
�
�y + by:x1(0:35)

� �X1 � �x1
��

+Q2
�
�y + by:x2(0:35)

� �X2 � �x2
��
: (7)

In general, we can write the proposed family of estima-
tors as follows:
tpi = Q1

�
�y + by:x1(q)

� �X1 � �x1
��

+Q2
�
�y + by:x2(q)

� �X2 � �x2
��

for i = 1; 2; � � � ; 4; (8)

with:

by:x1(q) = argmin��Rp�q(v)
nX
i=1

(yi � hx1i; �i);

by:x2(q) = argmin��Rp�q(v)
nX
i=1

(yi � hx2i; �i);
where �q(v) is a continuous piecewise linear function (or

asymmetric absolute loss function) for quantile q�(0; 1),
but nondi�erentiable at v = 0. Note that all the
notations of �ypi have usual meanings as discussed in
the previous section. However, (by:x1(q), by:x2(q)) are
the QR coe�cients. For a deep study of QR, interested
readers may refer to Koenker and Hallock [22].

It is worth mentioning that we are using q10th =
0:10, q15th = 0:15, q25th = 0:25, and q35th = 0:35 quan-
tiles for the purposes of the current article. We see from
the consequences of the numerical study conducted in
Section 4 that utilizing the QR coe�cients, based on
these referenced quantiles, will incredibly enhance the
e�ciencies of the proposed estimators. Note that the
proposed class comprises four members based on these
four referenced quantiles.

To obtain MSE, let us de�ne �y = (1 + �y) �Y ,
�x1 = (1 + �x1) �X1, and �x2 = (1 + �x2) �X2. Utilizing
these notations �i (i = y; x1; x2), we can write E(�y) =
E(�x1) = E(�x2) = 0, E(�2

y) = �C2
y , E(�2

x1) = �C2
x1,

E(�2
x2) = �C2

x2, E(�y�x1) = �Cyx1, E(�y�x2) = �Cyx2
and E(�x1�x2) = �Cx1x2. Now, expanding tpi in terms
of �y, �x1, and �x2 as:

tpi =
�
Q1 �Y (1 + �y)� by:x1(q) �X1�x1

�
+
�
Q2 �Y (1 + �y)� by:x2(q) �X2�x2

�
: (9)

Eq. (9), applying expectation, we get a theoretical MSE
of the estimator tpi up to the order n�1 as follows:

MSE (tpi) = �Y 2 +Q2
1�A +Q2

2�B + 2Q1Q2�C

� 2Q1�D � 2Q2�E ; (10)

where:
�A=

� �Y 2+�
�
S2
y+By:x1(q)(By:x1(q)Sx1�2�Sy)Sx1

	�
;

�B=
� �Y 2+�fS2

y+By:x2(q)(By:x2(q)Sx2�2�Sy)Sx2g� ;
�C =

� �Y 2 + �fS2
y �By:x2(q)�y:x2SySx2

�By:x1(q)�y:x1SySx1

+By:x1(q)By:x2(q)�x1:x2Sx1Sx2g�;
�D = �E = �Y 2:

By partially di�erentiating Eq. (10) with respect to Q1
and Q2, we obtained the optimum values as given by:

Qopt
1 =

�
�B�D � �C�E
�A�B � �2

C

�
;
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and:

Qopt
2 =

�
�A�E � �C�D
�A�B � �2

C

�
:

Substitution of Qopt
1 and Qopt

2 into Eq. (10) provides
the minimum MSE of tpi as follows:

MSEmin(tpi)=
�

�Y 2� �B�2
D�2�C�D�E+�A�2

E
�A�B��2

C

�
: (11)

4. Numerical illustration

The current section is based on the performance evalu-
ation of various estimators. The accuracy of the recom-
mended estimators is assessed carefully in comparison
with previous estimators. In Subsections 4.1 and 4.2,
two data sets are considered: �rst, real-life data set
free from outliers and the other real-life data set with
outliers.

Generally, in the evaluation of new proposals,
it is typical to adopt analytical derivations and �nd
some conditions. These conditions help declare the
superiority of one estimator over the others. However,
the di�culty to verify these conditions is one of the
most di�cult problems associated with such analytical
derivations. Their use in practice remains doubtful
unless universal supremacy of a speci�c proposal has
been de�ned with certainty. In addition, when pa-
rameters of interest for a population are not known,
conditions that hold theoretically may not be ful�lled
in real analyses. In light of such circumstances, yet,
we have deliberately avoided creating comparisons on
a theoretical basis with other considered estimators
based on the MSE. Therefore, we conduct a variety
of numerical-simulations in Subsection 4.3. Finally,
we discuss the result of numerical illustrations in
Subsection 4.4.

4.1. Practical study (Pop-1)
In this subsection, we consider the Iris Data Set (IDS).
The Iris \
ower" data set, also named Fisher's IDS or
sometimes Anderson's IDS, introduced by Fisher [23]
and collected by Anderson [24] to quantify the variation
of Iris 
owers of di�erent related species. IDS is one of
the most well-known multivariate datasets used in data
mining. It contains measurements \in centimeters"
for the four variables including sepal length and width
and petal length and width for 150 
owers from three
species of Iris \Setosa, Versicolor, and Virginica". The
study variable Y is taken as \Sepal length", and the
auxiliary variables X1 and X2 are taken as \Petal
width" and \Petal length", respectively.

4.2. Robustness study of the proposed
estimators (Pop-2)

As in the earlier sections, it is mentioned that quantile
regression is robust against outliers. Thus, in case

outliers exist in the data, quantile regression coe�cient
performs e�ciently as compared to other measures of
locations. Thus, in the current sub-section, our recom-
mended estimators are evaluated in case of outliers. For
this purpose, the data set of Sukhatme and Sukhatme
is considered [25]. Herein, Y is taken as \area (acres)
under wheat in 1937", X1 is taken as \area (acres)
under wheat in 1936", and X2 is taken as \total
cultivated area (acres) in 1931". Figure 1 shows non-
normality. Box-plots and Scatter-plots in Figures 2, 3
and 4 point to the presence of outliers, individually and
in combination, in Y , X1, and X2, respectively.

Hence, Pop-2 is suitable for the utilization of non-
traditional measures as Abid et al. [1] and for the
proposed class containing quantile regression. The
remaining characteristics of all the two populations
are provided in Table 2. The �ndings of Percentage
Relative E�ciency (PRE) of the new class with respect
to the estimators of Abid et al. [1] are presented
numerically in Tables 3 and 4.

Figure 1. Histogram of study variable Y of Population-2.

Figure 2. Box-plot of Population-2.



U. Shahzad et al./Scientia Iranica, Transactions E: Industrial Engineering 30 (2023) 1245{1254 1249

Figure 3. Scatter Plot (x1, y) of Population-2.

Figure 4. Scatter Plot (x2, y) of Population-2.

4.3. Simulation study (Pop-3 & Pop-4)
This sub-section is developed to assess the e�ciency of
the estimators tp1 � tp4 with respect to the estimators
ta(1)� ta(16) based on simulation study. To make com-
parisons, two multi-variate Normal Distributions (ND)
for (Y ,X1,X2) with means ( �Y ; �X1; �X2) = (4:9; 4:9; 4:9)
and covariance matrices are given respectively as fol-
lows:

� Population 3:

� =

249:9 2:9 2:8
2:9 1:9 1:0
2:8 1:0 1:9

35 ; �yx1 = 0:651;

�yx2 = 0:669:

� Population 4:

� =

2413:9 2:9 2:8
2:9 1:9 1:0
2:8 1:0 1:9

35 ; �yx1 = 0:598;

�yx2 = 0:574:

For the application of robust tools, we add noise in

Table 2. Characteristics of populations.

Population-1 Population-2

N 150 34

n 25 10
�Y 5.843333 307.2941
�X1 1.199333 218.4118
�X2 3.758 765.3529

Cy 0.1417113 2.176777

Cx1 0.6355511 0.7678148

Cx2 0.4697441 0.6169129

�yx1 0.8179411 0.4143947

�yx2 0.8717538 0.3906281

�x1x2 0.9628654 0.8307546

�2(x1) 1.340604 0.5274551

�2(x2) 1.402103 0.1002026

MRx1 1.3 334

MRx2 3.95 933

TMx1 1.175 162.25

TMx2 3.85 705.25

HLx1 1.2 190

HLx2 3.65 718.5

DMx1 1.183333 206.4222

DMx2 3.738889 749.3333

By:x1(0:10) 0.8235294 0.4727891

By:x2(0:10) 0.3684211 0.1639929

By:x1(0:15) 0.7727273 0.7121212

By:x2(0:15) 0.375 0.196468

By:x1(0:25) 0.8 0.8972332

By:x2(0:25) 0.4 0.2234848

By:x1(0:35) 0.8333333 0.9202733

By:x2(tky) 0.3913043 0.2570379

Y [11]. From these populations, K = 8000 and
SRSWOR with size n = (250; 300) are selected for the
kth sample and the estimators (tpi, ta(i)) are evaluated.
In this way, for each (tpi, ta(i))), the MSE is determined
as:

MSE
�
�̂
�

=
KX
k=1

�
�̂(k) � �Y

�2
=K;

where �̂(k) denotes (tpi, ta(i)) estimators. The PRE is
computed for comparison purposes:

PRE
�
�̂
�

=
MSE (ta(i))
MSE (tpi)

� 100:

The PRE results of the simulation study are presented
numerically in Tables 5 and 6.
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Table 3. PRE of tpi w.r.t ta(i) in Pop-1.

Estimators tp1 tp2 tp3 tp4

ta(1) 219.5014 222.7373 222.2552 223.1740

ta(2) 211.8727 214.9961 214.5307 215.4176

ta(3) 244.2169 247.8172 247.2808 248.3030

ta(4) 227.3940 230.7463 230.2468 231.1987

ta(5) 20033.98 20329.33 20285.32 20369.18

ta(6) 32312.25 32788.60 32717.62 32852.88

ta(7) 15065.29 15287.39 15254.29 15317.35

ta(8) 21391.23 21706.59 21659.60 21749.14

ta(9) 100.7776 100.2338 100.0168 100.4303

ta(10) 100.90578 100.36388 100.14662 100.56062

ta(11) 100.2512 101.7292 101.5089 101.9286

ta(12) 100.50171 100.96859 100.75002 101.16652

ta(13) 194.1464 197.0086 196.5821 197.3948

ta(14) 187.2427 190.0031 189.5918 190.3755

ta(15) 215.9996 219.1839 218.7094 219.6136

ta(16) 201.3573 204.3257 203.8834 204.7263

Table 4. PRE of tpi w.r.t ta(i) in Pop-2.

Estimators tp1 tp2 tp3 tp4

ta(1) 128.7190 133.0835 135.3778 135.1200

ta(2) 123.4841 127.6711 129.8722 129.6248

ta(3) 124.7226 128.9516 131.1747 130.9249

ta(4) 125.0594 129.2998 131.5289 131.2784

ta(5) 117.4394 121.4214 123.5147 123.2795

ta(6) 117.5975 121.5849 123.6810 123.4454

ta(7) 117.5464 121.5321 123.6273 123.3918

ta(8) 117.5331 121.5182 123.6132 123.3778

ta(9) 129.0606 133.4367 135.7371 135.4786

ta(10) 123.3203 127.5017 129.6999 129.4529

ta(11) 124.4892 128.7103 130.9293 130.6799

ta(12) 125.0015 129.2399 131.4680 131.2176

ta(13) 133.9057 138.4460 140.8329 140.5646

ta(14) 126.0089 130.2815 132.5276 132.2752

ta(15) 127.9244 132.2619 134.5421 134.2859

ta(16) 128.6995 133.0633 135.3574 135.0996

4.4. Discussion
As an overview, from the PRE results of the proposed
estimators with respect to those of Abid et al. [1]
presented in Tables 3{6, we note that the relative
e�ciency values of all estimators surpass 100, which

clearly indicates that the proposed estimators are
performing better than the one attributed to Abid et
al. [1]. Furthermore, particularly, we observe that:

� From Table 3, containing results of Pop-1, the
proposed estimators tpi ; i = 1; � � � ; 4 record high
e�ciency and tp4 , with all ta(i) except ta(9) and
ta(10), appears to be the best. Also, from the values
of PRE with respect to ta(i), it can be seen that:

PRE (tpi)=

8>>>>>><>>>>>>:
PRE (tp1)>PRE (tp4)>PRE (tp2)
>PRE (tp3); w.r.t ta(9); ta(10)

PRE (tp4)>PRE (tp2)>PRE (tp3)
> PRE (tp1); otherwise

Regarding the existing estimators, the four highest
values of e�ciency were always associated with
ta(6), ta(8), ta(5), and ta(7) and  1(i) and  2(i)
are considered as the coe�cients of kurtosis (recall
Table 1).

� From Table 4, results of Pop-2, the proposed esti-
mators tpi ; i = 1; � � � ; 4 record high e�ciency and
tp3 appears to be the best. Also, from the values of
PRE with respect to ta(i), it is seen that:

PRE (tp3)>PRE (tp4)>PRE (tp2)>PRE (tp1):

Regarding the existing estimators, the four highest
values of e�ciency were always associated with
ta(13), ta(9), ta(1), and ta(16), respectively. In
addition, with di�erent coe�cients of  1(i) and  2(i),
i.e., comparing each estimator with its counterpart,
such that comparing ta(1) with ta(5), ta(9), and ta(13);
comparing ta(2) with ta(6), ta(10), and ta(14); compar-
ing ta(3) with ta(7), ta(11), and ta(15); and comparing
ta(4) with ta(8), ta(12), and ta(16), we �nd that the
results of the highest e�ciency are associated with
ta(13), ta(14), ta(15), and ta(16) corresponding to  1(i)
and  2(i) as correlation coe�cients.

� From Table 5, containing results of Pop-3, the
proposed estimators tpi ; i = 1; � � � ; 4 record high
e�ciency and tp4 and tp2 appear to be the best with
n = 250 and n = 300, respectively. From the values
of PRE with respect to all others, it is noted that:

PRE (tpi)=

8>>>>>><>>>>>>:
PRE (tp4)>PRE (tp3)>PRE (tp1)
> PRE (tp2); with n = 250

PRE (tp2)>PRE (tp1)>PRE (tp4)
> PRE (tp3); with n = 300

Regarding the existing estimators, the four highest
values of e�ciency were always associated with ta(9),
ta(12), ta(11), and ta(10). In addition, with di�erent
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Table 5. PRE of tpi w.r.t ta(i) in Pop-3.

Estimators
n = 250 n = 300

tp1 tp2 tp3 tp4 tp1 tp2 tp3 tp4

ta(1) 158.0752 157.0214 161.0813 162.0652 159.8053 159.9673 157.4025 158.0704

ta(2) 157.4370 156.3875 160.4310 161.4109 158.5655 158.7263 156.1813 156.8441

ta(3) 157.4808 156.4310 160.4757 161.4558 158.6164 158.7772 156.2314 156.8944

ta(4) 157.5117 156.4617 160.5071 161.4875 158.6498 158.8106 156.2643 156.9274

ta(5) 117.2443 116.4627 119.4740 120.2037 104.3757 104.4815 102.8063 103.2425

ta(6) 117.6107 116.8267 119.8473 120.5793 104.5747 104.6807 103.0023 103.4394

ta(7) 117.6351 116.8510 119.8723 120.6044 104.6463 104.7523 103.0728 103.5102

ta(8) 117.6407 116.8565 119.8780 120.6102 104.6893 104.7954 103.1152 103.5528

ta(9) 184.3911 183.1619 187.8977 189.0454 186.9523 187.1418 184.1412 184.9226

ta(10) 184.2794 183.0509 187.7839 188.9309 186.1350 186.3237 183.3363 184.1143

ta(11) 184.3388 183.1099 187.8444 188.9917 186.2145 186.4033 183.4146 184.1929

ta(12) 184.3697 183.1406 187.8759 189.0234 186.2636 186.4524 183.4629 184.2414

ta(13) 167.7246 166.6065 170.9143 171.9582 169.7884 169.9605 167.2354 167.9451

ta(14) 167.1990 166.0844 170.3786 171.4193 168.6136 168.7845 166.0783 166.7830

ta(15) 167.2511 166.1362 170.4318 171.4728 168.6823 168.8533 166.1459 166.8510

ta(16) 167.2845 166.1694 170.4658 171.5070 168.7262 168.8972 166.1892 166.8944

Table 6. PRE of tpi w.r.t ta(i) in Pop-4.

Estimators
n = 250 n = 300

tp1 tp2 tp3 tp4 tp1 tp2 tp3 tp4

ta(1) 121.1568 123.7984 124.0890 124.6420 148.5768 148.5108 148.1262 148.1145

ta(2) 120.8914 123.5272 123.8171 124.3689 149.1373 149.0710 148.6850 148.6732

ta(3) 120.8901 123.5259 123.8159 124.3676 149.1388 149.0726 148.6865 148.6748

ta(4) 120.8885 123.5243 123.8142 124.3660 149.1569 149.0906 148.7045 148.6928

ta(5) 101.8737 104.0949 104.3392 104.8042 120.9501 120.8964 120.5833 120.5738

ta(6) 101.9040 104.1258 104.3703 104.8354 120.4182 120.3647 120.0530 120.0435

ta(7) 101.8967 104.1184 104.3628 104.8279 120.3943 120.3409 120.0292 120.0197

ta(8) 101.8930 104.1146 104.3590 104.8240 120.3911 120.3376 120.0259 120.0165

ta(9) 135.0795 138.0247 138.3487 138.9652 165.5874 165.5139 165.0852 165.0722

ta(10) 134.8794 137.8203 138.1438 138.7594 166.0360 165.9622 165.5324 165.5193

ta(11) 134.8729 137.8135 138.1370 138.7526 166.0305 165.9568 165.5270 165.5139

ta(12) 134.8686 137.8091 138.1326 138.7482 166.0447 165.9709 165.5411 165.5280

ta(13) 127.8766 130.6648 130.9715 131.5551 156.9219 156.8522 156.4460 156.4336

ta(14) 127.6339 130.4168 130.7229 131.3054 157.4141 157.3442 156.9367 156.9243

ta(15) 127.6266 130.4092 130.7154 131.2978 157.4098 157.3399 156.9324 156.9200

ta(16) 127.6217 130.4043 130.7104 131.2929 157.4274 157.3575 156.9499 156.9375
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coe�cients of  1(i) and  2(i), we �nd that the results
of the highest e�ciency are associated with ta(9),
ta(12), ta(11), and ta(10) corresponding to  1(i) and
 2(i) as coe�cients of variation.

� From Table 6, containing results of Pop-4, the
proposed estimators tpi ; i = 1; : : : ; 4 record high
e�ciency and tp4 and tp1 appear to be the best with
n = 250 and n = 300, respectively. From the values
of PRE with respect to all others, we note that:

PRE (tpi)=

8>>>>>><>>>>>>:
PRE (tp4)>PRE (tp3)>PRE (tp2)
>PRE (tp1); with n = 250

PRE (tp1)>PRE (tp2)>PRE (tp3)
> PRE (tp4); with n = 300

Regarding the existing estimators, the four highest
values of e�ciency were always associated with ta(9),
ta(10), ta(11), and ta(12) when n = 250 and with
ta(12), ta(10), ta(11), and ta(9) when n = 300. In
addition, with di�erent coe�cients of  1(i) and  2(i),
we �nd that the results of the highest e�ciency
for n = 250 and n = 300 are associated with
ta(9), ta(10), ta(11), ta(12) and ta(12), ta(10), ta(11),
ta(9), respectively, corresponding to  1(i) and  2(i)
as coe�cients of variation.

Overall, the results of the numerical illustration
support utilizing the proposed quantile regression-type
estimators for mean estimation based on the informa-
tion of two auxiliary variables.

5. Conclusion

One of the main concerns of survey sampling is to
enhance the mean estimation based on auxiliary infor-
mation. Abid et al. [1] found that the utilization of non-
conventional location measures of mean estimation,
especially for a data set with outliers, was much better
than the traditional and existing location estimators.
In this paper, as an extension to the work of Abid
et al. [1], a new family of estimators based on the
information of two auxiliary variables was proposed
to estimate the population mean through the use of
quantile regression. Two real-life data sets besides
simulation study were considered in the numerical
illustration. The �rst real-life data set called Iris data
set was free from outliers, as credited by Fisher [23],
and the second real-life data set re
ected the existence
of outliers, credited by Sukhatme [25]. Simulation
study was also performed for the purpose of evaluation.
With all the cases considered in numerical illustration,
the percentage relative e�ciency clearly indicates the
higher e�ciency of the proposed estimators than the
existing estimators attributed to Abid et al. [1]. More-
over, an additional feature of the proposed estimators

is robustness to outliers. Last but not least, we opt for
the use of the proposed estimators in the presence of
outliers over the existing estimators attributed to Abid
et al. [1].
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